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Hoare vs Milner: comparing synchronizations
in a graphical framework with mobility ?
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Abstract

We compare the expressive power of Hoare (i.e., CSP style) and Milner (i.e., CCS
style) synchronizations for defining graph transformations in a framework where
edges can perform actions on adjacent nodes to synchronize their evolutions. Fur-
thermore, nodes can be communicated and merged. We show that the expressive
powers of the two synchronization models are different, but no one is greater than
the other. Finally, we show that in many interesting cases the behaviour of a syn-
chronization model can be mimicked by the other one using suitable translations
for the rewritten graphs.
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1 Introduction

A fundamental aspect of many modern distributed systems is synchronization,
i.e., how different components of the system can coordinate their behaviour
in order to reach a common goal. Clearly, synchronization can be performed
in different ways. This has emerged since the beginning of computational
models for interacting systems: while CCS [11] used the so called Milner
synchronization, where two processes interact by performing complementary
actions, CSP [6] used Hoare synchronization where all the processes must
synchronize by performing the same action.

We are interested in comparing these two synchronization models, but in
a setting which is more complex than the original one. We work in the frame-
work of Synchronized Hyperedge Replacement (SHR) [2,5,3], a graph transfor-
mation formalism aimed at representing distributed interacting systems. In
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particular, we model system components as hyperedges and communication
channels as shared nodes. System evolution is specified by productions, i.e.,
rules that describe the evolution of single hyperedges. Productions are syn-
chronized by performing actions on adjacent nodes, and a set of productions
can be executed concurrently only if the actions performed on each node are
compatible. Compatible here means that they must synchronize using a given
synchronization model. While SHR can be used with any synchronization
model [9], here we are interested in comparing the Hoare and the Milner mod-
els. In addition, we consider mobility of nodes: references to nodes can be
sent together with actions, and when actions are synchronized corresponding
nodes are merged. As far as Milner synchronization model is concerned, this
is the style of mobility used in Fusion Calculus [12] as pointed out in [7].

We will compare these two synchronization models from the point of view
of which classes of reconfigurations they can specify, in three important cases:
(i) one-step reconfigurations, (ii) reconfigurations specified by maximal (i.e.,
where no transition is possible from the final graph) computations and (iii)
reconfigurations specified by any possible computation.

We will prove the following original results:

(i) the expressiveness of Hoare and Milner synchronization models are in-
comparable for all the above defined classes of reconfigurations;

(ii) the expressiveness of Milner synchronization is greater than the one of
Hoare synchronization for graphs with no interface to the environment
where each node is shared by exactly two edges, since Milner synchro-
nization is asymmetric;

(iii) Hoare synchronization can be implemented using Milner synchronization
and a suitable translation for graphs;

(iv) the encoding approach used in proving (iii) can not be used in the opposite
direction, since it would require to force interleaving in a distributed
structure.

Structure of the paper.

§ 2 introduces Synchronized Hyperedge Replacement and the Hoare and Mil-
ner synchronization models. In § 3 we define the formal setting for comparing
the models. The comparison is carried out in § 4. The case of closed graphs
with nodes shared by exactly two edges is analyzed in § 5. § 6 deals with the
problem of implementing one model using the other one. Finally, conclusions
and traces for future work are presented in § 7.

2 Synchronized Hyperedge Replacement

In this section we present Synchronized Hyperedge Replacement (SHR) [2]
and, in particular, the Hoare and the Milner synchronization models, but first
we introduce some mathematical notation.
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Mathematical notation. Given a syntactic structure t (e.g., a term, a set of

terms, an equation), we denote with tσ the application of substitution σ to t (in a

capture-avoiding way if t contains binders). The operator |−| computes the number

of elements in a vector or in a set. Given a set S, ℘(S) is its powerset and S∗ is

the set of strings on alphabet S. Given a function f , we denote with dom(f) its

domain and with f |S its restriction to the new domain S. Finally, when we use set

operators on functions and substitutions, we refer to their representation as sets of

pairs.

SHR [2] is an approach to (hyper)graph transformation that defines global
transitions using local productions. Productions define how a single (hy-
per)edge can be rewritten and the conditions that this rewriting imposes on
adjacent nodes. Thus the global transition is obtained by applying in parallel
different productions whose conditions are compatible. What exactly compat-
ible means depends on which synchronization model is used. In this work we
will use both the Hoare and the Milner synchronization models. The former
requires that all the edges connected to a node execute the same action on
it. The latter requires two edges to interact by performing complementary
actions while the others stay idle. For a general definition of synchronization
models see [9].

We use the extension of SHR with mobility [5,3], that allows edges to send
node references together with actions, and nodes whose references are matched
during synchronization are unified.

We will give a formal description of SHR as labelled transition system, but
first of all we need an algebraic representation for graphs.

An edge is an atomic item with a label and with as many ordered tentacles
as the rank rank(L) of its label L. A graph is composed by a set of nodes
and a set of such edges, and each edge is connected, by its tentacles, to its
attachment nodes. A graph is connected to its environment by an interface
which is a subset of its nodes. Nodes in the interface are called free nodes,
while other nodes are called bound (or restricted). We will consider graphs
up to isomorphisms that preserve free nodes, labels of edges, and connections
between edges and nodes. We denote with Graphs the set of such graphs.

Now, we present a definition of graphs as syntactic judgements, where
nodes correspond to names, free nodes to free names and edges to basic terms
of the form L(x1, . . . , xn), where the xi are arbitrary names and rank(L) = n.
Also, nil represents the graph with no edges, | is the parallel composition
of graphs (merging nodes with the same name) and νy is a declaration of a
bound node y.

Definition 2.1 (Graphs as judgements) Let N be a fixed infinite set of
names and LE a ranked alphabet of labels. A judgement is of the form Γ ` G
where:

(i) Γ ⊆ N is a finite set of names (the free nodes of the graph);

(ii) G is a term generated by the grammar
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(AG1) (G1|G2)|G3 ≡ G1|(G2|G3) (AG2) G1|G2 ≡ G2|G1 (AG3) G|nil ≡ G

(AG4) νx νy G ≡ νy νx G (AG5) νx G ≡ G if x /∈ fn(G)

(AG6) νx G ≡ νy G{y/x} if y /∈ fn(G)

(AG7) νx (G1|G2) ≡ (νx G1)|G2 if x /∈ fn(G2)

Table 1
Structural congruence for graph terms.

G ::= L(x) | G|G | νy G | nil
where x is a vector of names, L is an edge label with rank(L) = |x| and
y is a name.

We define the restriction operator ν as a binder. We denote with fn the
function that given a term G returns the set fn(G) of free names in G. We
demand that fn(G) ⊆ Γ.

When defining the interfaces, we use the notation Γ, x to denote the set
obtained by adding x to Γ, assuming x /∈ Γ and Γ1, Γ2 to denote the union of
Γ1 and Γ2, assuming Γ1 ∩ Γ2 = ∅.

Graph terms are considered up to the axioms of structural congruence in
Table 1. As far as judgements are concerned, we define Γ ` G ≡ Γ′ ` G′ iff
Γ = Γ′ and G ≡ G′.

Axioms (AG1), (AG2) and (AG3) define respectively the associativity,
commutativity and identity over nil for operation |. Axioms (AG4) and (AG5)
state that nodes of a graph can be restricted only once and in any order. Axiom
(AG6) defines α-conversion of a graph w.r.t its bound names. Axiom (AG7)
defines the interaction between restriction and parallel composition.

Note that function fn is well-defined on equivalence classes.

Judgements up to structural axioms are isomorphic to graphs up to iso-
morphisms. For a formal statement of the correspondence see [4].

We present now the steps of an SHR computation.

Definition 2.2 (SHR transition) Let Act be a set of actions, and given
a ∈ Act let ar(a) be its arity. A SHR transition is of the form:

Γ ` G
Λ,π
−−→ Φ ` G′

where Γ ` G and Φ ` G′ are judgements for graphs, Λ : Γ → (Act × N ∗)
is a total function and π : Γ → Γ is an idempotent substitution. Function Λ
assigns to each node x the action a ∈ Act and the vector y of node references
exposed on x by the transition (in a more message-passing view, we say that
node references are sent to x). If Λ(x) = (a, y) then we define actΛ(x) = a
and nΛ(x) = y. We require that ar(actΛ(x)) = | nΛ(x)|.

We define:

• n(Λ) = {z|∃x.z ∈ nΛ(x)} set of exposed names;
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• ΓΛ = n(Λ) \ Γ set of exposed fresh names.

Substitution π allows to merge nodes. Since π is idempotent, it maps every
node into a standard representative of its equivalence class. We require that
∀x ∈ n(Λ).xπ = x, i.e., only references to representatives can be exposed.
Furthermore we require Φ = Γπ ∪ ΓΛ, namely free nodes are never erased (⊇)
and new nodes are bound unless exposed (⊆).

Note that the set of free names Φ of the resulting graph is fully determined
by Λ and π (since Γ = dom(Λ)). When writing Λ as set of pairs we write the
triple (x, a, y) for the pair (x, (a, y)).

SHR transitions are derived from basic productions using suitable sets of
inference rules.

Definition 2.3 (Production)
A production is an SHR transition of the form:

x1, . . . , xn ` L(x1, . . . , xn)
Λ,π
−−→ Φ ` G

where all xi, i = 1, . . . , n are distinct.

We suppose to have for each edge label L of arity n a special idle pro-

duction x1, . . . , xn ` L(x1, . . . , xn)
Λε,id
−−−→ x1, . . . , xn ` L(x1, . . . , xn) where

Λε(xi) = (ε, 〈〉) for each i (ε is a special “idle” action with ar(ε) = 0). Idle
productions are included in all sets of productions, which are also closed w.r.t.
α-conversion of names in {x1, . . . , xn} ∪ Φ.

We present now the set of inference rules for Hoare synchronization. The
intuitive idea of Hoare synchronization is that all the edges connected to a
node must expose the same action on that node.

Definition 2.4 (Rules for Hoare synchronization)

(par)
Γ ` G1

Λ,π
−−→ Φ ` G2 Γ′ ` G′

1

Λ′,π′

−−−→ Φ′ ` G′
2

Γ, Γ′ ` G1|G′
1

Λ∪Λ′,π∪π′

−−−−−−→ Φ, Φ′ ` G2|G′
2

where (Γ ∪ Φ) ∩ (Γ′ ∪ Φ′) = ∅.

(merge)
Γ ` G1

Λ,π
−−→ Φ ` G2

Γσ ` G1σ
Λ′,π′

−−−→ Φ′ ` G2σρ

where σ : Γ → Γ is an idempotent substitution and:

(i) ∀x, y ∈ Γ.xσ = yσ ⇒ actΛ(x) = actΛ(y)

(ii) ρ = mgu({(nΛ(x))σ = (nΛ(y))σ|xσ = yσ} ∪ {xσ = yσ|xπ = yπ}) where
we choose names in Γσ as representatives whenever possible

(iii) ∀z ∈ Γ.Λ′(zσ) = (Λ(z))σρ

(iv) π′ = ρ|Γσ
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(res)
Γ, x ` G1

Λ,π
−−→ Φ ` G2

Γ ` νx G1
Λ|Γ,π|Γ
−−−−→ Φ′ ` νZ G2

where:

(v) (∃y ∈ Γ.xπ = yπ) ⇒ xπ 6= x

(vi) Z = ({x} ∪ n(Λ)) \ n(Λ|Γ)

(new)
Γ ` G1

Λ,π
−−→ Φ ` G2

Γ, x ` G1
Λ∪{(x,a,y)},π
−−−−−−−−→ Φ′ ` G2

where x /∈ Γ ∪ Φ and y ∩ (Γ ∪ Φ ∪ {x}) = ∅.

A transition is obtained by composing productions, which are first applied
on disconnected edges. Composition is performed by merging nodes and thus
connecting the edges. Finally, nodes can be bound. In particular, rule (par)
deals with the composition of transitions which have disjoint sets of nodes
and rule (merge) allows to merge nodes (note that σ is a projection into
representatives of equivalence classes). Condition (i) requires that we have
the same action on merged nodes. Condition (ii) defines the most general
unifier ρ of the union of two sets of equations: the first set identifies (the
representatives of) the tuples associated to nodes merged by σ, while the
second set of equations adds previous merges traced by π. Thus ρ is the
merge resulting from both π and σ. Note that (iii) Λ is updated with these
merges and that (iv) π′ is ρ restricted to the nodes of the graph which is the
source of the transition. Rule (res) binds node x, guaranteeing that x is not a
representative if it belongs to a non trivial equivalence class and binding also
all the nodes that were extruded on node x in the starting transition. Rule
(new) allows adding to the source graph an isolated node where arbitrary
actions (with fresh names) are performed.

We write P H Γ ` G1
Λ,π
−−→ Φ ` G2 if Γ ` G1

Λ,π
−−→ Φ ` G2 can be obtained

from the productions in P using Hoare inference rules.

A similar set of rules can be defined also for Milner synchronization.

Definition 2.5 (Rules for Milner synchronization)

(par)
Γ ` G1

Λ,π
−−→ Φ ` G2 Γ′ ` G′

1

Λ′,π′

−−−→ Φ′ ` G′
2

Γ, Γ′ ` G1|G′
1

Λ∪Λ′,π∪π′

−−−−−−→ Φ, Φ′ ` G2|G′
2

where (Γ ∪ Φ) ∩ (Γ′ ∪ Φ′) = ∅.

(merge)
Γ ` G1

Λ,π
−−→ Φ ` G2

Γσ ` G1σ
Λ′,π′

−−−→ Φ′ ` νU G2σρ

where σ : Γ → Γ is an idempotent substitution and:
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(i) ∀x, y ∈ Γ.xσ = yσ ∧ actΛ(x) 6= ε ∧ actΛ(y) 6= ε ∧ x 6= y ⇒
(∀z ∈ N \ {x, y}.zσ = xσ ⇒ actΛ(z) = ε)∧
actΛ(x) = a ∧ actΛ(y) = a ∧ a 6= τ

(ii) ρ = mgu({(nΛ(x))σ = (nΛ(y))σ|xσ = yσ} ∪ {xσ = yσ|xπ = yπ}) where
we choose names in Γσ as representatives whenever possible

(iii) Λ′(z) =



















(τ, 〈〉) if xσ = yσ = z ∧ x 6= y ∧ actΛ(x), actΛ(y) 6= ε

(Λ(x))σρ if xσ = z ∧ actΛ(x) 6= ε

(ε, 〈〉) otherwise

(iv) π′ = ρ|Γσ

(v) U = (Φσρ) \ Φ′

(res)
Γ, x ` G1

Λ,π
−−→ Φ ` G2

Γ ` νx G1
Λ|Γ,π|Γ
−−−−→ Φ′ ` νZ G2

where:

(vi) (∃y ∈ Γ.xπ = yπ) ⇒ xπ 6= x

(vii) actΛ(x) = ε ∨ actΛ(x) = τ

(viii) Z = {x} if x /∈ n(Λ|Γ), Z = ∅ otherwise

(new)
Γ ` G1

Λ,π
−−→ Φ ` G2

Γ, x ` G1
Λ∪{(x,ε,〈〉)},π
−−−−−−−−→ Φ, x ` G2

where x /∈ Γ ∪ Φ.

Rules for Milner synchronization suppose that actions can be normal ac-
tions a (representing input) or coactions a (representing “output”). We also
assume a = a. Furthermore we have the two special actions ε and τ (completed
synchronization) of arity 0.

Rules are similar to the ones for Hoare synchronization. The main dif-
ferences are that in rule (merge) during action synchronization (i) we require
to have (at most) two complementary non ε actions, and their composition
is τ . Thus we may have to reintroduce restrictions (v) if some nodes were
extruded by the synchronized actions. In rule (res), just nodes x where ε or
τ actions are performed can be restricted, and since these actions have arity
0 only node x may have to be restricted in the final graph. Finally, in rule
(new) only action ε is allowed on the newly created node.

We write P M Γ ` G1
Λ,π
−−→ Φ ` G2 if Γ ` G1

Λ,π
−−→ Φ ` G2 can be obtained

from the productions in P using Milner inference rules. We drop the subscript
M or H from  when we refer to an unspecified synchronization model.

A SHR computation is a sequence of SHR transitions such that for each i
the final graph of transition i is the starting graph of transition i + 1. A SHR
computation is called trivial if the starting graph is equal to the final graph.
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3 Expressiveness measures

We want to study the expressiveness of the Hoare and Milner synchronization
models in the SHR framework. Different measures of expressiveness can be
useful, according to which is the intended use of the model. In our case, we are
mainly interested in using graph transformation to express reconfigurations of
the topology of distributed systems, thus the main point is which is the class
of reconfigurations that can be expressed by a set of productions together with
a synchronization model.

Formally, we define reconfigurations as functions r : Graphs → ℘(Graphs).

Intuitively, the behaviour of a set of productions P on a graph G w.r.t.
a synchronization model S is the set of graphs that are the results of “suit-
able” computations starting from G. The choice of which computations are
“suitable” determines the observable behaviour of the system.

Definition 3.1 (Behaviour function)
The function C- behavS(P)(G) is the function that computes the set of graphs
reachable from graph G using computations in the class C obtained from the
productions in P using synchronization model S.

Thus we can say that the C1-expressiveness of synchronization model S1

is greater than the C2-expressiveness of a synchronization model S2, written
as (S1, C1) ≥ (S2, C2) if there exists a function f from sets of productions to
sets of productions such that for each set of productions P and for all graphs
G we have that C2- behavS2(P)(G) = C1- behavS1(f(P))(G).

We will consider three different choices for C:

1 one-step computations;

max maximal computations (i.e., computations whose final state does not
allow further non trivial transitions);

all all possible computations.

If a synchronization model S2 is not as expressive as a synchronization
model S1, we can try to simulate reconfigurations of S1 using reconfigurations
of S2 by translating the graph G (this will be done formally in § 5 and § 6).

4 The expressiveness of Hoare and Milner synchroniza-
tions are not comparable

In this section we show that the expressive power of Hoare and Milner syn-
chronization models are different, but no one is greater than the other, inde-
pendently of the class of computations used.

We first need an auxiliary definition.

Definition 4.1 (Monotonicity) We define the following partial order on

transitions: Γ ∪ Γ′ ` G1|G
′ Λ′,π
−−→ Φ ∪ Γ′π ` G2|G

′π is greater than Γ ` G1
Λ,π
−−→
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Φ ` G2 iff Γ′ ` G′ is a graph and Λ = Λ′|Γ. A SHR system is monotone iff the
set of derivable transitions is upward-closed (i.e., for each set of productions
P, if a transition is derivable, then all the greater transitions are derivable
too).

Intuitively, in a monotone system we can always add to the graph an
additional part which stays idle.

Proposition 4.2 Milner SHR is monotone.

Intuitively, this happens because Milner synchronization involves exactly
two participants. The same is not true for Hoare synchronization, because
there is a universal quantification on the participants connected to the node
where the synchronization is performed.

Since the monotonicity property can be extended from transitions to gen-
eral computations, each set of Milner computations must be upward-closed
too. Using that, we can prove the following theorem.

Theorem 4.3 (Milner, C1) � (Hoare, C2) for each C1 ∈ {1, all} and each
C2 ∈ {1, max, all}.

Proof. Let us consider the set of productions P generated by the only pro-
duction:

x ` d(x)
(x,a,〈〉)
−−−−→ x ` d′(x)

For C2 ∈ {1, all} we have that:
C2- behavH(P)(x ` d(x)) = {x ` d(x), x ` d′(x)}
C2- behavH(P)(x ` d(x)|d(x)) = {x ` d(x)|d(x), x ` d′(x)|d′(x)}
while for C2 = max the behaviours do not contain the trivial reconfigurations
(which are not maximal). Since, for each choice of C2, behaviours are not
monotone, the thesis follows from Proposition 4.2. 2

The case of max-expressiveness requires a bit more work.

Theorem 4.4 (Milner, max) � (Hoare, C) for each C ∈ {1, max, all}.

Proof. Let us consider the set of productions P generated by the only pro-
duction:

x ` d(x)
(x,a,〈〉)
−−−−→ x ` nil

For each C ∈ {1, all} we have that:
C- behavH(P)(x ` d(x)) = {x ` d(x), x ` nil}
C- behavH(P)(x ` d(x)|d′(x)) = {x ` d(x)|d′(x)}
while for C = max we have not the trivial reconfiguration in the first case.
Suppose that we can obtain this behaviour with Milner SHR. By monotonicity
from the first case we have a transition from x ` d(x)|d′(x) to x ` d′(x). If
x ` d′(x) can not be rewritten then we have a contradiction, since it is not in
the behaviour. Otherwise by monotonicity also x ` d(x)|d′(x) can be rewritten
and so it can not be in the behaviour for maximal computations, as it is. 2
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Now we consider the inverse problem, that is we prove that the expressive-
ness of Milner synchronization model can not be reached by Hoare SHR.

Notice that, if all nodes are free, Milner synchronization can not force pro-
ductions to be executed together, i.e., each production can always be applied
in isolation. Hence, restriction is fundamental for constraining the behaviour
of components using Milner synchronization (and this does not surprise, since
even in CCS restriction is necessary to reach Turing equivalence).

Notice that instead in Hoare SHR restriction just performs hiding of part
of the observation, i.e., no transition can be forbidden by restriction. More
formally, the following proposition holds.

Proposition 4.5 Given a set of productions P, if P H Γ, x ` G1
Λ,π
−−→ Φ `

G2 then P H Γ ` νx G1
Λ′,π′

−−−→ Φ′ ` νZ G2 where Λ′, π′ and Φ′ are subsets of
Λ, π and Φ respectively, and Z = Φ \ Φ′.

Theorem 4.6 (Hoare, C1) � (Milner, C2) for each C1, C2 ∈ {1, max, all}.

Proof. Let us consider the set of productions P generated by the only pro-
duction:

x ` d(x)
(x,a,〈〉)
−−−−→ x ` d′(x)

For each C2 ∈ {1, all} we have that:
C2- behavM(P)(x ` d(x)) = {x ` d(x), x ` d′(x)}
C2- behavM(P)(` νx d(x)) = {` νx d(x)}
while for C2 = max we have not the trivial reconfiguration in the first case.
Since this behaviour does not satisfy Proposition 4.5, it can not be obtained
by Hoare SHR (with any class of computations). 2

5 Reconciling Hoare and Milner synchronizations

Until now we have shown that the expressiveness of Hoare and Milner SHR are
quite different. We consider now a case where they become closer, i.e., when
we consider closed graphs (i.e., graphs where all nodes are restricted) where
each node is attached to exactly two tentacles. We call these graphs closed
2-shared graphs. Even if this case is quite simple, it shows some interesting
features of the two synchronization models and it is a first step towards the
more general results of next section.

The reconfigurations have to preserve the two invariants above. The in-
variant of having closed graphs is preserved automatically since new nodes are
bound by default, and an extrusion can happen only if there is a free node on
which it is performed.

The second condition is not preserved in general, but it can be enforced
by constraining the allowed productions. Let us consider the application of a
single production: when the rewritten edge is removed, all the nodes attached
to it have one attached tentacle missing (two if the edge was connected two
times to the same node). Thus when inserting the new graph, the same number
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of connections to those nodes must be provided, and two connections must be
provided for each new node. Notice also that when merges are performed, two
nodes with one connection each are merged into one with two connections,
thus occurrences of nodes in Λ or in π count as new connections for that node.

Definition 5.1 A production P is connection-preserving if for each node x
the number of occurrences of x in the right hand side, plus the ones in Λ,
plus the number of nodes that are merged with x by π equals the number of
occurrences of x in the left hand side (that is, 1) if x occurs there, and it is 2
for new nodes.

Proposition 5.2 Let P be a set of connection-preserving productions and G

a closed 2-shared graph. If P  G
Λ,π
−−→ G′ then G′ is a closed 2-shared graph.

Proof. By rule induction on the derivation. 2

Thus from now on we consider only connection-preserving productions. We
will show later that this kind of productions is expressive enough to simulate
general Hoare transitions (via a translation of graphs).

Theorem 5.3 For closed 2-shared graphs, (Milner, C) ≥ (Hoare, C) for
each C ∈ {1, max, all}.

Proof. The set of productions for Milner model can be obtained by replicating
each Hoare production with all possible “orientations” of actions, i.e., any
action a must be substituted by either a or a and a production is needed for
each possible combination of choices. 2

This proves that for closed 2-shared graphs, Hoare synchronization is equal
to Milner synchronization where the distinction between actions and coactions
is dropped. In that case, Milner synchronization is strictly more expressive
than Hoare synchronization and the additional expressiveness is given exactly
by the asymmetry, as shown by the following proposition (whether this result
holds for max expressiveness is an open problem).

Proposition 5.4 For closed 2-shared graphs, (Hoare, C1) � (Milner, C2) for
each C1, C2 ∈ {1, all}.

Proof. Let us consider the graph ` νx d(x)|d(x). This graph is symmetric.
Using Hoare synchronization, for any choice of production for the left edge,
the same production can always be applied in the same step also to the right
edge, and the result is again a symmetric graph. Thus for each choice of
productions, if a transition exists, then also a transition that preserves the
symmetry exists.

Using Milner synchronization and the set of productions generated by:

x ` d(x)
(x,a,〈〉)
−−−−→ x ` c(x)

x ` d(x)
(x,a,〈〉)
−−−−→ x ` d(x)

we have just one non trivial allowed transition, with final graph ` νx c(x)|d(x).
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Notice that this is also the result of all the allowed non trivial computations.
Since no symmetric graph is obtained, this reconfiguration can not be per-
formed using Hoare SHR. 2

Thus we will consider a different form of simulation, that uses a translation
for graphs. In particular, we define two functions J−K, J−K−1 : Graphs →
Graphs such that for each graph G we have JJGKK−1 = G (but we may have
JJGK−1K 6= G).

We say that (C1, S1) can simulate (C2, S2) iff we have C2- behavS2(P)(G) =
JC1- behavS1(f(P))(JGK)K−1, i.e., the result of a (C2, S2) reconfiguration can
be obtained by translating the graph, reconfiguring it using (C1, S1) and trans-
lating it back again.

We use a translation based on the concept of amoeboid [8]: each node
shared by n tentacles is translated into a graph called amoeboid with n ex-
ternal nodes. The inverse translation J−K−1 just removes the amoeboids and
reinserts the nodes they stand for. In our case an amoeboid (which connects
two nodes) for J−K is simply an edge L(x, y), where L is a special label with
productions of the following form for each action a of arity k:

x, y ` L(x, y)
(x,a,〈x1,...,xk〉)(y,a,〈y1,...,yk〉)
−−−−−−−−−−−−−−−−−→

x, y, x1, . . . , xk, y1, . . . , yk ` L(x, y)|
[]

i=1,...,k
L(xi, yi)

and where
[]

i∈I
Gi is the parallel composition of graphs Gi for each i ∈ I.

As far as J−K−1 is concerned, an amoeboid is any chain of such edges. The
translation f of productions just drops π and connects each pair of nodes
merged by π using an L edge.

The following theorem holds.

Theorem 5.5 For each set generated by connection-preserving productions P,
each closed 2-shared graph G, and each class of computations C ∈ {1, max, all}
we have C- behavM(P)(G) = JC- behavH(f(P))(JGK)K−1.

Proof. The result holds because the L edge allows on its nodes complemen-
tary synchronizations, and amoeboids to be merged are instead connected
using L edges. The tricky part is that the chains of L edges that are created
(and that are translated into nodes by the inverse translation) have always
odd length, and this is exactly the condition required to have complementary
actions on the two ends of the chain. Notice also that the productions for L
edges are connection-preserving. 2

6 Dealing with general closed graphs

We want now to go back to the general case, at least as far as the number of
tentacles attached to each node is concerned. In particular, we will show that

12
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by using a different kind of amoeboids, the general case can be reduced to the
2-shared one.

As far as Hoare synchronization is concerned, we want to use amoeboids
that perform the broadcast of the action.

Those amoeboids are composed by edges H (for Hoare) of arity 3 and
edges C (for closing) of arity 1 to deal with nodes with less than 3 attached
tentacles. These edges have for each action (we consider as an example an
action a of arity 2) productions of the form:

x, y, z ` H(x, y, z)
(x,a,〈x1,x2〉)(y,a,〈y1 ,y2〉)(z,a,〈z1,z2〉)
−−−−−−−−−−−−−−−−−−−−−→

x, y, z, x1, y1, z1, x2, y2, z2 ` H(x, y, z)|H(x1, y1, z1)|H(x2, y2, z2)

x ` C(x)
(x,a,〈x1,x2〉)
−−−−−−−→ x, x1, x2 ` C(x)|C(x1)|C(x2)

Such an amoeboid imposes the same action to be executed on each node
and it creates a copy of itself for each set of corresponding names, that are in
this way connected in the resulting graph.

An amoeboid used to connect a set of nodes S is any connected graph
composed by H and C edges whose nodes in S are attached to just one tentacle
while whose other nodes are 2-shared. Thus for each graph G, JGK is a 2 shared
graph.

Analogously we have to translate productions in order to make them
connection-preserving. This can be done by splitting nodes that are used too
many times and connecting the different copies using H edges, while nodes
that are used too few times must be closed using C edges. Also, π is dropped
and the nodes to be merged are connected using amoeboids.

Example 6.1 Let us consider the following production, which is used in [5]
to specify a reconfiguration from a ring graph to a star one:

x, y ` r(x, y)
(x,r,〈w〉)(y,r,〈w〉)
−−−−−−−−−→ x, y, w ` s(y, w)

In this production the name x is not used in the right hand side, whereas the
name w is used 3 times (two times in Λ and one by edge s) while it does not
occur in the left hand side. We can translate the production into:

x, y ` r(x, y)
(x,r,〈w1〉)(y,r,〈w2〉)
−−−−−−−−−−−→ x, y, w1, w2, w3 ` C(x), s(y, w3), H(w1, w2, w3)

which is a connection-preserving production such that the inverse translation
of the right hand side is the right hand side of the starting production (up to
renaming of nodes).

By using for functions J−K and J−K−1 the new amoeboids, we have the
following result.
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Theorem 6.2 For each set of productions P, each closed graph G, and each
class of computations C ∈ {1, max, all} we have that C-behavH(P)(G) =
JC-behavH(f(P))(JGK)K−1 where f performs the above described translation
of productions.

This result can be composed with Theorem 5.3 to get a translation from
Hoare synchronization to Milner synchronization for any closed graph. To deal
with general graphs, one just needs to trace which nodes are free. This can be
done by adding to each amoeboid representing a free node an edge ENV (x)
representing a connection with the environment. Such an edge must allow any
action and it must attach a copy of itself to each node it receives (to simulate
the fact that a node sent on a free node is extruded), like the C edge does.
Note that in this way we may get amoeboids with many connections to the
environment. We can add productions to delete them if they are redundant,
but there is no way to force these reconfigurations to be executed before the
normal transitions.

Now we want to apply the same approach to Milner synchronization. Mil-
ner amoeboids are essentially routers that create a path from an action to the
corresponding coaction.

We start by introducing an M (for Milner) edge of arity 3. We want the
edge to perform complementary actions on any pair of its three attachment
nodes. Thus we have a production of the form:

x, y, z ` M(x, y, z)
(x,a,〈s1,s2〉)(y,a,〈s1,s2〉)(z,ε,〈〉)
−−−−−−−−−−−−−−−−−→ x, y, z ` M(x, y, z)

Note that in Milner synchronization we always merge pairs of nodes, thus
it is not necessary to replicate the amoeboid. We also have to use a different
kind of edge for dealing with nodes shared by less than 3 tentacles, which
we denote by I (for inactive). This edge has only the idle production. This
guarantees that actions and coactions are performed only by edges from the
original graph.

For productions we use the same kind of translation that we have used in
the Hoare case, with the new edges for amoeboids.

However w.r.t. Hoare model we have here an additional problem: many
independent synchronizations may be allowed inside an amoeboid during one
transition, but this is not allowed in standard Milner synchronization. In
particular, this occurs when the pairs of interacting nodes are connected by
disjoint paths inside the amoeboid. Also, cycles in the amoeboid may cause
new isolated nodes to be created, but these can be discarded by J−K−1.

Using the new definition for the translation functions, we have the following
partial correctness result.

Theorem 6.3 For each set of productions P, each closed graph G, and each
class of computations C ∈ {1, max, all} we have that C- behavM(P)(G) ⊆
JC-behavM(f(P))(JGK)K−1 where f performs the usual translation of produc-
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tions into connection-preserving ones.

The other inclusion holds, e.g., for amoeboids connecting at most 3 nodes,
since in that case we can have at most one synchronization. Notice that this
theorem can be composed with Theorem 5.5 to have an implementation of Mil-
ner synchronization using Hoare synchronization. The composed translation
has been used in [8] to map Fusion Calculus into logic programming.

We show now that the problem of guaranteeing interleaving inside amoe-
boids of the above seen kind can not be solved.

Theorem 6.4 Let G ⊆ Graphs contain for each n at least a graph with n
nodes in its interface and let it be closed w.r.t. composition of graphs by
joining them via a node in the interface. Then the maximum k such that all
G ∈ G allow only transitions where at most k actions on the interface are not
ε, if it exists is 0.

Proof. Suppose that such a k exists and it is not 0 and take a graph with
more than k nodes in its interface, and a transition where k of the actions are
not ε. Take a node where ε action is executed. By connecting two such graphs
by merging these two nodes, we get a graph which allows at least 2k non ε
actions on its interface. This gives a contradiction. 2

This proves that we can not have a set of amoeboids for Milner synchro-
nization (since this requires k = 2), since the closure property is needed to
model mobility. Notice in fact that if we want to model reconfigurations with-
out mobility we can use, e.g., amoeboids with a tree structure whose leaves
are the interface and whose roots check that the resulting action is a τ . Using
mobility, the tree shape can not be preserved.

Also in that case, free nodes can be managed using edges standing for
connections to the environment.

7 Conclusion and future works

We have analyzed the expressive power of Hoare and Milner synchronizations
in the SHR setting, proving that they are incomparable and that implementing
one synchronization with the other is not a trivial task. Also, for Milner
synchronization no fully satisfactory simulation can be obtained using the
concept of amoeboid. Notice that no counterexample (but the last one) uses
mobility, thus we have proved that the expressiveness is incomparable without
mobility, and that adding mobility does not help to bridge the gap.

These results justify the idea of having different synchronization models
available in the same framework in order to be able to use all of them with-
out complex translations. Such an approach was used in process calculus
ACP [1], and has been extended to deal with graph transformations and mo-
bility in [9,10].
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As future work we want to carry out a similar comparison among generic
synchronization models as defined in [9]. Another issue is to consider not only
the allowed reconfigurations, but also the labels of the transitions. Finally, the
possibility of using maximal expressivity to break symmetry in Hoare synchro-
nization must be further investigated (see discussion before Proposition 5.4).
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