Game Theory as a tool for the management of Environmental Problems and Agreements

Lorenzo Cioni
Dipartimento di Informatica
Largo Pontecorvo 3
Pisa
lcioni@di.unipi.it

Main topics of the talk

- Game Theory
- International Environmental Problems (IEPs)
- International Environmental Agreements (IEAs)

Structure of the talk

- •[Pills of] characterisation
- $\bullet I[E]A$
- •[Few] remarks on coalitions, transfers, issues linkage
- •IEP
- •NCGT: models and applications
- •CGT: examples

Pills of characterisation

• IA

- * full negotiations
- * (mainly) agreements about "goods"

IEA

- * self enforcing (lack of international enforcing authority)
- * free-riding
- * (mainly) agreements about "bads"

* coalitions

IED

- * transboundary problems
- * possible international authorities: mediator and or arbitrator
- * contracts and communication, no coalitions (few countries strategically competing), free-riding
- * agreements about "goods" and "bads"

I[E]A

• IA

- * examples
 - → International Telecommunication Convention (1965): radio frequencies and geostationary orbit;
 - → Law of the Sea (1973): deep ocean bed, divider÷chooser

IEA

- ★ examples:
 - → Oslo Protocol (1994): sulfur reduction;
 - → Montreal Protocol (1987): depletion ozone layer;
 - → Kyoto Protocol (1997): reduction greenhouse gases.
- **★** typologies:
 - global warming, acid rains, high sea fisheries, water management (anyway problems or "bads")

Some remarks on coalitions 1

- A coalition is any subset S of the set N of players (grand coalition)
 - * worth of a coalition
 - * stability (internal, external)
 - * main cases:
 - \rightarrow single coalition vs. a group of singletons: $c=\{c_s, 1_{n-s}\}$
 - competing coalitions: $c = \{c_1, ... c_M\}$
- Operations on coalitions
 - * coarsening, concentration
- Ways to form/enlarge coalitions
 - * transfers
 - * issues linkage

Some remarks on coalitions 2

Transfers:

- * to form a coalition (ex-ante)
- * to enlarge a coalition (ex-post)
- * to easy an agreement (ex-ante/ex-post)

Transfers:

- * type of transfers: money (credits, funds for co-operation and development, debts cancellation and so on), in-kind (food, fossil fuels, finished goods and so on) technology and or formation;
- * entity of the transfers;
- * donors and acceptors of the transfers

Some remarks on coalitions 3

• Issue linkage (parallel negotiations), "benefits":

- * aims at linking two (or more) negotiations so to easy the attainment of a co-operative solution through inter-negotiation compensations;
- * it tries to avoid unilateral losses from one of the negotiators;
- * it tries to face problems form a global point of view.

Issue linkage, "problems":

- **★** stability: still incentives at violation;
- * size and scale: in case of more than 2 countries and more than 2 negotiations, bilateral vs. multilateral, mediators? arbitrators?
- * complexity: linking negotiations makes the whole process more complex, interaction with pre-existing agreements
- * transferability: technology only?

Environmental games

- An environmental game is a three stage game (RGS framework):
 - * [constitutional stage (minimum participation rule)];
 - * coalition stage (how a coalition forms and if each coutry joins or not);
 - * policy stage (each country divides the coalition payoff according to a burden sharing rule).
- Global Pollution or Global Emission Game

$$C = \{c_1, \dots, c_M\}$$

$$x^* \in X = \times_{i \in N} X_i$$

$$\forall c_i \in C \ \forall x_{c_i} \in \times_{j \in c_j} X_j \sum_{j \in c_i} u_j(x_{c_i}^*, x_{N \setminus c_i}^*) \ge \sum_{j \in c_i} u_j(x_{c_i}, x_{N \setminus c_i}^*)$$

$$P(c_i; C) = \sum_{j \in c_i} u_j(x^*)$$

$$\pi_i = \beta(e_i) - \phi(\sum_{j=1}^N e_j)$$

IEP

- Example/standard game
 - * sharing of a resource, two levels of consumption (correct, too high): Prisoner's Dilemma game;
 - * complementary technologies/economies/projects: reassurance game;
 - * concurrent technologies/economies/projects: Battle of the Sexes game;
 - * sharing of a polluted resource, the other cleans, both benefit (one free rider): chicken game.
- Enforcing co-operation: contract games, communication games, repeated games

NCGT

- * We use NCGT to analyse the dynamic of IEPs in the simplest setting: two countries interacting within a static game each one with a very limited set of strategies
- * We are going to use standard games to describe some common interaction settings
- * Of each setting we are going to show at least one, hopefully realistic, application

Standard one shot static games

- * Prisoner's Dilemma games
 - * Reassurance games
 - * Battle of the sexes games
 - * Chicken games
 - * Games with contracts
- * Games with communication

Prisoner's Dilemma games

A vs. B	c	nc
c	1,1	-1,3
nc	3,-1	0,0

Prisoner's Dilemma

(nc, c)	\succ_A	(c, c)	\succ_A	(nc, nc)	\succ_A	(c, nc)
(c, nc)	\succ_B	(c, c)	\succ_B	(nc, nc)	\succ_B	(nc, c)

A vs. B	c	nc
c	$B - \frac{C}{2}$, $B - \frac{C}{2}$	В-С,В
nc	В,В-С	0,0

Prisoner's Dilemma, general form

1.
$$B < C$$

2.
$$B > \frac{C}{2}$$

Prisoner's Dilemma games: application

- co-operative (c) or non co-operative (nc) strategies: correct exploitation (conservation) vs. fast depletion
- B > b > 0
- 0 > 1 > L
- NE=(nc,nc)
- co-operative (and sustainable) solution:(c,c)

A vs. B	c	nc
c	b,b	L,B
nc	B,L	1,1

Prisoner's Dilemma, depletion vs.conservation game

Prisoner's Dilemma games: solutions?

A vs. B	\mathbf{c}	nc
c	$B-\frac{C}{2},B-\frac{C}{2}$	B-C,0
nc	$_{0,\mathrm{B-C}}$	-B,-B

Prisoner's Dilemma, with international punishing authority

A vs. B	c	nc
c	$B-\frac{C}{2}+C',B-\frac{C}{2}+C'$	B-C+C',B
nc	B,B-C+C'	0,0

Prisoner's Dilemma, with international funding authority

1.
$$B - \frac{C}{2} + C' > B$$
,
2. $B - C + C' > 0$, $C' > \frac{C}{2}$

A reassurance game

A vs. B	c	nc
c	4,4	-8,0
nc	0,-8	0,0

An assurance game

- 1. (c, c),
- 2. (nc, nc).

- ex-ante agreements of co-operation are self-reinforcing
- no free-riding
- applications: economical and/or technological complementarity

A vs. B	c	nc
c	$B_A - C_A, B_B - C_B$	$-C_A, 0$
nc	$0, -C_B$	0,0

An assurance game in general form

A battle of the sexes' game

* NE=
$$(P_A, P_A)$$
 and (P_B, P_B)

- * the choice of the NE depends on the existence of some "convention" between the two countries: rich vs. poor, Stackelberg leader/follower
- * applications: energy from distinct sources, countries with distinct availability

A vs. B	P_A	P_B
P_A	$B_A^A - \frac{C}{2}, B_A^B - \frac{C}{2}$	$B_A^A - C, B_B^B - C$
P_B	$B_B^A - C, B_A^B - C$	$B_B^A - \frac{C}{2}, B_B^B - \frac{C}{2}$

A battle of the sexes game

1.
$$C > B_A^A > B_A^B > C/2$$
,

2.
$$C > B_B^B > B_B^A > C/2$$
.

1.
$$2C > B_A^A + B_A^B > C$$
,

2.
$$2C > B_B^B + B_B^A > C$$
.

Chicken games

- * each country pushes the other to act
- * free-rider
- * application: sharing of a polluted resource (lake, river), cleaning actions

A vs. B	c	nc
c	$B - \frac{C}{2}, B - \frac{C}{2}$	B-C,B
nc	B, B-C	0,0

First case of chicken game

B = B	$B_A = E$	$B_B > C$
-------	-----------	-----------

1.
$$(nc, c)$$
;

2.
$$(c, nc)$$
.

Another case of chicken game

1.
$$D > B - C$$
;

2.
$$D < B - C$$
.

Pathways toward co-operation

- * games with contracts
- * games with communication
 - * repeated games

Games with contracts

- * players independently sign a contract (there can be more than one)
- * self enforcing co-operative equilibria
- * use of correlated strategies
- * presence of a trustworthy mediator

A vs. B	x_2	y_2
x_1	2,2	0,6
y_1	6,0	1,1

A Prisoner's Dilemma game

A vs. B	x_2	y_2	s_2
x_1	2,2	0,6	0,6
y_1	6,0	1,1	1,1
s_1	6,0	1,1	2,2

Binding contracts in a strategic form game

$$\frac{1}{2}[x_1, y_2] + \frac{1}{2}[x_2, y_1]$$

1. (\hat{s}_1, \hat{s}_2) ,

2. (s_1, s_2)

x_2	y_2	s_2	\hat{s}_2
2,2	0,6	0,6	0,6
6,0	1,1	1,1	1,1
6,0	1,1	2,2	1,1
6,0	1,1	1,1	3,3
	2,2 6,0 6,0	2,2 0,6 6,0 1,1 6,0 1,1	2,2 0,6 0,6 6,0 1,1 1,1 6,0 1,1 2,2

Use of two contracts

Games with contracts: problems and limitations

- * role of mediator, observability of the strategies
- \star (case of n >2) free-riders (inner and outer)
- * (case of n >2) subcoalitions' deviations
- * unobservable strategies
- ★ inadequate and/or ineffective punishments, hard to detect violations
- ★ inalienable rights are involved in the strategies

Games with communication

- * players have the strategies specified by the structure of the game
- * and a set of implicit communication options
- * presence of a trustworthy mediator that recommends each player a strategy

A vs. B	x_2	y_2
x_1	5,1	0,0
y_1	4,4	1,5

An example of game in strategic form

$$0.5[x_1, x_2] + 0.5[y_1, y_2]$$

$$\frac{1}{3}[x_1, x_2] + \frac{1}{3}[y_1, y_2] + \frac{1}{3}[y_1, x_2]$$

Games with communication: an example

A vs. B	x_2	y_2
x_1	5,1	0,0
y_1	4,4	1,5

$$\begin{cases} \max 6\mu(x_1, x_2) + 0\mu(x_1, y_2) + 8\mu(y_1, x_2) + 6\mu(y_1, y_2) \\ s.t. \\ (5-4)\mu(x_1, x_2) + (0-1)\mu(x_1, y_2) \ge 0 \\ (4-5)\mu(y_1, x_2) + (1-0)\mu(y_1, y_2) \ge 0 \\ (1-0)\mu(x_1, x_2) + (4-5)\mu(y_1, x_2) \ge 0 \\ (0-1)\mu(x_1, y_2) + (5-4)\mu(y_1, y_2) \ge 0 \\ \mu(x_1, x_2) + \mu(x_1, y_2) + \mu(y_1, x_2) + \mu(y_1, y_2) = 1 \\ \mu(x_1, x_2) \ge 0 \\ \mu(y_1, x_2) \ge 0 \\ \mu(y_1, y_2) \ge 0 \\ \mu(x_1, x_2) = \mu(y_1, y_2) = \mu(y_1, x_2) = \frac{1}{3} \quad \mu(x_1, y_2) = 0 \\ \frac{1}{3}[x_1, x_2] + \frac{1}{3}[y_1, y_2] + \frac{1}{3}[y_1, x_2] \end{cases}$$

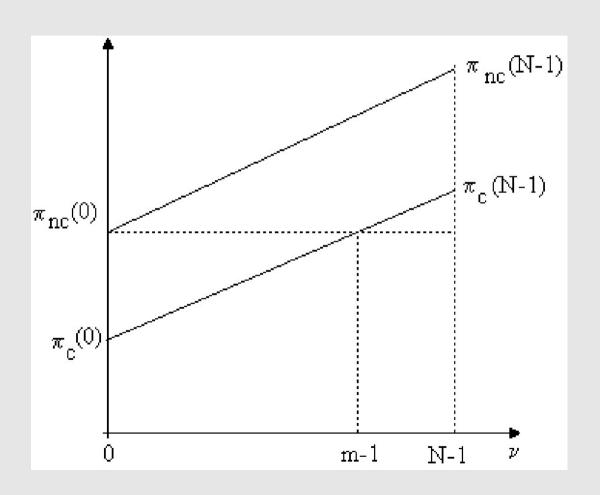
AIRO 2006 Cesena 12-15 Settembre 2006

Games with communication: remarks

- * revelation principle: communication systems with a mediator as a universal model
- * trustworthy mediator: identification
- * confidentiality: private information if becomes public can "defeat" a correlated strategy
- * sub-coalitions?

Repeated games: a case study 1

- * We examine a repeated Prisoner's Dilemma game with N players
- For each player: profits from co-operation $(\pi_c(v))$ and no co-operation $(\pi_{nc}(v))$ with 0, m-1, N-1 other players



$$\pi_c(\nu) \qquad \pi_{nc}(\nu)$$

$$\pi_{nc}(\nu) > \pi_c(\nu)$$

$$\pi_c(N-1) > \pi_{nc}(0)$$

$$\pi_{nc}(0) < \pi_c(N-1)$$

$$\pi_{nc}(0) = \pi_c(m-1)$$

Repeated games: a case study 2

- **★** Coalition involves m+1 countries on N (N-m-1 free-riders)
- \star m (and so the size of the coalition) is lower the steeper is π_c and the higher is $\pi_c(0)$

$$\sum_{i=0}^{\infty} \delta^{i} \pi_{c}(m) = \sum_{i=0}^{\infty} \left(\frac{1}{1+r}\right)^{i} \pi_{c}(m) = \pi_{c}(m) \frac{1+r}{r}$$

$$\pi_{nc}(m) + \sum_{i=1}^{\infty} \delta^i \pi_{nc}(0) = \pi_{nc}(m) + \pi_{nc}(0) (\sum_{i=0}^{\infty} \delta^i - 1)$$

$$\pi_{nc}(m) + \pi_{nc}(0)\frac{1}{r}$$

$$r < \frac{\pi_c(m) - \pi_{nc}(0)}{\pi_{nc}(m) - \pi_c(m)}$$

Co-operation and GT

- * We present here two examples:
 - * a group S of n countries that co-operate to minimise a pollution problem;
 - * a couple of countries that reach co-operation through parallel negotiations (issues linkage).
- * Afterward we discuss some problems that can make co-operation difficult and possible incentives to co-operation (transfers)

Minimising global pollution: a case study1

The setting:

- * set S of n polluting countries,
- ★ country i: e_i, m_iX

$$\star X = \sum_{i} e_{i} \quad M = \sum_{i} m_{i} \quad m_{1} \geq m_{2} \geq \dots m_{n}$$

- * $B'(e_i) > 0$ $B''(e_i) < 0$ benefit function for country i
- * $C'(e_i) > 0$ $C''(e_i) > 0$ cost function for country i

Minimising global pollution: a case study2

The problem for country i:

$$W_i(e_i, e_{-i}) = B(e_i) - m_i X X = e_i + e_{-i}$$
 welfare country i

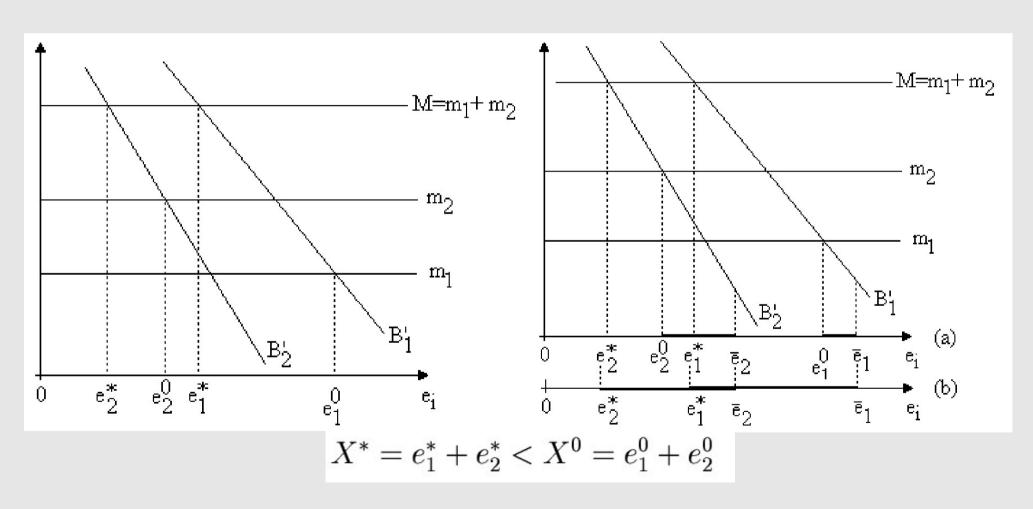
$$\frac{dW_i(e_i, e_{-i})}{de_i} = 0 \qquad \text{optimisation problem}$$

$$B_i'(e_i^0) = m_i$$
 optimum condition

$$\sum_{i} W_{i}(e_{i}, e_{-i}) = \sum_{i} (B(e_{i}) - m_{i}X)$$
 global welfare

$$B'(e_i^*) = \sum_i m_j = M$$
 optimum condition

Minimising global pollution: case of two countries



Issues linkage 1

The setting:

- * two countries A and B
- * two parallel negotiations: an environmental negotiation for the reduction of greenhouse gases and an economical negotiation for the adhesion to a free trade agreement or to a technology transfer agreement
- * every negotiation separately as a non co-operative NE, the switching to a co-operative solution causes a loss to one of the two countries
- * also the compound game has a non co-operative NE but the switching to a co-operative solution can occur without any loss for both countries so that no transfer is needed (and co-operation is easier)

Issues linkage 2

The separate games

A vs. B	c	nc
c	b_1, c_2	d_1, a_2
nc	a_1, d_2	c_1, b_2

Environmental negotiation game

A vs. B	c	nc
\mathbf{c}	γ_1, eta_2	$\delta_1, lpha_2$
nc	α_1, δ_2	eta_1, γ_2

Economical negotiation game

a loss (either
$$b_2 - c_2$$
 or $\beta_1 - \gamma_1$)

$$a_1 > b_1 > c_1 > d_1$$

$$a_2 > b_2 > c_2 > d_2$$

$$nc \succ_1 c \quad nc \succ_2 c$$

$$\alpha_1 > \beta_1 > \gamma_1 > \delta_1$$

$$\alpha_2 > \beta_2 > \gamma_2 > \delta_2$$

$$nc \succ_1 c \quad nc \succ_2 c$$

1.
$$b_1 + c_2 > c_1 + b_2$$
,

2.
$$\gamma_1 + \beta_2 > \beta_1 + \gamma_2$$
,

Issues linkage 3

The compound game

$$S_A = S_B = \{nc, nc; nc, c; c, nc; c, c\}$$

A vs. B	nc, nc	nc, c	c, nc	c, c
nc, nc	$c_1+\beta_1,b_2+\gamma_2$	$c_1 + \alpha_1, b_2 + \delta_2$	$a_1 + \beta_1, d_2 + \gamma_2$	$a_1 + \alpha_1, d_2 + \delta_2$
nc, c	$c_1 + \delta_1, b_2 + \alpha_2$	$c_1 + \gamma_1, b_2 + \beta_2$	$a_1 + \delta_1 d_2 + \alpha_2$	$a_1 + \gamma_1, d_2 + \beta_2$
c, nc	$d_1 + \beta_1, a_2 + \gamma_2$	$d_1 + \alpha_1, a_2 + \delta_2$	$b_1 + \beta_1, c_2 + \gamma_2$	$b_1 + \alpha_1, c_2 + \delta_2$
c, c	$d_1 + \delta_1, a_2 + \alpha_2$	$d_1 + \gamma_1, a_2 + \beta_2$	$b_1 + \delta_1, c_2 + \alpha_2$	$b_1 + \gamma_1, c_2 + \beta_2$

Composed game

$$c_1 = b_2 = \beta_1 = \gamma_2 = 0$$

A vs. B	nc, nc	nc, c	c, nc	c, c
nc, nc	0,0	$lpha_1, \delta_2$	a_1,d_2	$a_1 + \alpha_1, d_2 + \delta_2$
nc, c	$\delta_1, lpha_2$	γ_1,eta_2	$a_1 + \delta_1 d_2 + \alpha_2$	$a_1 + \gamma_1, d_2 + \beta_2$
c, nc	d_1, a_2	$d_1 + \alpha_1, a_2 + \delta_2$	b_1, c_2	$b_1 + \alpha_1, c_2 + \delta_2$
c, c	$d_1 + \delta_1, a_2 + \alpha_2$	$d_1 + \gamma_1, a_2 + \beta_2$	$b_1 + \delta_1, c_2 + \alpha_2$	$b_1 + \gamma_1, c_2 + \beta_2$

Composed game, reduced table

1.
$$b_1 = \beta_2$$
,

2.
$$c_2 = \gamma_1$$
,

Co-operation: problems and incentives

- switching from a non co-operative solution to a co-operative one may be impossible if the switching imposes a loss to one of the players;
- a possible solution may consist in a transfer of resources from one player to the other so that no country suffers a loss.

			$a_1 > b_1 > c_1 > d_1$
A vs. B	c	nc	$a_2 > b_2 > c_2 > d_2$
\mathbf{c}	b_1, c_2	d_1, a_2	$nc \succ_1 c nc \succ_2 c$
nc	a_1, d_2	c_1, b_2	$b_1 + c_2 > c_1 + b_2$
Co-ope	eration i	s hard	$b_1 - c_1 > b_2 - c_2$

A vs. B	\mathbf{c}	nc
c	$b_1 - \epsilon, c_2 + \epsilon$	d_1, a_2
nc	a_1,d_2	c_1, b_2

Incentives to co-operation

- 1. for country A we have $b_1 \epsilon > c_1$;
- 2. for country B we have $c_2 + \epsilon > b_2$.

$$a_1 > b_1 - \epsilon > c_1 > d_1$$

$$a_2 > c_2 + \epsilon > b_2 > d_2$$

the only Nash equilibrium at (nc, nc)

Problems with transfers

- what: kinds of transfers (money, in-kind, technology i.e. knowledge)
- when: before or after the agreement
- how much: entity of the transfer, who can decide what quantity is enough for a given agreement

References

- [CEF05] Carlo Carraro, Johan Eychmans, and Michael Finus. Optimal Transfers and Participation Decision in International Environmental Agreements. FEEM Nota di Lavoro 50.2005, 2005.
- [CMO03] Carlo Carraro, Carmen Marchiori, and Sonia Oreffice. Endogenous Minimum Participation In International Environmental Treaties. FEEM Nota di Lavoro 113.2003, 2003.
- [Cob88] Collins Cobuild. Essential English Dictionary. Collins Publishers, 1988.
- [FoSS99] Ferenc Forgó, Jenö Szép, and Ferenc Szidarovszky. Introduction to the Theory of Games. Concepts, Methods, Applications. Kluwer Academic Publishers, 1999.
- [FR01] Michael Finus and Bianca Rundshagen. Endogenous Coalition Formation in Global Pollution Control. FEEM Nota di Lavoro 43.2001, 2001.
- [Mus00] Ignazio Musu. Introduzione all'economia dell'ambiente. il Mulino, 2000.
- [Mye91] Roger B. Myerson. Game Theory. Analysis of conflict. Harvard University Press, 1991.
- [You94] GH. Peyton Young. Equity. In Theory and in Practice. Princeton University Press, 1994.

Concluding remarks



- * deeper analysis of the available literature, mainly NCGT
- * widen the concept of coalition? non flat structures? graphs?
- * conflicting and non disjoint coalitions
- * modelling of negotiations not in international contexts but in presence of environmental "local" conflicts

Game Over.....

Thank you for your attention

Lorenzo Cioni
Dipartimento di Informatica
Largo Pontecorvo 3
Pisa
lcioni@di.unipi.it

