PhD Dissertation, Mathematics for Economic Decisions Leonardo Fibonacci School

Lorenzo Cioni ${ }^{1,2}$

${ }^{1}$ Department of Computer Science, University of Pisa
${ }^{2}$ Scuola Normale Superiore, Pisa

Department of Computer Science, University of Pisa December, 32010

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) THE PRELIMINARIES
- The motivations
- The actors
(3) ThE MAIN BODY
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition
(4) CONCLUSIONS

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) ThE PRELIMINARIES
- The motivations
- The actors
(3) The main body
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition

4 CONCLUSIONS

Introduction
0 -000

The main body

Conclusions

The Thesis

The main body
Conclusions

The Thesis

\Rightarrow Title
Methods and Models for Environmental Conflicts Analysis and Resolution
\Rightarrow Tutor
Professor Giorgio Gallo

The Thesis

\Rightarrow Title
Methods and Models for Environmental Conflicts Analysis and Resolution
\Rightarrow Tutor
Professor Giorgio Gallo

The Thesis

\Rightarrow Title
Methods and Models for Environmental Conflicts Analysis and Resolution
\Rightarrow Tutor
Professor Giorgio Gallo

The Thesis

\Rightarrow Title
Methods and Models for Environmental Conflicts Analysis and Resolution
\Rightarrow Tutor
Professor Giorgio Gallo

Introduction

(1) InTRODUCTION

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) THE PRELIMINARIES
- The motivations
- The actors
(3) The Main body
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition
(4) CONClusions

An overview of the Thesis

An overview of the Thesis

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

An overview of the Thesis

The present Thesis:
\Rightarrow defines and characterizes interactions among actors;
\Rightarrow within different settings;
\Rightarrow at different levels of abstraction and complexity;
\Rightarrow by using different (abstract) models;
\Rightarrow by using different (high level) methods;
\Rightarrow within a unifying perspective (the environment and the conflicts).

The main themes of this presentation

THE MAIN THEMES OF THIS PRESENTATION

\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for prob em solving.
\Rightarrow Decisions within a competition.

THE MAIN THEMES OF THIS PRESENTATION

$+5$
\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for problem solving.
\Rightarrow Decisions within a competition.

THE MAIN THEMES OF THIS PRESENTATION

\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for problem solving.
\Rightarrow Decisions within a competition.

THE MAIN THEMES OF THIS PRESENTATION

\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for problem solving.
\Rightarrow Decisions within a competition.

THE MAIN THEMES OF THIS PRESENTATION

\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for problem solving.
\Rightarrow Decisions within a competition.

THE MAIN THEMES OF THIS PRESENTATION

\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for problem solving.
\Rightarrow Decisions within a competition.

THE MAIN THEMES OF THIS PRESENTATION

\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for problem solving.
\Rightarrow Decisions within a competition.

THE MAIN THEMES OF THIS PRESENTATION

\Rightarrow The motivations.
\Rightarrow The actors.
\Rightarrow Auction models.
\Rightarrow Barter models.
\Rightarrow Coalitions for problem solving.
\Rightarrow Decisions within a competition.

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) The preliminaries
- The motivations
- The actors
(3) The main body
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition

4) Conclusions

The motivations

THE MOTIVATIONS

The motivations

The main motivations of the thesis are:

The motivations

The main motivations of the thesis are:
(1) to analyze the interactions among various types of actors;

The motivations

The main motivations of the thesis are:
(1) to analyze the interactions among various types of actors;
(2) to describe allocation (indivisible), distribution (shareable) and negotiation (redistribution, reallocation) tools that involve such actors;

The motivations

The main motivations of the thesis are:
(1) to analyze the interactions among various types of actors;
(2) to describe allocation (indivisible), distribution (shareable) and negotiation (redistribution, reallocation) tools that involve such actors;
(3) to propose methods and models that implement such tools and can be easily and fairly used by the actors.

The motivations

The main motivations of the thesis are:
(1) to analyze the interactions among various types of actors;
(2) to describe allocation (indivisible), distribution (shareable) and negotiation (redistribution, reallocation) tools that involve such actors;
(3) to propose methods and models that implement such tools and can be easily and fairly used by the actors.

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) ThE PRELIMINARIES
- The motivations
- The actors
(3) The Main body
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition
(7) Conclusions

Actors: DECIDERS, STAKEHOLDERS, EXPERTS

Actors: DECIDERS, STAKEHOLDERS, EXPERTS

\square

Actors: DECIDERS, STAKEHOLDERS, EXPERTS

\square

Actors: deciders, stakeholders and experts
\Rightarrow The deciders "drive" the procedures and bear the main responsibilities.
\Rightarrow The stakeholders are part of the affected reactive environment of the deciders.
\Rightarrow The experts are part of the affected reactive environment of the deciders.
\Rightarrow Stakeholders and experts form dynamically interacting subsets.
\Rightarrow Deciders form dynamically interacting subsets.

Actors: DECIDERS, STAKEHOLDERS, EXPERTS

\square

Actors: deciders, stakeholders and experts
\Rightarrow The deciders "drive" the procedures and bear the main responsibilities.
\Rightarrow The stakeholders are part of the affected reactive environment of the deciders.
\rightarrow The experts are part of the affected reactive environment of the deciders.
\Rightarrow Stakeholders and experts form dynamically interacting subsets.
\Rightarrow Deciders form dynamically interacting subsets.

Actors: DECIDERS, STAKEHOLDERS, EXPERTS

Actors: deciders, stakeholders and experts
\Rightarrow The deciders "drive" the procedures and bear the main responsibilities.
\Rightarrow The stakeholders are part of the affected reactive environment of the deciders.
\Rightarrow The experts are part of the affected reactive environment of the deciders.
\Rightarrow Stakeholders and experts form dynamically interacting subsets.
\Rightarrow Deciders form dynamically interacting subsets.

Actors: DECIDERS, STAKEHOLDERS, EXPERTS

Actors: deciders, stakeholders and experts
\Rightarrow The deciders "drive" the procedures and bear the main responsibilities.
\Rightarrow The stakeholders are part of the affected reactive environment of the deciders.
\Rightarrow The experts are part of the affected reactive environment of the deciders.
\Rightarrow Stakeholders and experts form dynamically interacting
subsets.
\Rightarrow Deciders form dynamically interacting subsets.

ACTORS: DECIDERS, STAKEHOLDERS, EXPERTS

Actors: deciders, stakeholders and experts
\Rightarrow The deciders "drive" the procedures and bear the main responsibilities.
\Rightarrow The stakeholders are part of the affected reactive environment of the deciders.
\Rightarrow The experts are part of the affected reactive environment of the deciders.
\Rightarrow Stakeholders and experts form dynamically interacting subsets.
\Rightarrow Deciders form dynamically interacting subsets.

ACTORS: DECIDERS, STAKEHOLDERS, EXPERTS

Actors: deciders, stakeholders and experts
\Rightarrow The deciders "drive" the procedures and bear the main responsibilities.
\Rightarrow The stakeholders are part of the affected reactive environment of the deciders.
\Rightarrow The experts are part of the affected reactive environment of the deciders.
\Rightarrow Stakeholders and experts form dynamically interacting subsets.
\Rightarrow Deciders form dynamically interacting subsets.

ACTORS: DECIDERS, STAKEHOLDERS, EXPERTS

Actors: deciders, stakeholders and experts
\Rightarrow The deciders "drive" the procedures and bear the main responsibilities.
\Rightarrow The stakeholders are part of the affected reactive environment of the deciders.
\Rightarrow The experts are part of the affected reactive environment of the deciders.
\Rightarrow Stakeholders and experts form dynamically interacting subsets.
\Rightarrow Deciders form dynamically interacting subsets.

DECIDERS: MONOLITHIC VERSUS STRUCTURED

DECIDERS: MONOLITHIC VERSUS STRUCTURED

DECIDERS: MONOLITHIC VERSUS STRUCTURED

Monolithic deciders versus structured deciders.
> \Rightarrow Monolithic deciders: as single players, no inner dynamics. \Rightarrow Monolithic deciders: mainly decisions, competitive approaches.
> \Rightarrow Structured deciders: inner structure, dynamics, local data and value systems.
> \Rightarrow Structured deciders: mainly negotiation and deliberation, cooperative approaches.

DECIDERS: MONOLITHIC VERSUS STRUCTURED

Monolithic deciders versus structured deciders.
\Rightarrow Monolithic deciders: as single players, no inner dynamics.
mainly decisions, competitive
approaches.
\Rightarrow Structured deciders: inner structure, dynamics, local data
and value systems.
\Rightarrow Structured deciders: mainly negotiation and deliberation,
cooperative approaches.

DECIDERS: MONOLITHIC VERSUS STRUCTURED

Monolithic deciders versus structured deciders.
\Rightarrow Monolithic deciders: as single players, no inner dynamics.
\Rightarrow Monolithic deciders: mainly decisions, competitive approaches.
inner structure, dynamics, local data
and value systems.
\Rightarrow Structured deciders: mainly negotiation and deliberation,
cooperative approaches.

DECIDERS: MONOLITHIC VERSUS STRUCTURED

Monolithic deciders versus structured deciders.
\Rightarrow Monolithic deciders: as single players, no inner dynamics.
\Rightarrow Monolithic deciders: mainly decisions, competitive approaches.
\Rightarrow Structured deciders: inner structure, dynamics, local data and value systems.
mainly negotiation and deliberation,
cooperative approaches.

DECIDERS: MONOLITHIC VERSUS STRUCTURED

Monolithic deciders versus structured deciders.
\Rightarrow Monolithic deciders: as single players, no inner dynamics.
\Rightarrow Monolithic deciders: mainly decisions, competitive approaches.
\Rightarrow Structured deciders: inner structure, dynamics, local data and value systems.
\Rightarrow Structured deciders: mainly negotiation and deliberation, cooperative approaches.

DECIDERS: MONOLITHIC VERSUS STRUCTURED

Monolithic deciders versus structured deciders.
\Rightarrow Monolithic deciders: as single players, no inner dynamics.
\Rightarrow Monolithic deciders: mainly decisions, competitive approaches.
\Rightarrow Structured deciders: inner structure, dynamics, local data and value systems.
\Rightarrow Structured deciders: mainly negotiation and deliberation, cooperative approaches.
Two levels: within a structured decider and among monolithic deciders.

DECIDERS: MONOLITHIC VERSUS STRUCTURED

Monolithic deciders versus structured deciders.
\Rightarrow Monolithic deciders: as single players, no inner dynamics.
\Rightarrow Monolithic deciders: mainly decisions, competitive approaches.
\Rightarrow Structured deciders: inner structure, dynamics, local data and value systems.
\Rightarrow Structured deciders: mainly negotiation and deliberation, cooperative approaches.
Two levels: within a structured decider and among monolithic deciders.

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) THE PRELIMINARIES
- The motivations
- The actors
(3) The MAIN BODY
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition

4 CONCLUSIONS

The main body

The main body

The roles of auctions

The roles of auctions

$\sqrt{616}$
\Rightarrow Autonomous tools for allocation or distribution.
\Rightarrow Ancillary procedures for the definition of:
initial allocations,
initial distributions,
to be followed by negotiation or redistribution as a post auction phase.

The roles of auctions

\Rightarrow Autonomous tools for allocation or distribution.
\Rightarrow Ancillary procedures for the definition of:
initial allocations,
initial distributions,
to be followed by negotiation or redistribution as a post auction phase.

The roles of auctions

\Rightarrow Autonomous tools for allocation or distribution.
\Rightarrow Ancillary procedures for the definition of:
initial allocations,
initial distributions,
to be followed by negotiation or redistribution as a post auction phase.

The roles of auctions

\Rightarrow Autonomous tools for allocation or distribution.
\Rightarrow Ancillary procedures for the definition of:

- initial allocations,
initial distributions,
to be followed by negotiation or redistribution as a post auction phase.

The roles of auctions

\Rightarrow Autonomous tools for allocation or distribution.
\Rightarrow Ancillary procedures for the definition of:

- initial allocations,
- initial distributions,
to be followed by negotiation or redistribution as a post auction phase.

The roles of auctions

(76)
\Rightarrow Autonomous tools for allocation or distribution.
\Rightarrow Ancillary procedures for the definition of:

- initial allocations,
- initial distributions,
- to be followed by negotiation or redistribution as a post auction phase.

The roles of auctions

\Rightarrow Autonomous tools for allocation or distribution.
\Rightarrow Ancillary procedures for the definition of:

- initial allocations,
- initial distributions,
- to be followed by negotiation or redistribution as a post auction phase.

REASONS FOR AUCTIONING

REASONS FOR AUCTIONING

\square

REASONS FOR AUCTIONING

*

We can use auctions :
\Rightarrow to describe one-to-many relations auctioneer versus bidders;
\Rightarrow to allocate single bads or chores;
\Rightarrow to share benefits and costs, initial distribution proportional
to the bids and redistribution (dissatisfaction, post auction);
\Rightarrow to define initial endowments made of fractions of benefits and costs (link with barter mechanisms);
\Rightarrow to compensate a lack of knowledge from the auctioneer of
the capabilities of the bidders.

REASONS FOR AUCTIONING

(

We can use auctions :
\Rightarrow to describe one-to-many relations auctioneer versus bidders;
\Rightarrow to share benefits and costs, initial distribution proportional to the bids and redistribution (dissatisfaction, post auction); \Rightarrow to define initial endowments made of fractions of benefits and costs (link with barter mechanisms);

REASONS FOR AUCTIONING

䀯

We can use auctions :
\Rightarrow to describe one-to-many relations auctioneer versus bidders;
\Rightarrow to allocate single bads or chores;
\Rightarrow to share benefits and costs, initial distribution proportional to the bids and redistribution (dissatisfaction, post auction); \Rightarrow to define initial endowments made of fractions of benefits and costs (link with barter mechanisms);
\qquad

REASONS FOR AUCTIONING

*

We can use auctions :
\Rightarrow to describe one-to-many relations auctioneer versus bidders;
\Rightarrow to allocate single bads or chores;
\Rightarrow to share benefits and costs, initial distribution proportional to the bids and redistribution (dissatisfaction, post auction);
and costs (link with barter mechanisms);

REASONS FOR AUCTIONING

\square

We can use auctions :
\Rightarrow to describe one-to-many relations auctioneer versus bidders;
\Rightarrow to allocate single bads or chores;
\Rightarrow to share benefits and costs, initial distribution proportional to the bids and redistribution (dissatisfaction, post auction);
\Rightarrow to define initial endowments made of fractions of benefits and costs (link with barter mechanisms);

REASONS FOR AUCTIONING

\square

We can use auctions :
\Rightarrow to describe one-to-many relations auctioneer versus bidders;
\Rightarrow to allocate single bads or chores;
\Rightarrow to share benefits and costs, initial distribution proportional to the bids and redistribution (dissatisfaction, post auction);
\Rightarrow to define initial endowments made of fractions of benefits and costs (link with barter mechanisms);
\Rightarrow to compensate a lack of knowledge from the auctioneer of the capabilities of the bidders.

REASONS FOR AUCTIONING

*

We can use auctions :
\Rightarrow to describe one-to-many relations auctioneer versus bidders;
\Rightarrow to allocate single bads or chores;
\Rightarrow to share benefits and costs, initial distribution proportional to the bids and redistribution (dissatisfaction, post auction);
\Rightarrow to define initial endowments made of fractions of benefits and costs (link with barter mechanisms);
\Rightarrow to compensate a lack of knowledge from the auctioneer of the capabilities of the bidders.

Conclusions

The auction models

The auction models

0000000000000000000000000000000000000

The auction models

Models of auctions.

\Rightarrow Positive.
The bidders bid for getting the auctioned item. \Rightarrow Negative. The bidders bid for not getting the auctioned item.

The auction models

Models of auctions.

\Rightarrow Positive. \Rightarrow Negative.

The bidders bid for not getting the auctioned item.

The auction models

Models of auctions.

\Rightarrow Positive.

- The bidders bid for getting the auctioned item.
\Rightarrow Negative.
The bidders bid for not getting the auctioned item.

The auction models

Models of auctions.

\Rightarrow Positive.

- The bidders bid for getting the auctioned item.
\Rightarrow Negative.

The auction models

Models of auctions.

\Rightarrow Positive.

- The bidders bid for getting the auctioned item.
\Rightarrow Negative.
- The bidders bid for not getting the auctioned item.

The auction models

$\sqrt{6}$

Models of auctions.
\Rightarrow Positive.

- The bidders bid for getting the auctioned item.
\Rightarrow Negative.
- The bidders bid for not getting the auctioned item.

We present only negative auctions.

The auction models

$\sqrt{6}$

Models of auctions.
\Rightarrow Positive.

- The bidders bid for getting the auctioned item.
\Rightarrow Negative.
- The bidders bid for not getting the auctioned item.

We present only negative auctions.

NEGATIVE AUCTIONS

The main body

Conclusions
00000000000000000000000000000000

NEGATIVE AUCTIONS

NEGATIVE AUCTIONS

眞

Negative auctions
\Rightarrow bidders bid for not getting an item (bad or chore),
\Rightarrow the less offering bidder gets it together with a compensation,
\Rightarrow the other bidders proportionally compensate him,
\Rightarrow weakly dominant strategy: bid $=$ evaluation $+\delta$ with $\delta \rightarrow 0$
as $n \rightarrow \infty$.

NEGATIVE AUCTIONS

Negative auctions
\Rightarrow bidders bid for not getting an item (bad or chore),

$$
\begin{aligned}
\Rightarrow & \text { the less offering bidder gets it together with a } \\
& \text { compensation, } \\
\Rightarrow & \text { the other bidders proportionally compensate him, } \\
\Rightarrow & \text { weakly dominant strategy: bid }=\text { evaluation }+\delta \text { with } \delta \rightarrow 0 \\
& \text { as } n \rightarrow \infty .
\end{aligned}
$$

NEGATIVE AUCTIONS

Negative auctions
\Rightarrow bidders bid for not getting an item (bad or chore),
\Rightarrow the less offering bidder gets it together with a compensation,
\Rightarrow the other bidders proportionally compensate him,
\Rightarrow weakly dominant strategy: bid $=$ evaluation $+\delta$ with $\delta \rightarrow 0$ as $n \rightarrow \infty$.

NEGATIVE AUCTIONS

Negative auctions
\Rightarrow bidders bid for not getting an item (bad or chore),
\Rightarrow the less offering bidder gets it together with a compensation,
\Rightarrow the other bidders proportionally compensate him,
\Rightarrow weakly dominant strategy: bid $=$ evaluation $+\delta$ with $\delta \rightarrow 0$ as $n \rightarrow \infty$.

NEGATIVE AUCTIONS

$+5$

Negative auctions
\Rightarrow bidders bid for not getting an item (bad or chore),
\Rightarrow the less offering bidder gets it together with a compensation,
\Rightarrow the other bidders proportionally compensate him,
\Rightarrow weakly dominant strategy: bid $=$ evaluation $+\delta$ with $\delta \rightarrow 0$ as $n \rightarrow \infty$.

NEGATIVE AUCTIONS

$+5$

Negative auctions
\Rightarrow bidders bid for not getting an item (bad or chore),
\Rightarrow the less offering bidder gets it together with a compensation,
\Rightarrow the other bidders proportionally compensate him,
\Rightarrow weakly dominant strategy: bid $=$ evaluation $+\delta$ with $\delta \rightarrow 0$ as $n \rightarrow \infty$.

Conclusions

Negative auctions

000000000000000000000000000000000000

00000

NEGATIVE AUCTIONS

The main body

Conclusions
000000000000000000000000000000000000

NEGATIVE AUCTIONS

*

$\left(p h_{1}\right)$ A auctions $\zeta ;$
$\left(p h_{2}\right)$ the b_{i} make their bids x_{i} in a sealed bid one shot auction;
$\left(p h_{3}\right)$ the bids are revealed;
$\left(p h_{4}\right)$ the lowest bidding bidder b_{1} gets ζ and x_{1} as a compensation for this allocation;
$\left(p h_{5}\right)$ each of the other bidders b_{i} pays to b_{1} a fraction c_{i} of x_{1} such that:

$$
\sum_{i \neq 1} c_{i}=x_{1} \quad c_{i}=x_{1} \frac{x_{i}}{X} \quad X=\sum_{j \neq 1} x_{j}
$$

NEGATIVE AUCTIONS

眞

$\left(p h_{1}\right)$ A auctions $\zeta ;$
$\left(p h_{2}\right)$ the b_{i} make their bids x_{i} in a sealed bid one shot auction;
$\left(p h_{3}\right)$ the bids are revealed;
$\left(p h_{4}\right)$ the lowest bidding bidder b_{1} gets ζ and x_{1} as a compensation for this allocation;
$\left(p h_{5}\right)$ each of the other bidders b_{i} pays to b_{1} a fraction c_{i} of x_{1} such that:

$$
\begin{aligned}
& \sum_{i \neq 1} c_{i}=x_{1} \quad c_{i}=x_{1} \frac{x_{i}}{X} \quad X=\sum_{j \neq 1} x_{j} \\
& E\left(b_{i}\right)=\left(1-\frac{x_{i}}{M}\right)^{n-1}\left(x_{i}-m_{i}\right)+\left(1-\left(1-\frac{x_{i}}{M}\right)^{n-1}\right)\left(m_{i}-x_{1} \frac{x_{i}}{X}\right)
\end{aligned}
$$

NEGATIVE AUCTIONS

*

$\left(p h_{1}\right)$ A auctions $\zeta ;$
$\left(p h_{2}\right)$ the b_{i} make their bids x_{i} in a sealed bid one shot auction;
$\left(p h_{3}\right)$ the bids are revealed;
$\left(p h_{4}\right)$ the lowest bidding bidder b_{1} gets ζ and x_{1} as a compensation for this allocation;
$\left(p h_{5}\right)$ each of the other bidders b_{i} pays to b_{1} a fraction c_{i} of x_{1} such that:

$$
\begin{aligned}
& \sum_{i \neq 1} c_{i}=x_{1} \quad c_{i}=x_{1} \frac{x_{i}}{X} \quad X=\sum_{j \neq 1} x_{j} \\
& E\left(b_{i}\right)=\left(1-\frac{x_{i}}{M}\right)^{n-1}\left(x_{i}-m_{i}\right)+\left(1-\left(1-\frac{x_{i}}{M}\right)^{n-1}\right)\left(m_{i}-x_{1} \frac{x_{i}}{X}\right)
\end{aligned}
$$

The main body

The main body

Uses of negative auctions

The main body

Conclusions

USES OF NEGATIVE AUCTIONS

Uses of negative auctions

Features and uses: benefit not only the auctioneer but also other bidders; \Rightarrow the influence (as a damage) on other bidders is neqliaib e; \Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible; \Rightarrow all the costs and damages can be summarized with m; \Rightarrow solid waste disposal plants, hazardous waste disposal plants, incinerators;
\Rightarrow energy production plants, chemical plants (point-wide allocations)

Uses of negative auctions

0

Features and uses:
\Rightarrow the auctioned item involves a single bidder though it may benefit not only the auctioneer but also other bidders;
\Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible;
\Rightarrow all the costs and damages can be summarized with m_{i};
\Rightarrow solid waste disposal plants, hazardous waste disposal
plants, incinerators;
\Rightarrow energy production plants, chemical plants (point-wide
allocations)

Uses of negative auctions

0

Features and uses:
\Rightarrow the auctioned item involves a single bidder though it may benefit not only the auctioneer but also other bidders;
\Rightarrow the influence (as a damage) on other bidders is negligible;
\Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible;
\Rightarrow all the costs and damages can be summarized with $m_{\text {; }}$; \Rightarrow solid waste disposal plants, hazardous waste disposal plants, incinerators;

Uses of negative auctions

0

Features and uses:
\Rightarrow the auctioned item involves a single bidder though it may benefit not only the auctioneer but also other bidders;
\Rightarrow the influence (as a damage) on other bidders is negligible;
\Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible;
\Rightarrow solid waste disposal plants, hazardous waste disposal
plants, incinerators;

Uses of negative auctions

*

Features and uses:
\Rightarrow the auctioned item involves a single bidder though it may benefit not only the auctioneer but also other bidders;
\Rightarrow the influence (as a damage) on other bidders is negligible;
\Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible;
\Rightarrow all the costs and damages can be summarized with m_{i};

Uses of negative auctions

国

Features and uses:
\Rightarrow the auctioned item involves a single bidder though it may benefit not only the auctioneer but also other bidders;
\Rightarrow the influence (as a damage) on other bidders is negligible;
\Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible;
\Rightarrow all the costs and damages can be summarized with m_{i};
\Rightarrow solid waste disposal plants, hazardous waste disposal plants, incinerators;

Uses of negative auctions

国

Features and uses:
\Rightarrow the auctioned item involves a single bidder though it may benefit not only the auctioneer but also other bidders;
\Rightarrow the influence (as a damage) on other bidders is negligible;
\Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible;
\Rightarrow all the costs and damages can be summarized with m_{i};
\Rightarrow solid waste disposal plants, hazardous waste disposal plants, incinerators;
\Rightarrow energy production plants, chemical plants (point-wide allocations).

Uses of negative auctions

国

Features and uses:
\Rightarrow the auctioned item involves a single bidder though it may benefit not only the auctioneer but also other bidders;
\Rightarrow the influence (as a damage) on other bidders is negligible;
\Rightarrow the influence (as a damage) on actors distinct from the bidders is negligible;
\Rightarrow all the costs and damages can be summarized with m_{i};
\Rightarrow solid waste disposal plants, hazardous waste disposal plants, incinerators;
\Rightarrow energy production plants, chemical plants (point-wide allocations).

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) ThE PRELIMINARIES
- The motivations
- The actors
(3) The MAIN BODY
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition
(4) Conclusions

REASONS FOR BARTERING

REASONS FOR BARTERING

REASONS FOR BARTERING

5

We can use barters [models] for:
\Rightarrow describing one-to-one or many-to-many relations between actors;
\Rightarrow describing the swap of sets of items (generally benefits and costs), either exogenous or endogenous, initial endowments from auction phases;
\Rightarrow among two (bilateral) or more than two actors (multilateral);
\Rightarrow also in parallel or in cascade (succession).

REASONS FOR BARTERING

\square

We can use barters [models] for:
\Rightarrow describing one-to-one or many-to-many relations between actors;
\Rightarrow describing the swap of sets of items (generally benefits and costs), either exogenous or endogenous, initial endowments from auction phases;
\Rightarrow among two (bilateral) or more than two actors (multilateral);
\Rightarrow also in parallel or in cascade (succession).

REASONS FOR BARTERING

We can use barters [models] for:
\Rightarrow describing one-to-one or many-to-many relations between actors;
\Rightarrow describing the swap of sets of items (generally benefits and costs), either exogenous or endogenous, initial endowments from auction phases;

REASONS FOR BARTERING

We can use barters [models] for:
\Rightarrow describing one-to-one or many-to-many relations between actors;
\Rightarrow describing the swap of sets of items (generally benefits and costs), either exogenous or endogenous, initial endowments from auction phases;
\Rightarrow among two (bilateral) or more than two actors (multilateral);

REASONS FOR BARTERING

We can use barters [models] for:
\Rightarrow describing one-to-one or many-to-many relations between actors;
\Rightarrow describing the swap of sets of items (generally benefits and costs), either exogenous or endogenous, initial endowments from auction phases;
\Rightarrow among two (bilateral) or more than two actors (multilateral);
\Rightarrow also in parallel or in cascade (succession).

REASONS FOR BARTERING

We can use barters [models] for:
\Rightarrow describing one-to-one or many-to-many relations between actors;
\Rightarrow describing the swap of sets of items (generally benefits and costs), either exogenous or endogenous, initial endowments from auction phases;
\Rightarrow among two (bilateral) or more than two actors (multilateral);
\Rightarrow also in parallel or in cascade (succession).

Models for bilateral barters

MODELS FOR BILATERAL BARTERS

Models for bilateral barters

Bilateral barters:
\Rightarrow involve two actors each with a basket of items (endowments of benefits and costs),
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if one reveals and the other conceals.

MODELS FOR BILATERAL BARTERS

Bilateral barters:
\Rightarrow involve two actors each with a basket of items (endowments of benefits and costs),
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if one reveals and the other conceals.

Models for bilateral barters

Bilateral barters:
\Rightarrow involve two actors each with a basket of items (endowments of benefits and costs),
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if one reveals and the other conceals.

Models for bilateral barters

Bilateral barters:
\Rightarrow involve two actors each with a basket of items (endowments of benefits and costs),
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if one reveals and the other conceals.

Models for bilateral barters

Bilateral barters:
\Rightarrow involve two actors each with a basket of items (endowments of benefits and costs),
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if one reveals and the other conceals.

Models for bilateral barters

Bilateral barters:
\Rightarrow involve two actors each with a basket of items (endowments of benefits and costs),
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if one reveals and the other conceals.

The preliminaries
00000

The main body
Conclusions

Bilateral explicit barter, MERGE AND SPLIT

Bilateral explicit barter, MERGE AND SPLIT

The main body

000000000000000000000000000000000000

Bilateral explicit barter, MERGE AND SPLIT

橉

(1) $B_{i, j}^{h}=b k_{i}^{h} \oplus b k_{j}^{h}$
(2) if negotiation $\left(B_{i, j}^{h}\right)$ is successful then

- i takes $b k_{i}^{h+1} \succ_{i} b k_{i}^{h}$
- j takes $b k_{j}^{h+1} \succ_{j} b k_{j}^{h}$
else if negotiation $\left(B_{i, j}^{h}\right)$ fails
- i takes back $b k_{i}^{h}$
- j takes back $b k_{j}^{h}$
(3) end;

Bilateral explicit barter, MERGE AND SPLIT

橉

(1) $B_{i, j}^{h}=b k_{i}^{h} \oplus b k_{j}^{h}$
(2) if negotiation $\left(B_{i, j}^{h}\right)$ is successful then

- i takes $b k_{i}^{h+1} \succ_{i} b k_{i}^{h}$
- j takes $b k_{j}^{h+1} \succ_{j} b k_{j}^{h}$
else if negotiation ($B_{i, j}^{h}$) fails
- i takes back $b k_{i}^{h}$
- j takes back $b k_{j}^{h}$
(3) end;

The preliminaries
00000

The main body

The main body

BILATERAL EXPLICIT BARTER, NEGOTIATION

BILATERAL EXPLICIT BARTER, NEGOTIATION

The main body

00000000000000000000000000000000000

Bilateral explicit barter, negotiation

3

(1) random selection to choose player 1 ;
(2) 1 proposes a split of the set $B_{i, j}^{h}$ as $b k_{1}^{h+1}, b k_{2}^{h+1}$;
(3) if 2 accepts then

- negotiation successful, go to (5);
(4) if 2 refuses then
(4a) 2 proposes a split of the set $B_{i, j}^{h}$ as $b k_{2}^{h+1}, b k_{1}^{h+1}$;
(4b) if 1 accepts then
- negotiation successful, go to (5);
else
- negotiation fails, go to (5);
(5) end;

Bilateral explicit barter, negotiation

\section*{| net |
| :--- |}

(1) random selection to choose player 1;
(2) 1 proposes a split of the set $B_{i, j}^{h}$ as $b k_{1}^{h+1}, b k_{2}^{h+1}$;
(3) if 2 accepts then

- negotiation successful, go to (5);
(4) if 2 refuses then
(4a) 2 proposes a split of the set $B_{i, j}^{h}$ as $b k_{2}^{h+1}, b k_{1}^{h+1}$;
(4b) if 1 accepts then
- negotiation successful, go to (5);
else
- negotiation fails, go to (5);
(5) end;
\square

MULTILATERAL BARTERS

MULTILATERAL BARTERS

Conclusions

MULTILATERAL BARTERS

+6

Models for multilateral barters
\Rightarrow involve more than two actors each with a basket of items,
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow imnlicit harter if each actor conceals his basket,
\Rightarrow mixed barter if some reveal and the some others conceal.

MULTILATERAL BARTERS

5

Models for multilateral barters
\Rightarrow involve more than two actors each with a basket of items,
> \Rightarrow explicit barter if each actor reveals his basket,
> \Rightarrow implicit barter if each actor conceals his basket,
> \Rightarrow mixed barter if some reveal and the some others conceal.

MULTILATERAL BARTERS

+6

Models for multilateral barters
\Rightarrow involve more than two actors each with a basket of items,
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if some reveal and the some others conceal.

MULTILATERAL BARTERS

Models for multilateral barters
\Rightarrow involve more than two actors each with a basket of items,
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,

MULTilateral Barters

Models for multilateral barters
\Rightarrow involve more than two actors each with a basket of items,
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if some reveal and the some others conceal.

MULTILATERAL BARTERS

Models for multilateral barters
\Rightarrow involve more than two actors each with a basket of items,
\Rightarrow explicit barter if each actor reveals his basket,
\Rightarrow implicit barter if each actor conceals his basket,
\Rightarrow mixed barter if some reveal and the some others conceal.

MULTILATERAL EXPLICIT BARTER, LAST MODIFIER

MULTILATERAL EXPLICIT BARTER, LAST MODIFIER

MULTILATERAL EXPLICIT BARTER, LAST MODIFIER

(1) a merge operation is executed so to define $B_{S}^{h}=\oplus_{i \in S} b k_{i}^{h}$;
(2) one of the players $i \in S$ is randomly selected;
(3) the selected player i proposes a basket $b k \subset B_{S}^{h}$ and passes it along to the others;
(4) if nobody modifies it in any way (so that i is conventionally the last modifier) then the basket is assigned to i and becomes $b k_{i}^{h+1}$ so that i exits from S (and so from the game);
(5) if other players modify it and if j is the last modifier we have the following cases:
(5a) if i accepts the modified basket he gets it so that it becomes $b k_{i}^{h+1}$ and then i exits from S (and so from the game);
(5b) if i refuses the modified basket j gets it so that it becomes $b k_{j}^{h+1}$ and then j exits from S (and so from the game);
(6) the items allocated to either i or j must be removed from B_{S}^{h};
(7) if there are still at least two players go to (2) else end;

MULTILATERAL EXPLICIT BARTER, LAST MODIFIER

畨

(1) a merge operation is executed so to define $B_{S}^{h}=\oplus_{i \in S} b k_{i}^{h}$;
(2) one of the players $i \in S$ is randomly selected;
(3) the selected player i proposes a basket $b k \subset B_{S}^{h}$ and passes it along to the others;
(4) if nobody modifies it in any way (so that i is conventionally the last modifier) then the basket is assigned to i and becomes $b k_{i}^{h+1}$ so that i exits from S (and so from the game);
(5) if other players modify it and if j is the last modifier we have the following cases:
(5a) if i accepts the modified basket he gets it so that it becomes $b k_{i}^{h+1}$ and then i exits from S (and so from the game);
(5b) if i refuses the modified basket j gets it so that it becomes $b k_{j}^{h+1}$ and then j exits from S (and so from the game);
(6) the items allocated to either i or j must be removed from B_{S}^{h};
(7) if there are still at least two players go to (2) else end;

PaRALLEL AND CASCADED BARTERS

PaRALLEL AND CASCADED BARTERS

PARALLEL AND CASCADED BARTERS

Bilateral and multilateral barters may be:
\Rightarrow executed in parallel,
\Rightarrow executed in cascade among the same actors,
\Rightarrow executed in cascade among at least partially different
actors,
\Rightarrow this reduces the level of common knowledge among the
actors.

PARALLEL AND CASCADED BARTERS

Bilateral and multilateral barters may be:
\Rightarrow executed in parallel,
\Rightarrow executed in cascade among at least partially different actors,

actors.

PARALLEL AND CASCADED BARTERS

Bilateral and multilateral barters may be:
\Rightarrow executed in parallel,
\Rightarrow executed in cascade among the same actors,
\Rightarrow executed in cascade among at least partially different actors,
\qquad actors.

PARALLEL AND CASCADED BARTERS

Bilateral and multilateral barters may be:
\Rightarrow executed in parallel,
\Rightarrow executed in cascade among the same actors,
\Rightarrow executed in cascade among at least partially different actors,
\Rightarrow this reduces the level of common knowledge among the actors.

PARALLEL AND CASCADED BARTERS

Bilateral and multilateral barters may be:
\Rightarrow executed in parallel,
\Rightarrow executed in cascade among the same actors,
\Rightarrow executed in cascade among at least partially different actors,
\Rightarrow this reduces the level of common knowledge among the actors.

PARALLEL AND CASCADED BARTERS

Bilateral and multilateral barters may be:
\Rightarrow executed in parallel,
\Rightarrow executed in cascade among the same actors,
\Rightarrow executed in cascade among at least partially different actors,
\Rightarrow this reduces the level of common knowledge among the actors.

The evaluation criteria, Basic definitions

The Evaluation criteria, basic definitions

The evaluation criteria, Basic definitions

(

We say a barter is fair if the following conditions are satisfied, otherwise it is unfair.
> nobody would prefer the portion of somebody else to his own.
> each of the n players thinks to have received at least $1 / n$ of the total value.
> \Rightarrow Equitability: each player thinks he has received a portion that is worth the same in one's evaluation as the other's portion in the other's evaluation.
> \Rightarrow Pareto efficiency: there is no other allocation where one of the players is better off and none of the others is worse off.

The evaluation criteria, Basic definitions

준

We say a barter is fair if the following conditions are satisfied, otherwise it is unfair.
\Rightarrow Envy-freeness: nobody would prefer the portion of somebody else to his own.
\square

THE EVALUATION CRITERIA, BASIC DEFINITIONS

웅

We say a barter is fair if the following conditions are satisfied, otherwise it is unfair.
\Rightarrow Envy-freeness: nobody would prefer the portion of somebody else to his own.
\Rightarrow Proportionality: each of the n players thinks to have received at least $1 / n$ of the total value.

THE EVALUATION CRITERIA, BASIC DEFINITIONS

We say a barter is fair if the following conditions are satisfied, otherwise it is unfair.
\Rightarrow Envy-freeness: nobody would prefer the portion of somebody else to his own.
\Rightarrow Proportionality: each of the n players thinks to have received at least $1 / n$ of the total value.
\Rightarrow Equitability: each player thinks he has received a portion that is worth the same in one's evaluation as the other's portion in the other's evaluation.
the players is better off and none of the others is worse off.

The Evaluation criteria, Basic definitions

준

We say a barter is fair if the following conditions are satisfied, otherwise it is unfair.
\Rightarrow Envy-freeness: nobody would prefer the portion of somebody else to his own.
\Rightarrow Proportionality: each of the n players thinks to have received at least $1 / n$ of the total value.
\Rightarrow Equitability: each player thinks he has received a portion that is worth the same in one's evaluation as the other's portion in the other's evaluation.
\Rightarrow Pareto efficiency: there is no other allocation where one of the players is better off and none of the others is worse off.

The evaluation criteria, Basic definitions

We say a barter is fair if the following conditions are satisfied, otherwise it is unfair.
\Rightarrow Envy-freeness: nobody would prefer the portion of somebody else to his own.
\Rightarrow Proportionality: each of the n players thinks to have received at least $1 / n$ of the total value.
\Rightarrow Equitability: each player thinks he has received a portion that is worth the same in one's evaluation as the other's portion in the other's evaluation.
\Rightarrow Pareto efficiency: there is no other allocation where one of the players is better off and none of the others is worse off. In the case $n=2$ envy-freeness is equivalent to proportionality

The evaluation criteria, Basic definitions

We say a barter is fair if the following conditions are satisfied, otherwise it is unfair.
\Rightarrow Envy-freeness: nobody would prefer the portion of somebody else to his own.
\Rightarrow Proportionality: each of the n players thinks to have received at least $1 / n$ of the total value.
\Rightarrow Equitability: each player thinks he has received a portion that is worth the same in one's evaluation as the other's portion in the other's evaluation.
\Rightarrow Pareto efficiency: there is no other allocation where one of the players is better off and none of the others is worse off. In the case $n=2$ envy-freeness is equivalent to proportionality

THE EVALUATION CRITERIA, THE PARAMETERS

THE EVALUATION CRITERIA, THE PARAMETERS

The main body
Conclusions
000000000000000000000000000000000000

THE EVALUATION CRITERIA, THE PARAMETERS

We define the following parameters for player i :
$\Rightarrow a_{i}$ the value of what i gets from the barter,
$\Rightarrow l_{i}$ the value of what i gives away in the barter,
$\Rightarrow\left(a_{i}\right)_{i}$ the value of what i gets from the barter in i 's opinion,
$\Rightarrow v_{i}^{h+1}$ and v_{i}^{1} the worths (for i) of i 's basket after and before the barter,
$\Rightarrow A=\sum_{j, i}\left(a_{j}\right)_{i}$

THE EVALUATION CRITERIA, THE PARAMETERS

We define the following parameters for player i :
$\Rightarrow a_{i}$ the value of what i gets from the barter,

```
=> }\mp@subsup{|}{i}{}\mathrm{ the value of what i gives away in the barter,
=>(aj}\mp@subsup{)}{i}{}\mathrm{ the value of what }j\mathrm{ gets from the barter in i's opinion,
=> v
    the barter,
```

$\Rightarrow A=\sum_{j \neq i}\left(a_{j}\right)_{i}$

THE EVALUATION CRITERIA, THE PARAMETERS

We define the following parameters for player i :
$\Rightarrow a_{i}$ the value of what i gets from the barter,
$\Rightarrow I_{i}$ the value of what i gives away in the barter,

$\Rightarrow v_{i}^{h+1}$ and v_{i}^{1} the worths (for i) of i 's basket after and before the barter,

THE EVALUATION CRITERIA, THE PARAMETERS

We define the following parameters for player i :
$\Rightarrow a_{i}$ the value of what i gets from the barter,
$\Rightarrow I_{i}$ the value of what i gives away in the barter,
$\Rightarrow\left(a_{j}\right)_{i}$ the value of what j gets from the barter in i 's opinion,

THE EVALUATION CRITERIA, THE PARAMETERS

We define the following parameters for player i :
$\Rightarrow a_{i}$ the value of what i gets from the barter,
$\Rightarrow I_{i}$ the value of what i gives away in the barter,
$\Rightarrow\left(a_{j}\right)_{i}$ the value of what j gets from the barter in i's opinion,
$\Rightarrow v_{i}^{h+1}$ and v_{i}^{1} the worths (for i) of i 's basket after and before the barter,

THE EVALUATION CRITERIA, THE PARAMETERS

We define the following parameters for player i :
$\Rightarrow a_{i}$ the value of what i gets from the barter,
$\Rightarrow l_{i}$ the value of what i gives away in the barter,
$\Rightarrow\left(a_{j}\right)_{i}$ the value of what j gets from the barter in i 's opinion,
$\Rightarrow v_{i}^{h+1}$ and v_{i}^{1} the worths (for i) of i 's basket after and before the barter,
$\Rightarrow A=\sum_{j \neq i}\left(a_{j}\right)_{i}$.

THE EVALUATION CRITERIA, THE PARAMETERS

We define the following parameters for player i :
$\Rightarrow a_{i}$ the value of what i gets from the barter,
$\Rightarrow l_{i}$ the value of what i gives away in the barter,
$\Rightarrow\left(a_{j}\right)_{i}$ the value of what j gets from the barter in i 's opinion,
$\Rightarrow v_{i}^{h+1}$ and v_{i}^{1} the worths (for i) of i 's basket after and before the barter,
$\Rightarrow A=\sum_{j \neq i}\left(a_{j}\right)_{i}$.

THE EVALUATION CRITERIA, MODIFIED DEFINITIONS (1)

000000000000000000000000000000000000

THE EVALUATION CRITERIA, MODIFIED DEFINITIONS (1)

놔

The main body
Conclusions

The Evaluation criteria, modified definitions (1)

因

$$
v_{i}^{h+1}=v_{i}^{h}-l_{i}+a_{i}
$$

so that player i accepts a proposed barter (since $v_{i}^{h+1} \geq v_{i}^{h}$) if and only if:

$$
a_{i} \geq l_{i}
$$

In the case of two players a barter is envy-free if we have for player i :

$$
\frac{a_{i}}{l_{i}} \geq 1
$$

In the case of more than two players if we consider player i we have that the following relation must hold for all $j \neq i$:

$$
a_{i} \geq\left(a_{j}\right)_{i}
$$

In the case of two players we want to maintain the equivalence between proportionality and envy-freeness

$$
\frac{a_{i}}{a_{i}+l_{i}} \geq \frac{1}{2}
$$

In the general case of more than two players

$$
\begin{aligned}
& \text { envy }- \text { freeness } \Rightarrow \text { proportionality } \\
& \text { proportionality } \nRightarrow \text { envy }- \text { freeness } \\
& \qquad \frac{a_{i}}{a_{i}+A} \geq \frac{1}{n}
\end{aligned}
$$

The Evaluation criteria, modified definitions (1)

因

$$
v_{i}^{h+1}=v_{i}^{h}-l_{i}+a_{i}
$$

so that player i accepts a proposed barter (since $v_{i}^{h+1} \geq v_{i}^{h}$) if and only if:

$$
a_{i} \geq l_{i}
$$

In the case of two players a barter is envy-free if we have for player i :

$$
\frac{a_{i}}{l_{i}} \geq 1
$$

In the case of more than two players if we consider player i we have that the following relation must hold for all $j \neq i$:

$$
a_{i} \geq\left(a_{j}\right)_{i}
$$

In the case of two players we want to maintain the equivalence between proportionality and envy-freeness

$$
\frac{a_{i}}{a_{i}+l_{i}} \geq \frac{1}{2}
$$

In the general case of more than two players

$$
\begin{aligned}
& \text { envy }- \text { freeness } \Rightarrow \text { proportionality } \\
& \text { proportionality } \nRightarrow \text { envy }- \text { freeness } \\
& \qquad \frac{a_{i}}{a_{i}+A} \geq \frac{1}{n}
\end{aligned}
$$

The Evaluation criteria, modified definitions (2)

The preliminaries
00000

Conclusions
The main body

0000000000000000000000000000000000000

The Evaluation criteria, modified definitions (2)

The preliminaries
00000

The main body

Conclusions

0000000000000000000000000000000000000

The Evaluation criteria, modified definitions (2)

$$
\frac{a_{i}}{v_{i}^{h+1}} \geq \frac{l_{i}}{v_{i}^{h}} \quad \frac{a_{j}}{v_{j}^{h+1}} \geq \frac{l_{j}}{v_{j}^{h}}
$$

If both relations hold we say that the barter is equitable.

$$
\begin{aligned}
v_{i}^{h+1}=v_{i}^{h}+a_{i}-l_{i} & \bar{v}=v_{i}^{h+1}-a_{i}=v_{i}^{h}-l_{i} \\
v_{i}^{h+1}=\bar{v}+a_{i} & v_{i}^{h}=\bar{v}+l_{i} \\
\frac{a_{i}}{\bar{v}+a_{i}} \geq \frac{l_{i}}{\bar{v}+l_{i}} & \text { we can easily derive } a_{i} \geq l_{i}
\end{aligned}
$$

from equitability we derive envy-freeness envy-freeness can be expressed as $a_{i} \geq l_{i}$ (and $v_{i}^{h+1} \geq v_{i}^{h}$)

$$
1 \leq \frac{v_{i}^{h+1}}{v_{i}^{h}}=\frac{\bar{v}+a_{i}}{\bar{v}+l_{i}} \leq \frac{a_{i}}{l_{i}}
$$

In this way we get that, in the case of two players, envy-freeness necessarily implies equitability and vice versa.

The Evaluation criteria, modified definitions (2)

$$
\frac{a_{i}}{v_{i}^{h+1}} \geq \frac{l_{i}}{v_{i}^{h}} \quad \frac{a_{j}}{v_{j}^{h+1}} \geq \frac{l_{j}}{v_{j}^{h}}
$$

If both relations hold we say that the barter is equitable.

$$
\begin{aligned}
v_{i}^{h+1}=v_{i}^{h}+a_{i}-l_{i} & \bar{v}=v_{i}^{h+1}-a_{i}=v_{i}^{h}-l_{i} \\
v_{i}^{h+1}=\bar{v}+a_{i} & v_{i}^{h}=\bar{v}+l_{i} \\
\frac{a_{i}}{\bar{v}+a_{i}} \geq \frac{l_{i}}{\bar{v}+l_{i}} & \text { we can easily derive } a_{i} \geq l_{i}
\end{aligned}
$$

from equitability we derive envy-freeness envy-freeness can be expressed as $a_{i} \geq l_{i}$ (and $v_{i}^{h+1} \geq v_{i}^{h}$)

$$
1 \leq \frac{v_{i}^{h+1}}{v_{i}^{h}}=\frac{\bar{v}+a_{i}}{\bar{v}+l_{i}} \leq \frac{a_{i}}{l_{i}}
$$

In this way we get that, in the case of two players, envy-freeness necessarily implies equitability and vice versa.

THE EVALUATION CRITERIA, MODIFIED DEFINITIONS (3)

The main body

000000000000000000000000000000000000

THE EVALUATION CRITERIA, MODIFIED DEFINITIONS (3)

\square

The main body
000000000000000000000000000000000000

The Evaluation criteria, modified definitions (3)

眞

$a_{i j}$ the value of what i gets from j
$l_{i j}$ the value of what i gives to j
bilaterally equitable if for a pair i, j :

$$
\frac{a_{i j}}{v_{i}^{h+1}} \geq \frac{l_{i j}}{v_{i}^{h}}
$$

If such relations (that scale easily to the two players case) are satisfied for every i and for every $j \neq i$ we say that the barter satisfies bilateral equitability.
If, for a given i, we sum all the relations over all the $j \neq i$ we get:

$$
\begin{aligned}
& \frac{a_{i}}{v_{i}^{h+1}} \geq \frac{l_{i}}{v_{i}^{h}} \quad a_{i}=\sum_{j \neq i} a_{i j} \quad l_{i}=\sum_{j \neq i} l_{i j} \text { an hypothesis of additivity } \\
& \frac{a_{i}}{\bar{v}+a_{i}} \geq \frac{l_{i}}{\bar{v}+l_{i}} \quad \text { or: } \quad a_{i} \geq l_{i} \text { and: } v_{i}^{h+1} \geq v_{i}^{h}
\end{aligned}
$$

The Evaluation criteria, modified definitions (3)

眞

$a_{i j}$ the value of what i gets from j
$l_{i j}$ the value of what i gives to j
bilaterally equitable if for a pair i, j :

$$
\frac{a_{i j}}{v_{i}^{h+1}} \geq \frac{l_{i j}}{v_{i}^{h}}
$$

If such relations (that scale easily to the two players case) are satisfied for every i and for every $j \neq i$ we say that the barter satisfies bilateral equitability.
If, for a given i, we sum all the relations over all the $j \neq i$ we get:

$$
\begin{aligned}
\frac{a_{i}}{v_{i}^{h+1}} \geq \frac{l_{i}}{v_{i}^{h}} \quad a_{i}=\sum_{j \neq i} a_{i j} \quad l_{i}=\sum_{j \neq i} l_{i j} \text { an hypothesis of additivity } \\
\frac{a_{i}}{\bar{v}+a_{i}} \geq \frac{l_{i}}{\bar{v}+l_{i}} \quad \text { or: } \quad a_{i} \geq l_{i} \text { and: } v_{i}^{h+1} \geq v_{i}^{h}
\end{aligned}
$$

THE EVALUATION CRITERIA, SATISFACTION (1)

The main body

000000000000000000000000000000000000

The Evaluation criteria, satisfaction (1)

The main body
20000000000000000000000

THE EVALUATION CRITERIA, SATISFACTION (1)

For the models of bilateral barter the following conditions are equivalent:

The Evaluation criteria, satisfaction (1)

For the models of bilateral barter the following conditions are equivalent:
\Rightarrow occurrence of the barter,
\Rightarrow envy-freeness,

The Evaluation criteria, satisfaction (1)

For the models of bilateral barter the following conditions are equivalent:
\Rightarrow occurrence of the barter,
\Rightarrow envy-freeness,

The Evaluation criteria, satisfaction (1)

For the models of bilateral barter the following conditions are equivalent:
\Rightarrow occurrence of the barter,
\Rightarrow envy-freeness,
\Rightarrow proportionality,

The Evaluation criteria, satisfaction (1)

For the models of bilateral barter the following conditions are equivalent:
\Rightarrow occurrence of the barter,
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow equitability.

The Evaluation criteria, satisfaction (1)

For the models of bilateral barter the following conditions are equivalent:
\Rightarrow occurrence of the barter,
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow equitability.
Efficiency must be verified case by case on ex-post conditions.

The Evaluation criteria, satisfaction (1)

For the models of bilateral barter the following conditions are equivalent:
\Rightarrow occurrence of the barter,
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow equitability.
Efficiency must be verified case by case on ex-post conditions.

THE EVALUATION CRITERIA, SATISFACTION (2)

The main body

000000000000000000000000000000000000

The Evaluation criteria, satisfaction (2)

The Evaluation criteria, satisfaction (2)

The multilateral barter models in general satisfy:
\Rightarrow bilateral equitability,
\Rightarrow efficiency,

The Evaluation criteria, satisfaction (2)

The multilateral barter models in general satisfy:
\Rightarrow envy-freeness,

\Rightarrow efficiency,

The Evaluation criteria, satisfaction (2)

The multilateral barter models in general satisfy:
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow bilateral equitability,
\Rightarrow efficiency,

The Evaluation criteria, satisfaction (2)

The multilateral barter models in general satisfy:
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow bilateral equitability,
\Rightarrow efficiency,

The Evaluation criteria, satisfaction (2)

The multilateral barter models in general satisfy:
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow bilateral equitability,
\Rightarrow efficiency,

The Evaluation criteria, satisfaction (2)

The multilateral barter models in general satisfy:
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow bilateral equitability,
\Rightarrow efficiency,
only as ex-post conditions to be verified case by case.

The Evaluation criteria, satisfaction (2)

The multilateral barter models in general satisfy:
\Rightarrow envy-freeness,
\Rightarrow proportionality,
\Rightarrow bilateral equitability,
\Rightarrow efficiency,
only as ex-post conditions to be verified case by case.

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) ThE PRELIMINARIES
- The motivations
- The actors
(3) The MAIN BODY
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition
(4) CONCLUSIONS

Introductory remarks

00000

The main body

Conclusions

Introductory remarks

Introductory remarks

We define a two stage procedure and two conditions:
\Rightarrow dynamic setting: the sets of deciders N, issues I and criteria C are defined from seminal sets;
\Rightarrow stability conditions: fixed point conditions on such sets;
\Rightarrow static setting: issue selection according to the agreed on criteria from the admitted deciders;
\Rightarrow conditions of failure: inability to choose, reopening of the dynamic setting with possibly new seminal sets.

Introductory remarks

We define a two stage procedure and two conditions:
\Rightarrow dynamic setting: the sets of deciders N, issues I and criteria C are defined from seminal sets;
> fixed point conditions on such sets;
> \Rightarrow static setting: issue selection according to the agreed on criteria from the admitted deciders;
> \Rightarrow conditions of failure: inability to choose, reopening of the dynamic setting with possibly new seminal sets.

INTRODUCTORY REMARKS

We define a two stage procedure and two conditions:
\Rightarrow dynamic setting: the sets of deciders N, issues / and criteria C are defined from seminal sets;
\Rightarrow stability conditions: fixed point conditions on such sets;
\Rightarrow static setting: issue selection according to the agreed on criteria from the admitted deciders;
\Rightarrow conditions of failure: inability to choose, reopening of the dynamic setting with possibly new seminal sets.

Introductory remarks

We define a two stage procedure and two conditions:
\Rightarrow dynamic setting: the sets of deciders N, issues I and criteria C are defined from seminal sets;
\Rightarrow stability conditions: fixed point conditions on such sets;
\Rightarrow static setting: issue selection according to the agreed on criteria from the admitted deciders;
\Rightarrow conditions of failure: inability to choose, reopening of the dynamic setting with possibly new seminal sets.

Introductory remarks

We define a two stage procedure and two conditions:
\Rightarrow dynamic setting: the sets of deciders N, issues I and criteria C are defined from seminal sets;
\Rightarrow stability conditions: fixed point conditions on such sets;
\Rightarrow static setting: issue selection according to the agreed on criteria from the admitted deciders;
\Rightarrow conditions of failure: inability to choose, reopening of the dynamic setting with possibly new seminal sets.

Introductory remarks

We define a two stage procedure and two conditions:
\Rightarrow dynamic setting: the sets of deciders N, issues I and criteria C are defined from seminal sets;
\Rightarrow stability conditions: fixed point conditions on such sets;
\Rightarrow static setting: issue selection according to the agreed on criteria from the admitted deciders;
\Rightarrow conditions of failure: inability to choose, reopening of the dynamic setting with possibly new seminal sets.

The main body

The main body

THE BASIC FRAMEWORK

The main body

The main body

THE BASIC FRAMEWORK

THE BASIC FRAMEWORK

THE BASIC FRAMEWORK

The static setting

Conclusions

The main body
 0000000000000000000000000000000000000

The static setting

0000000000000000000000000000000000000

The static setting

In the static setting :
\Rightarrow the deciders of N can:
\Rightarrow proceed cooperatively (early merge) so to produce a single decision matrix to be used for a collective ranking;
\Rightarrow proceed competitively (late merge) so that each produces a private ranking;
\Rightarrow the private rankings are then merged to allow the issue selection.

The static setting

In the static setting :
\Rightarrow the deciders of N can:
\Rightarrow proceed cooperatively (early merge) so to produce a single decision matrix to be used for a collective ranking;
\Rightarrow proceed competitively (late merge) so that each produces a private ranking;
\Rightarrow the private rankings are then merged to allow the issue selection.

The static setting

\square

In the static setting :
\Rightarrow the deciders of N can:
\Rightarrow proceed cooperatively (early merge) so to produce a single decision matrix to be used for a collective ranking;
\Rightarrow proceed competitively (late merge) so that each produces a private ranking;
\Rightarrow the private rankings are then merged to allow the issue selection.

The static setting

In the static setting :
\Rightarrow the deciders of N can:
\Rightarrow proceed cooperatively (early merge) so to produce a single decision matrix to be used for a collective ranking;
\Rightarrow proceed competitively (late merge) so that each produces a private ranking;
\Rightarrow the private rankings are then merged to allow the issue selection.

The static setting

In the static setting :
\Rightarrow the deciders of N can:
\Rightarrow proceed cooperatively (early merge) so to produce a single decision matrix to be used for a collective ranking;
\Rightarrow proceed competitively (late merge) so that each produces a private ranking;
\Rightarrow the private rankings are then merged to allow the issue selection.

The static setting

In the static setting :
\Rightarrow the deciders of N can:
\Rightarrow proceed cooperatively (early merge) so to produce a single decision matrix to be used for a collective ranking;
\Rightarrow proceed competitively (late merge) so that each produces a private ranking;
\Rightarrow the private rankings are then merged to allow the issue selection.

The preliminaries 00000

The main body
 000000000000000000000000000000000000

LATE MERGE

The preliminaries 00000

The main body

The main body

LATE MERGE

LATE MERGE

,

LATE MERGE

$r_{i j}$ are local rankings of each decider i for each criterion j whereas the R_{i} are the "overall" ranking for each decider

LATE MERGE

$r_{i j}$ are local rankings of each decider i for each criterion j whereas the R_{i} are the "overall" ranking for each decider

Late merge of Rankings with ties (1)

LATE MERGE OF RANKINGS WITH TIES (1)

Late merge of Rankings with ties (1)

$+x^{3}$

We define a multicriteria method based on:

\square
\Rightarrow a alohal strint preference relation.
\Rightarrow that in general is not transitive by its definition (presence of conflicting criteria and condition of "parity").

Late merge of Rankings with ties (1)

x^{3}

We define a multicriteria method based on:
\Rightarrow strict preferences or indifferences with traditional properties,
\Rightarrow that in general is not transitive by its definition (presence of conflicting criteria and condition of "parity").

LATE MERGE OF RANKINGS WITH TIES (1)

0

We define a multicriteria method based on:
\Rightarrow strict preferences or indifferences with traditional properties,
\Rightarrow a global strict preference relation,
\Rightarrow that in general is not transitive by its definition (presence of conflicting criteria and condition of "parity").

Late merge of Rankings with ties (1)

*

We define a multicriteria method based on:
\Rightarrow strict preferences or indifferences with traditional properties,
\Rightarrow a global strict preference relation,
\Rightarrow that in general is not transitive by its definition (presence of conflicting criteria and condition of "parity").

Late merge of Rankings with ties (1)

We define a multicriteria method based on:
\Rightarrow strict preferences or indifferences with traditional properties,
\Rightarrow a global strict preference relation,
\Rightarrow that in general is not transitive by its definition (presence of conflicting criteria and condition of "parity").
We have graphs to be merged in a multigraph to be used collectively as an aid for a deeper analysis or for a selection. In the multigraph the lack of an arc defines an undecidability condition (where $v_{i, j}=v_{j, i}$ or equal number of votes).

Late merge of Rankings with ties (1)

We define a multicriteria method based on:
\Rightarrow strict preferences or indifferences with traditional properties,
\Rightarrow a global strict preference relation,
\Rightarrow that in general is not transitive by its definition (presence of conflicting criteria and condition of "parity").
We have graphs to be merged in a multigraph to be used collectively as an aid for a deeper analysis or for a selection. In the multigraph the lack of an arc defines an undecidability condition (where $v_{i, j}=v_{j, i}$ or equal number of votes).

Late merge of Rankings with ties (2)

Late merge of Rankings with ties (2)

LATE MERGE OF RANKINGS WITH TIES (2)

*

One decider, four issues [1,2,3,4], four criteria, the graphs.

LATE MERGE OF RANKINGS WITH TIES (2)

,

One decider, four issues [1,2,3,4], four criteria, the graphs.

LATE MERGE OF RANKINGS WITH TIES (2)

,

One decider, four issues [1,2,3,4], four criteria, the graphs.

LATE MERGE OF RANKINGS WITH TIES (2)

,

One decider, four issues [1,2,3,4], four criteria, the graphs.

Late merge of rankings with ties (3)

Late merge of rankings with ties (3)

\square

LATE MERGE OF RANKINGS WITH TIES (3)

氺

Two more deciders, [same four] issues, [same four] criteria, the resulting multigraph.

Late merge of Rankings with ties (3)

,

Two more deciders, [same four] issues, [same four] criteria, the resulting multigraph.

Late merge of rankings with ties (3)

,

Two more deciders, [same four] issues, [same four] criteria, the resulting multigraph.

Late merge of rankings with ties (3)

,

Two more deciders, [same four] issues, [same four] criteria, the resulting multigraph.

The main body

The main body

The dynamic setting

The dynamic setting

Conclusions

The main body
 000000000000000000000000000000000000

\square

The dynamic setting

In the dynamic setting:

\Rightarrow from the seminal sets N_{0}, l_{0}, C_{0},
\Rightarrow new deciders are admitted so to define N_{i} with $i>1$ from N_{i-1} (direct involvement, sponsoring),
\Rightarrow new criteria are merged with the existing criteria so to define C_{i} in similar ways,
\Rightarrow new issues are merged with the existing issues so to define I_{i} in similar ways.

The dynamic setting

In the dynamic setting:
\Rightarrow from the seminal sets N_{0}, I_{0}, C_{0},
\Rightarrow new deciders are admitted so to define N_{i} with $i>1$ from N_{i-1} (direct involvement, sponsoring),
\Rightarrow new criteria are merged with the existing criteria so to define C_{i} in similar ways,
\Rightarrow new issues are merged with the existing issues so to define l_{i} in similar ways.

The dynamic setting

\square
In the dynamic setting:
\Rightarrow from the seminal sets N_{0}, I_{0}, C_{0},
\Rightarrow new deciders are admitted so to define N_{i} with $i>1$ from N_{i-1} (direct involvement, sponsoring),
\Rightarrow new criteria are merged with the existing criteria so to define C_{i} in similar ways,
\Rightarrow new issues are merged with the existing issues so to define I_{i} in similar ways.

The dynamic setting

In the dynamic setting:
\Rightarrow from the seminal sets N_{0}, I_{0}, C_{0},
\Rightarrow new deciders are admitted so to define N_{i} with $i>1$ from N_{i-1} (direct involvement, sponsoring),
\Rightarrow new criteria are merged with the existing criteria so to define C_{i} in similar ways,
\Rightarrow new issues are merged with the existing issues so to
\quad define I_{i} in similar ways.

The Dynamic setting

In the dynamic setting:
\Rightarrow from the seminal sets N_{0}, I_{0}, C_{0},
\Rightarrow new deciders are admitted so to define N_{i} with $i>1$ from N_{i-1} (direct involvement, sponsoring),
\Rightarrow new criteria are merged with the existing criteria so to define C_{i} in similar ways,
\Rightarrow new issues are merged with the existing issues so to define I_{i} in similar ways.

The Dynamic setting

In the dynamic setting:
\Rightarrow from the seminal sets N_{0}, I_{0}, C_{0},
\Rightarrow new deciders are admitted so to define N_{i} with $i>1$ from N_{i-1} (direct involvement, sponsoring),
\Rightarrow new criteria are merged with the existing criteria so to define C_{i} in similar ways,
\Rightarrow new issues are merged with the existing issues so to define l_{i} in similar ways.
The updating of the sets occurs through quick and dirty procedures since the real refinement occurs in the static setting. We have fixed point conditions to end the dynamic setting (such as $N_{i+1}=N_{i}$).

The Dynamic setting

In the dynamic setting:
\Rightarrow from the seminal sets N_{0}, I_{0}, C_{0},
\Rightarrow new deciders are admitted so to define N_{i} with $i>1$ from N_{i-1} (direct involvement, sponsoring),
\Rightarrow new criteria are merged with the existing criteria so to define C_{i} in similar ways,
\Rightarrow new issues are merged with the existing issues so to define I_{i} in similar ways.
The updating of the sets occurs through quick and dirty procedures since the real refinement occurs in the static setting. We have fixed point conditions to end the dynamic setting (such as $N_{i+1}=N_{i}$).

Introduction

(1) Introduction

- The Thesis
- Overview (Thesis) \& main themes (presentation)
(2) ThE PRELIMINARIES
- The motivations
- The actors
(3) The MAIN BODY
- The auction models
- The barter models
- Coalitions for problem solving
- Deciding within a competition
(4) Conclusions

DECIDING WITHIN A COMPETITION

The main body
0000000000000000000000000000000000000

DECIDING WITHIN A COMPETITION

\square

DECIDING WITHIN A COMPETITION

N

We disregard the process of formation of a common knowledge.

DECIDING WITHIN A COMPETITION

N

We disregard the process of formation of a common knowledge.
We start with the following cases:
\Rightarrow one project:
\Rightarrow two projects:
the other.

DECIDING WITHIN A COMPETITION

N

We disregard the process of formation of a common knowledge.
We start with the following cases:
\Rightarrow one project: d_{a} proposes i_{a}, d_{b} opposes,

DECIDING WITHIN A COMPETITION

N

We disregard the process of formation of a common knowledge.
We start with the following cases:
\Rightarrow one project: d_{a} proposes i_{a}, d_{b} opposes,
\Rightarrow two projects: d_{a} proposes i_{a}, d_{b} proposes i_{b}, each opposes the other.

DECIDING WITHIN A COMPETITION

国

We disregard the process of formation of a common knowledge.
We start with the following cases:
\Rightarrow one project: d_{a} proposes i_{a}, d_{b} opposes,
\Rightarrow two projects: d_{a} proposes i_{a}, d_{b} proposes i_{b}, each opposes the other.

We note that:
\Rightarrow each project is associated to sets of benefits and costs,
\Rightarrow the selection occurs through negotiations (what) and
redistributions (how) of benefits and costs.

DECIDING WITHIN A COMPETITION

20

We disregard the process of formation of a common knowledge.
We start with the following cases:
\Rightarrow one project: d_{a} proposes i_{a}, d_{b} opposes,
\Rightarrow two projects: d_{a} proposes i_{a}, d_{b} proposes i_{b}, each opposes the other.

We note that:
\Rightarrow each project is associated to sets of benefits and costs,
\Rightarrow the selection occurs through redistributions (how) of benefits and costs.

DECIDING WITHIN A COMPETITION

因

We disregard the process of formation of a common knowledge.
We start with the following cases:
\Rightarrow one project: d_{a} proposes i_{a}, d_{b} opposes,
\Rightarrow two projects: d_{a} proposes i_{a}, d_{b} proposes i_{b}, each opposes the other.

We note that:
\Rightarrow each project is associated to sets of benefits and costs,
\Rightarrow the selection occurs through negotiations (what) and redistributions (how) of benefits and costs.

DECIDING WITHIN A COMPETITION

因

We disregard the process of formation of a common knowledge.
We start with the following cases:
\Rightarrow one project: d_{a} proposes i_{a}, d_{b} opposes,
\Rightarrow two projects: d_{a} proposes i_{a}, d_{b} proposes i_{b}, each opposes the other.

We note that:
\Rightarrow each project is associated to sets of benefits and costs,
\Rightarrow the selection occurs through negotiations (what) and redistributions (how) of benefits and costs.

ONE PROJECT, THE SETS

ONE PROJECT, THE SETS

Conclusions

ONE PROJECT, THE SETS

*

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

One project, THE SETS

*

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

The negotiations involve the following sets:

ONE PROJECT, THE SETS

0

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

The negotiations involve the following sets:
\Rightarrow the set C_{a} of the [shareable] costs (what),
> \Rightarrow the set B_{a} of the [shareable] benefits (what),
> \Rightarrow the sets C_{1} and B_{1} for one decider,
> \Rightarrow the sets C_{2} and B_{2} for the other decider,
> \Rightarrow a key role is played by the sets

ONE PROJECT, THE SETS

图

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

The negotiations involve the following sets:
\Rightarrow the set C_{a} of the [shareable] costs (what),
\Rightarrow the set B_{a} of the [shareable] benefits (what),
\Rightarrow the sets
for one decider,
\Rightarrow the sets C_{2} and B_{2} for the other decider,
\Rightarrow a key role is played by the sets

ONE PROJECT, THE SETS

눈

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

The negotiations involve the following sets:
\Rightarrow the set C_{a} of the [shareable] costs (what),
\Rightarrow the set B_{a} of the [shareable] benefits (what),
\Rightarrow the sets C_{1} and B_{1} for one decider,
\Rightarrow the sets C_{2} and B_{2} for the other decider,
\Rightarrow a key role is played by the sets

ONE PROJECT, THE SETS

鹵

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

The negotiations involve the following sets:
\Rightarrow the set C_{a} of the [shareable] costs (what),
\Rightarrow the set B_{a} of the [shareable] benefits (what),
\Rightarrow the sets C_{1} and B_{1} for one decider,
\Rightarrow the sets C_{2} and B_{2} for the other decider,
\Rightarrow a key role is played by the sets

ONE PROJECT, THE SETS

,

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

The negotiations involve the following sets:
\Rightarrow the set C_{a} of the [shareable] costs (what),
\Rightarrow the set B_{a} of the [shareable] benefits (what),
\Rightarrow the sets C_{1} and B_{1} for one decider,
\Rightarrow the sets C_{2} and B_{2} for the other decider,
\Rightarrow a key role is played by the sets $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ (how).

ONE PROJECT, THE SETS

,

$$
\begin{gathered}
C_{a}=\left\{C_{a_{i}} \mid i \in I\right\} \\
B_{a}=\left\{B_{a_{j}} \mid j \in J\right\} \\
C_{1}=\left\{\alpha_{i} C_{a_{i}} \mid i \in I\right\} \quad B_{1}=\left\{\beta_{j} B_{a_{j}} \mid j \in J\right\} \\
C_{2}=\left\{\left(1-\alpha_{i}\right) C_{a_{i}} \mid i \in I\right\} B_{2}=\left\{\left(1-\beta_{j}\right) B_{a_{j}} \mid j \in J\right\}
\end{gathered}
$$

The negotiations involve the following sets:
\Rightarrow the set C_{a} of the [shareable] costs (what),
\Rightarrow the set B_{a} of the [shareable] benefits (what),
\Rightarrow the sets C_{1} and B_{1} for one decider,
\Rightarrow the sets C_{2} and B_{2} for the other decider,
\Rightarrow a key role is played by the sets $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ (how).

ONE PROJECT, THE STRUCTURE

One project, THE STRUCTURE

The main body

Conclusions

One project, THE STRUCTURE

OnE PROJECT, THE STRUCTURE

\square

One project, THE COARSE GRAIN NEGOTIATION

One project, THE COARSE GRAIN NEGOTIATION

One project, THE COARSE GRAIN NEGOTIATION

(1) d_{b} [refuses the sets B_{a} and C_{a} and] presents the sets B_{a}^{\prime} and C_{a}^{\prime};
(2) d_{a} presents the sets $B_{a}^{\prime \prime}$ and $C_{a}^{\prime \prime}$;
(3) we have the following cases:
(3.a) if $B_{a}^{\prime \prime}=B_{a}^{\prime}$ and $C_{a}^{\prime \prime}=C_{a}^{\prime}$ then go to (4);
(3.b) if $B_{a}^{\prime \prime} \neq B_{a}^{\prime}$ or $C_{a}^{\prime \prime} \neq C_{a}^{\prime}$ then:
(a) with a random device we define an ordering between the two players;
(b) the player who comes first in the ordering gets a token only if he declares he wishes to rethink about his proposal otherwise the token assignment procedure is repeated with the other player;
(c) if d_{a} has the token then:
(i) d_{a} presents the modified sets $B_{a}^{\prime \prime}$ and $C_{a}^{\prime \prime}$;
(ii) go to (3);
(d) if d_{b} has the token then:
(i) d_{b} presents the modified sets B_{a}^{\prime} and C_{a}^{\prime};
(ii) go to (3);
(e) if none of them has the token then go to (5);
(4) go to the fine grain negotiation algorithm;
(5) d_{a} and d_{b} may either agree to go on or to give up;
(6) if they agree to go on then go to (1);
(7) if they agree to give up then call mediator procedure;

One project, THE COARSE GRAIN NEGOTIATION

(1) d_{b} [refuses the sets B_{a} and C_{a} and] presents the sets B_{a}^{\prime} and C_{a}^{\prime};
(2) d_{a} presents the sets $B_{a}^{\prime \prime}$ and $C_{a}^{\prime \prime}$;
(3) we have the following cases:
(3.a) if $B_{a}^{\prime \prime}=B_{a}^{\prime}$ and $C_{a}^{\prime \prime}=C_{a}^{\prime}$ then go to (4);
(3.b) if $B_{a}^{\prime \prime} \neq B_{a}^{\prime}$ or $C_{a}^{\prime \prime} \neq C_{a}^{\prime}$ then:
(a) with a random device we define an ordering between the two players;
(b) the player who comes first in the ordering gets a token only if he declares he wishes to rethink about his proposal otherwise the token assignment procedure is repeated with the other player;
(c) if d_{a} has the token then:
(i) d_{a} presents the modified sets $B_{a}^{\prime \prime}$ and $C_{a}^{\prime \prime}$;
(ii) go to (3);
(d) if d_{b} has the token then:
(i) d_{b} presents the modified sets B_{a}^{\prime} and C_{a}^{\prime};
(ii) go to (3);
(e) if none of them has the token then go to (5);
(4) go to the fine grain negotiation algorithm;
(5) d_{a} and d_{b} may either agree to go on or to give up;
(6) if they agree to go on then go to (1);
(7) if they agree to give up then call mediator procedure;

One project, THE FINE GRAIN NEGOTIATION

One project, The fine grain negotiation

\square

One project, The fine grain negotiation

(1) d_{a} presents the sets α and β;
(2) d_{b} presents the sets α^{\prime} and β^{\prime};
(3) we have the following cases:
(3.a) if $\alpha=\alpha^{\prime}$ and $\beta=\beta^{\prime}$ then go to (4);
(3.b) if $\alpha \neq \alpha^{\prime}$ or $\beta \neq \beta^{\prime}$ then:
(a) with a random device we define on ordering between the two players;
(b) the player who comes first in the ordering gets a token only if he declares he wishes to rethink about his proposal otherwise the token assignment procedure is repeated with the other player;
(c) if d_{a} has the token then:
(i) d_{a} presents the modified sets α and β;
(ii) go to (3);
(d) if d_{b} has the token then:
(i) d_{b} presents the modified sets α^{\prime} and β^{\prime};
(ii) go to (3);
(e) if none of them has the token then go to (5);
(4) end;
(5) go back to the coarse grain negotiation procedure;

One project, The fine grain negotiation

(1) d_{a} presents the sets α and β;
(2) d_{b} presents the sets α^{\prime} and β^{\prime};
(3) we have the following cases:
(3.a) if $\alpha=\alpha^{\prime}$ and $\beta=\beta^{\prime}$ then go to (4);
(3.b) if $\alpha \neq \alpha^{\prime}$ or $\beta \neq \beta^{\prime}$ then:
(a) with a random device we define on ordering between the two players;
(b) the player who comes first in the ordering gets a token only if he declares he wishes to rethink about his proposal otherwise the token assignment procedure is repeated with the other player;
(c) if d_{a} has the token then:
(i) d_{a} presents the modified sets α and β;
(ii) go to (3);
(d) if d_{b} has the token then:
(i) d_{b} presents the modified sets α^{\prime} and β^{\prime};
(ii) go to (3);
(e) if none of them has the token then go to (5);
(4) end;
(5) go back to the coarse grain negotiation procedure;
\square

Two projects, THE STRUCTURE

Conclusions

The main body

Two projects, THE STRUCTURE

The main body
\square

Two projects, THE STRUCTURE

Two projects, THE STRUCTURE

MANY PROJECTS \& MANY DECIDERS

MANY PROJECTS \& MANY DECIDERS

The main body

The main body Conclusions

Conclusions

0000000000000000000000000000000000000

MANY PROJECTS \& MANY DECIDERS

In the thesis we have also examined the following cases:
\Rightarrow one project and more than two deciders, \Rightarrow two projects and more than two deciders,
\Rightarrow more than two projects and more than two deciders, \Rightarrow more than two projects and two deciders.

MANY PROJECTS \& MANY DECIDERS

In the thesis we have also examined the following cases:
\Rightarrow one project and more than two deciders,
\Rightarrow two projects and more than two deciders,
\Rightarrow more than two projects and more than two deciders,
\Rightarrow more than two projects and two deciders.

MANY PROJECTS \& MANY DECIDERS

In the thesis we have also examined the following cases:
\Rightarrow one project and more than two deciders,
\Rightarrow two projects and more than two deciders,
\Rightarrow more than two projects and more than two deciders, \Rightarrow more than two projects and two deciders.

MANY PROJECTS \& MANY DECIDERS

In the thesis we have also examined the following cases:
\Rightarrow one project and more than two deciders,
\Rightarrow two projects and more than two deciders,
\Rightarrow more than two projects and more than two deciders,
\Rightarrow more than two projects and two deciders.

MANY PROJECTS \& MANY DECIDERS

In the thesis we have also examined the following cases:
\Rightarrow one project and more than two deciders,
\Rightarrow two projects and more than two deciders,
\Rightarrow more than two projects and more than two deciders,
\Rightarrow more than two projects and two deciders.

MANY PROJECTS \& MANY DECIDERS

In the thesis we have also examined the following cases:
\Rightarrow one project and more than two deciders,
\Rightarrow two projects and more than two deciders,
\Rightarrow more than two projects and more than two deciders,
\Rightarrow more than two projects and two deciders.

The main body

The possible extensions

The possible Extensions

0000000000000000000000000000000000000

The main body
Conclusions

THE POSSIBLE EXTENSIONS

As to the extensions we have examined:
\Rightarrow the structured deciders (inner dynamics, two levels of negotiation and decision),
\Rightarrow the presence of the stakeholders (pressures, reactive environment),
\Rightarrow the presence of the experts (lack of autonomy, reactive environment),
\Rightarrow the dynamic setting (variable sets).

THE POSSIBLE EXTENSIONS

As to the extensions we have examined:
\Rightarrow the structured deciders (inner dynamics, two levels of negotiation and decision),
\Rightarrow the presence of the stakeholders (pressures, reactive environment),
\Rightarrow the nresence of the experts (lack of autonomy, reactive environment),
\Rightarrow the dynamic setting (variable sets)

THE POSSIBLE EXTENSIONS

As to the extensions we have examined:
\Rightarrow the structured deciders (inner dynamics, two levels of negotiation and decision),
\Rightarrow the presence of the stakeholders (pressures, reactive environment),
\Rightarrow the presence of the experts (lack of autonomy, reactive
environment),
\Rightarrow the dynamic setting (variable sets).

THE POSSIBLE EXTENSIONS

As to the extensions we have examined:
\Rightarrow the structured deciders (inner dynamics, two levels of negotiation and decision),
\Rightarrow the presence of the stakeholders (pressures, reactive environment),
\Rightarrow the presence of the experts (lack of autonomy, reactive environment),
\Rightarrow the dynamic setting (variable sets).

The possible extensions

\section*{	89
40	}

As to the extensions we have examined:
\Rightarrow the structured deciders (inner dynamics, two levels of negotiation and decision),
\Rightarrow the presence of the stakeholders (pressures, reactive environment),
\Rightarrow the presence of the experts (lack of autonomy, reactive environment),
\Rightarrow the dynamic setting (variable sets).

The possible extensions

As to the extensions we have examined:
\Rightarrow the structured deciders (inner dynamics, two levels of negotiation and decision),
\Rightarrow the presence of the stakeholders (pressures, reactive environment),
\Rightarrow the presence of the experts (lack of autonomy, reactive environment),
\Rightarrow the dynamic setting (variable sets).

Conclusions

Conclusions

Conclusions

\Rightarrow What this thesis is（description of a particular approach）．
\Rightarrow What this thesis is not（not a general and exhaustive description）．
\Rightarrow Open issues：＂practical＂applications to real cases．
\Rightarrow Open issues：deeper and more complete formalization．

CONCLUSIONS

\Rightarrow What this thesis is (description of a particular approach).
\Rightarrow What this thesis is not (not a general and exhaustive description).
\Rightarrow Open issues: "practical" applications to real cases.
\Rightarrow Open issues: deeper and more complete formalization.

CONCLUSIONS

\Rightarrow What this thesis is (description of a particular approach).
\Rightarrow What this thesis is not (not a general and exhaustive description).
\Rightarrow Open issues: "practical" applications to real cases.
\Rightarrow Open issues: deeper and more complete formalization.

CONCLUSIONS

\Rightarrow What this thesis is (description of a particular approach).
\Rightarrow What this thesis is not (not a general and exhaustive description).
\Rightarrow Open issues: "practical" applications to real cases.
\Rightarrow Open issues: deeper and more complete formalization.

CONCLUSIONS

\Rightarrow What this thesis is (description of a particular approach).
\Rightarrow What this thesis is not (not a general and exhaustive description).
\Rightarrow Open issues: "practical" applications to real cases.
\Rightarrow Open issues: deeper and more complete formalization.

CONCLUSIONS

\Rightarrow What this thesis is (description of a particular approach).
\Rightarrow What this thesis is not (not a general and exhaustive description).
\Rightarrow Open issues: "practical" applications to real cases.
\Rightarrow Open issues: deeper and more complete formalization.

Main Personal References

L. Cioni

Models of interaction
Computer Science Department, June 2008, TR-08-12
L. Cioni

The roles of System Dynamics in environmental problem solving
Computer Science Department, June 2008, TR-08-14
L. Cioni

Participative methods and consensus theory
Computer Science Department, September 2008, TR-08-23
L. Cioni

Using a hierarchical properties ranking with AHP for the ranking of electoral systems
Computer Science Department, September 2008, TR-08-26
L. Cioni

Auctions and barters
Computer Science Department, October 2009, TR-09-19
L. Cioni

Introduzione alla System Dynamics
Computer Science Department, May 2010, TR-10-09
L. Cioni

A few notes on the Borda and Condorcet methods
Computer Science Department, November 2010, TR-10-16
L. Cioni

An inverse or negative auction
Computer Science Department, November 2010, TR-10-17

Main Personal References

L. Cioni

Game theory as a tool for the management of environmental problems and agreements
AIRO 2006, Cesena, 12-15 September, 2006
L. Cioni

Ranking electoral systems through hierarchical properties ranking
Workshop "Simulation and other quantitative approaches to the assessment of electoral systems", 4-5 June,
2007, Università del Piemonte Orientale, published on "AUCO Czech Economic Review", 3/2009 pages
254-269
L. Cioni

Coalition dynamics in environmental problem solving
Conference "SING 3 III Spain Italy Netherlands Meeting On Game Theory and VII Spanish Meeting On Game Theory", 4-6 July 2007, Universidad Complutense de Madrid
L. Cioni

The roles of System Dynamics in environmental problem solving
2008 International System Dynamics Conference, Athens, Greece, July 20-24, 2008
L. Cioni

Bottom-up coalition construction and problem solving
Conference S.I.N.G.4, "Spain Italy Netherlands Meeting on Game Theory", June 26 - 28, Wroclaw, Poland, 2008

Appendix
 00000

Main Personal References

L. Cioni

Using auctions to allocate chores
Conference S.I.N.G.4, "Spain Italy Netherlands Meeting on Game Theory", June 26-28, Wroclaw, Poland, 2008 and
"AIRO 2008", XXXIX Annual Conference of Italian Operational Research Society, September 7-11 2008, Ischia, Italy
L. Cioni

Barter models

Conference S.I.N.G.4, "Spain Italy Netherlands Meeting on Game Theory", June 26-28, Wroclaw, Poland, 2008
L. Cioni

The analysis and resolution of environmental conflicts: methods and models
CSEAR 2008 (Second Italian Conference on Social and Environmental Accounting Research), Rimini, Italy, 17-19 September, 2008, published on the on line issue 1/2009 of "Economia Aziendale Online"
L. Cioni

Methods and Models for Environmental Conflicts Analysis and Resolution
EAEPE (European Association for Evolutionary Political Economy) Annual Conference - "Labour, Institutions and Growth in a Global Knowledge Economy", Rome, Italy, University of "Roma Tre" 6-8 November, 2008,
published on the conference web site

Appendix
 00000

Main Personal References

L. Cioni and Giorgio Gallo

Goodwill hunting: how to allocate bads or disagreeable chores
Methodology of Societal Complexity, The 23rd European Conference on Operational Research, EURO XXIII, Bonn, Germany, July 5-8 2009
L. Cioni

Iterative barter models
Conference S.I.N.G.5, "Spain Italy Netherlands Meeting on Game Theory", July 1-3, Amsterdam, Holland, 2009
L. Cioni

Deciding within a competition
Conference "XL AIRO 2009", September 8-11, Siena, Italy, 2009
L. Cioni

Auctions and barters
Conference "EAEPE 2009", November 6-8, Amsterdam, Holland, 2009

Appendix
 00000

Main Personal References

L. Cioni

Iterative procedures for the selection of competing projects
6th Annual International Conference on Computer Science \& Information Systems, $25-28$ June, Athens, Greece, 2010
L. Cioni

Auctions as allocation tools
AIRO 2010 41st Annual Conference Italian Operational Research Society, Altafiumara Resort Spa, Villa San Giovanni (RC) Italy September 7-10, 2010
L. Cioni

Candle auctions for the allocation of items
International Conference on Operations Research, Munich, Germany, September 1-3, 2010
L. Cioni

Random termination auctions as allocation tools
Workshop on "Dynamic Games in Economics", Rimini, Italy, December 13-14, 2010

