TOWARDS A FIXPOINT SEMANTICS
MODELING FINITE FAILURE

e an example of derivation by abstract interpretation of a useful
new semantics

e in order to get what you want you often need to start with
something more concrete
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Motivations

e A property x, x induces an observational equivalence ~, on
programs.
Py =, P; if Py and P, are indistinguishable according to the
property x.

e The semantics S 1s correct w.r.t. x if

S(P1) =S(P2) = Py = Pa.

o The semantics § is fully abstract it
P17y P2 = S(P1) = S(Pa).

o Moreover, the semantics S is and-compositional if

S(G1 A Gy) = S(G1)S(N)S(G,).

We define the observational equivalence ~¢¢ on programs
Py =4 P, if a goal G finitely fail in Py iff G finitely fail in P,.
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Which Semantics for Finite Failure?

, FFp ={ A | A is ground and < A has a fair finitely
failed SLD-tree in P }

FFp is not correct w.r.t. ~.

Example

Pi: p(£(X)) :-p(X) Py: p(£(X)):-p(X),p(a)

Fp, =FFp, ={ pla),p(f(a)), p(f(f(a))),...... }

— p(X) finitely fails in Py but not in Py.

¢ The Non-Ground Finite Failure set [Levi et al.90]

NGFFp ={A | < A has a fair finitely failed SLD-tree in P}
NGFFp is correct, fully abstract and AND-compositional [Gori

et al.97].

But NGFFp has no a direct fixpoint characterization.

4

o NGFFp can not be computed by an iterative fixpoint operator.

e all the semantics-based analysis and inductive verification meth-

ods can not be applied to finite failure.
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The Idea: to use abstract interpretation

We extend the Abstract Interpretation Framework [Comini et
al.99] to deal with

o fair selection rule

e infinite derivations

The steps:

1. To define a domain of collections, i.e. functions which associate
to each goal G the set of (possibly infinite) derivations of G
via a fair selection rule.

2. To define the semantics of a program P as the greatest fixpoint
of a co-continuous operator on collections.

3. Using the theory of abstract interpretation, establish sufficient
conditions so that the abstract fixpoint semantics is precise

(o(gfp(T)) = gfp(T?)) with respect to the concrete one.

4. To apply the previous framework to derive a fixpoint semantics
based on a co-continuous operator modeling finite failure.
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The Concrete Semantics

o A collection D is a partial function,

DG)={d d=GZ & .- 2 G,...
C]]

Cn

d is an SLD derivation via a parallel rule }
G=A..., Ay Ait1,...,Aq
T T

o C is the domain of collections and (C C) is the concrete do-

main, where Dy C D, if VG, D;(G) C Dy(G).
Denotational semantics

The Denotational semantics is defined inductively on the syntax,
using the semantic operators 4, ®, X, .

Q[G in Pl := GGl ¢y prey

GlA, Gl == AlAlr x GGl G191 == o
.A[A]]I =A ® I
?[{C} U P]]I = GHC]]I + ?[P]]I ?IW)]]I = [d][

C[H: — B]; := tree(H: — B) > §[BI.

where

) px—yp)
tree(p(t): —B):=¢ plL:—B ol | -
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Program Denotation

The fizpoint denotation of the program P is F[P] := gfp P[P].

F[P] has the following properties:

e P[P] is co-continuous on (C,C).

o P| Xg4er Py if for every goal G, G has the same SLD-derivations
(via the parallel rule) in Py and in P,.
F[P] is correct and fully abstract w.r.t. & ger.

Example
q(a) : —p(X)
p(f(X)) : —=p(X)
ofp(PIPT)(q(X)) =
{X/a} X /f(X2)} {X2/f(X3)}
d:=q(X) ——— p(X — p(X — p(X3)...;
( 41X) q{a)—p(X7) pix) P(f(X2)):—p(X2) pX2) p(f(X3)):—p(X3) piXs)
Uprefixes(d))
ofp(PIPI)(p(X)) =
{X/(X1)} {X1/f(X2)} {X2/f(X3)}
d =pX — p(X — p(X — p(X3)...;
( Pl )p(f(X1)):p(X1) piX1) p(f(X2)):—p(X2) pXa) P(f(X3)):—p(Xs) pXs)

Jprefixes(d'))
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The Theory of Observables I

o An observable is any property which can be “observed” on the
concrete semantics and can be formalized as a Galois insertion.

Example Consider the computed answers for the goal p(X).

We can observe © .= - ..., where
p(X) L Gi--- “’—> G, — O € FIPI(p(X)).

Oea 15 a Galois insertion.

o With the observable &, we can systematically define the op-
timal abstract semantics operators ®, X,, ¥, [, simply as

A®X:=alAOy(X), ete...

e Morcover it &,y and the concrete operators satisty also the
following conditions

. x(A®D) = (A G (yoa)D),

2. (D xD)=a(yoa)D x (yox)D'),
3. a(D>D')=wa(Dv (yoax)D).
4. o
5. of

[ HPIP] | ihier) = ([ (v 0 a}{PIP] | iher),
[Ty{Xiher)) = glb{Xi}icr.

X

(0.4
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The Theory of Observables II

The Abstract Denotational Semantics, defined as

Q[ G in Pl := Ga[Gl ey p e
GlA, Glx := A4[Alx X G[Glx GalO]x == a(dg)
AJAlx =A O X
Pol{c} UPIx := Colclx + PulPlx Pal0lx == oe(Idy)
CelH: —B]x := a0 C[H : — B] o y(X).
FolP] := gfp Pu[P]

has the following properties,

a(AlAlL) = AxlAly),
o x(G[Glt) = GulGluam),
o a(Clclr) = Culclam,
o &(P[Pl1) = PulPla)
o P,IP] is co-continuous on A and F[P] = P,IP] | w,

o &(F[P]) = F,IP] and x(Q[G in P]) = Q,[G n P].
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The Semantics Domain I

We want to apply the framework to define a fixpoint semantics
modeling finite failure.

The semantics domain: an abstract collection X which associates
G the set S of its instances which finitely fail.

e S is a downward closed set, i.c.,if G €S = G¥ €8S.

o The key point: S enjoys a kind of “upward closure” property.
Example

Assume {p(a), p(f(a)), p(f(f(X))), p(f(f(a))),...} €S.
Which behavior for p(X)?

— Suppose p(X) has a successful derivation.

X)L G, GO
Cq C2 Cn
Letd=o07-... 0y.

Vp(t) € S, Ad = mgu(p(t), p(X)V), otherwise p(t)d

— Suppose p(X) has an infinite derivation.

[o] a7 On
PX) = Gy —=,...,G, 1 — ...
Cq C2 Cn

Letd;,=07-... 05

vp(t) €5, Vi Adi = mgu(p(t), p(X)Di). otherwise p(t)d;

Y
if V possible sequences 9 ... 2, o ... p(X)% < p(X)iy
Ip(t) € S, s.t. Vi3d = magu(p(t), p(X)D),
then
p(X) €S.
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The Semantics Domain 11

upH(S) = SU{GH | for all (possibly infinite) secuuences

oo, SO ..., GY < Gy
3G € S sit.
Vi, G unifies with G99, |2

upg is a closure operator.

S is a downward closed set of instances of a goal G closed also
w.r.t. u‘pg.
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The finite failure observable

From the all the possible derivations for G in P,

/ 8 \
..o Gy
Cn

On
o— O
C‘n_ >-

3
e C

Cn

o O o
o |¥e |¥e ¥

| o

{GD | GO finitely fails in P}
Informally, o« gives the set of instances of G which can not be

rewritten successfully or infinitely.

o < «,7Y > is a Galois insertion.

o « satisfies the sufficient conditions 1-5.
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The Abstract Optimal Operators

We can define the optimal abstract operators on the domain for
finite failure.

e AOX= b [R/A] where
R:={Ad |A' <A, D =mgu(A,A")aL

, S X X2 = A\G.upf({GP | G = (Gy,Gy), Gi9 € Xi(Gy)
or Gyt € X(Ga)}).

o [TX: = AG.upf(UX:(G)).
¢ 3 X; = AG.N (Xi(G)).

X gives a simpler AND- compositionality result than the one stated
in [Gori et al.97].

Example

P
q(a).
p(f(X)).

Let X™ the abstract collection for atomic goals only.

X"(a(X)) ={ alf(a),a(f(X)),...}
X" (p(X)) ={ pla)}

The goal p(X), q(X) finately fails in P
p(X), a(X) € up" ) i (p(), ala); p(f(a)), a(f(a));p(F(X)), a(f(X)) :...)
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The Fixpoint Operator

~

PalPlx = Ap(x).{ p(t) | for every clause defining the procedure p,
p(t):—BeP
p(E) € upfl, (Nunify [p(t))U
{p(t)d | D is a relevant for p(t),
BY € up({Bo [B = (By,...,B,)d IBido € X(B)H)})

o P,[P] is co-continuous = gfp(Px[P]) = upff(x)(ukw PPl | 1)

Example where T = Ap(x).0
P
q(a) : =p(X)
p(f(X)) : —=p(X)

PoPT L 1{q(X)) ={ q(f(X)), q(f(f(X))),
q(f(a)), alf(f(a)),... 1}
PoPL1(p(X)) =1 pl(a) }

{ pla),p(fla)), p(f(f(a))),.. .}

I = {X/(Y)) 2 B2 = {X/F(F(Y))) = B3 = {X/FUF(F(Y)))} e .o,

and Vp(t) € PalP] | w(p(X)) Vi Ad = mgu(p(t), p(X)d).
U

q(a) € P«IP] | w+1(q(X))
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Relation to other Semantics

Lassez and Maher in [Lassez and al.84] introduced the following
direct fixpoint characterization for FFp.

o Fp = UleFg

We can relate P, [P] | k and F]]§.

For every finite k.
Upiground(PuIP] | k (p(x))) = Ff.

Moreover P,[P] is co-continuous.
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Conclusions and Future Work

o We have defined a fixpoint semantics correctly modeling finite
failure, based on a co-continuous operator P, [P].

o P, [P] is not finitary however for analysis and verification pur-
poses, we are interested in its finitely computable approxima-
tions.

¢ Finitely computable approximations giving a subset or a su-
perset of NGFFp can be easily defined starting from P,[P].

o We believe that other interesting semantics can be derived
from the concrete semantics. We are now currently working
on the definition of a new fixpoint semantics modeling “ex-
act answers” of infinite derivations based on a co-continuous
operator.

Some computable abstractions of this semantics could be use-
ful for the analysis of termination of logic programs.

e Finally, our results are a nice example which shows that ab-
stract interpretation is useful for defining new fixpoint seman-
tics. Note that a fixpoints semantics for finite failure was hard
to define in a direct way:.
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