LOGICA PER LA PROGRAMMAZIONE – a.a. 2017/18 Sesta esercitazione —5-6 dicembre 2017

ESERCIZIO 1 Si verifichino le seguenti triple (A è una variabile di specifica).

1.
$$\{A > 0 \land x = A \land y < x\}$$
$$x := 2 * x + y$$
$$\{y < x\}$$

2.
$$\{y > 0 \land x = y * y\}$$

 $x := x + 2 * y + 1; \quad y := y + 1$
 $\{x = y * y\}$

3.
$$\{n > 0 \land y = x * n\}$$

 $y, x := y + n, x + 1$
 $\{y = x * n\}$

4.
$$\{sum = (\Sigma i : i \in [0, x) . i)\}$$

 $sum := sum + x; \quad x := x + 1$
 $\{sum = (\Sigma i : i \in [0, x) . i)\}$

ESERCIZIO 2 Si dica se le seguenti triple sono verificate oppure no $(A \in B \text{ sono variabili di specifica})$. Motivare formalmente le risposte.

1.
$$\{x = A \land y = B \land B > 0 \land A \ge B \land z = 0\}\ z := x + y; \quad y := y - z \{y < 0\},\$$

2.
$$\{x = A \land y = B \land B > 0 \land A \ge B \land z = 0\}$$
 $z, y := x + y, y - z \{y < 0\}$

ESERCIZIO 3 Si verifichi la seguente tripla.

$$\{x \ge 0 \land y = (\Sigma i : i \in [0, x) \land i \% 6 = 0 . i)\}$$
if $x \% 6 = 0$ **then** $y := y + x$ **else** skip **fi**;
$$x := x + 1$$

$$\{y = (\Sigma i : i \in [0, x) \land i \% 6 = 0 . i)\}$$

ESERCIZIO 4 Si forniscano due espressioni E_1 ed E_2 in modo che la seguente tripla (dove A e B sono variabili di specifica) sia verificata e si dimostri formalmente la correttezza della soluzione proposta. Si ricordi che le variabili di specifica non possono comparire in un comando.

$$\{x = A \land y = B\}$$

if $x \le y$ then $x := E_1$ else $x := E_2$ fi
 $\{x > A \land x > B\}$

ESERCIZIO 5 Si verifichi la seguente tripla (dove A e B sono variabili di specifica).

$$\{x = A \land y = B \land A > 0 \land B > 0 \land mcd(x,y) = mcd(A,B)\}$$
 if $x = y$ then skip else if $x > y$ then $x := x - y$ else $y := y - x$ fi fi $\{mcd(x,y) = mcd(A,B)\}$

Si ricordano le proprietà dell'operatore mcd:

$$mcd(n,m) = \begin{cases} n & \text{se } n = m \\ mcd(n-m,m) & \text{se } n > m \\ mcd(n,m-n) & \text{se } n < m \end{cases}$$