
Using Orc to aid Design and
Analysis of Dynamic Distributed

Systems

..and in particular with respect to non-functional
properties

“Currently, most of the effort is concentrated on the
ends of the spectrum, which are far from the
designer's viewpoint. For example, BPEL is a
recognized standard for orchestration of Web
Services, but it is designed for machine processing
….
At the other extreme, π-calculus is a well-
recognized formal tool for reasoning about
distributed programs, but it comes with a
heavyweight formal framework typically outside the
interest and experience of system designers.”

Muskel

d
i
s
c

W

T

m
a
n

remw1

remw2

remw3

c
t
r
l

c
t
r
l

c
t
r
l

remw4

system

system(pgm, tasks, contract, G, t) =
taskpool.add(tasks)

| discovery(G, pgm, t)
| manager(pgm, contract, t)

discovery

discovery(G, pgm, t) =
(|g ∈ G (if (remw ≠ false) >> rworkerpool.add(remw)

where remw :∈
(g.can_execute(pgm) | Rtimer(t) >> let(false))

)
) >> discovery(G, pgm, t)

manager

manager(pgm, contract, t) =
|i : 1 ≤ i ≤ contract : (rworkerpool.get > remw >

ctrlthreadi(pgm, remw, t))
| monitor

ctrlthread

ctrlthreadi(pgm, remw, t) =
taskpool.get > tk >

(if valid >> resultpool.add(r) >> ctrlthreadi(pgm, remw, t)
| if ¬valid >> (taskpool.add(tk)

| alarm.put(i) >> ci.get > w >
ctrlthreadi(pgm,w, t)

)
)

where
(valid, r) :∈ (remw(pgm, tk) > r > let(true, r)

| Rtimer(t) >> let(false, 0)
)

monitor

monitor =
alarm.get > i > rworkerpool.get > remw > ci.put(remw) >>

monitor

Analysis

• Manager is responsible for recruitment and supply of
remote workers to control threads, initially and after remote
worker failure.

• Manager represents a single point of failure.

• Aim: to make each control thread responsible for its own
remote worker supply, thus removing single point of failure.

Strategy

• Examine traces of site calls made by processes

• Identify management related activity

• Try to identify where/how functionality can be dispersed to
disperse this management activity

Strategy

• Typically communication occurs when a process, A,
generates a value, x, and communicates it to B.

• Identify occurrences of this pattern and consider if
generation of the item could be shifted to B and the
communication removed, with the “receive” in B being
replaced by the actions leading to x’s generation.

Derivation

A : . . . a1, a2, a3, send(x), a4, a5, . . .
B : . . . b1, b2, b3, receive(i), b4, b5, . . .

Assume that a2, a3 (which, in general, may not be
contiguous) are responsible for generation of x, and it is
reasonable to transfer this functionality to B. Then the above
can be replaced by:

A : . . . a1, a4, a5, . . .
B : . . . b1, b2, b3, a2, a3, (b4, b5, . . .)[i/x]

Derivation

In control thread:
alarm.put(i) >> ci.get > w > ctrlthreadi(pgm,w, t) . . .

In monitor:
alarm.get > i > rworkerpool.get > remw > ci.put(remw)

Move remote worker (remw) “generation” to the control thread.

Derivation

In control thread:
alarm.put(i) >> rworkerpool.get > remw >

ctrlthreadi(pgm, remw,t) . . .

In monitor:
alarm.get > i > . . .

Derivation

In control thread:
alarm.put(i) >> rworkerpool.get > remw >

ctrlthreadi(pgm, remw,t) . . .

In monitor:
alarm.get > i > . . .

Revised muskel spec.

systemD(pgm, tasks, contract, G, t) =
taskpool.add(tasks)

|i : 1 ≤ i ≤ contract : ctrlthreadi(pgm, t,G)

ctrlthreadi(pgm, t,G) =
discover(G, pgm) > remw > ctrlprocess(pgm, remw, t,G)

discover(G, pgm) =
let(remw) where remw :∈ (|g ∈ G g.can execute(pgm))

Revised muskel spec.

ctrlprocess(pgm, remw, t,G) =
taskpool.get > tk >

(if valid >> resultpool.add(r) >> ctrlprocess(pgm, remw, t,G)
| if ¬valid >> taskpool.add(tk)

| discover(G, pgm) > w > ctrlprocess(pgm,w, t,G)
)
where (valid, r) :∈

(remw(pgm, tk) > r > let(true, r)
| Rtimer(t) >> let(false, 0)

)

Key ideas

• Orc model allows the essence of the structure to be seen
devoid of implementation detail.

• This model may be used to analyse the system and
investigate its properties.

• For example:
– Original muskel spec: “core processing” and

discovery are composed using the parallel operator.
– Modified spec: “core processing and discovery are

composed using “>>”.
– This suggests a price to pay in efficiency.

Key ideas

• The style emphasises a semi-formal approach. That is, using
a formal notation (with a well-defined) semantics but not
providing formal proofs and drawing on insight and experience
to justify steps.

• Orc is seen to be appropriate for developing/analysing
systems such as muskel:

– Small readable syntax.
– Constructs suitable for describing typical activities

such as parallel search, time-out, etc.
– Site abstraction provides clear separation between

core functionality and management.

Reference

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick.
Management in distributed systems: a semi-formal approach.
In A.-M. Kermarrec, L. Bouge and T. Priol, editors, Proc. of 13th
Intl. Euro-Par 2007, LNCS, Rennes, France, Aug. 2007.

Orc metadata

• Enrich Orc with metadata to describe non-functional
properties such as deployment information.

• Introduce a new dimension for reasoning about the
orchestration of a distributed system by allowing a narrowing
of the focus from the very general case.

Orc metadata

• An Orc program is a set of Orc definitions followed by an Orc
goal expression. The goal expression is the expression to be
evaluated when executing the program.

• Assume S = {s1, . . . , sn} is the set of sites used in the
program (not including predefined sites).

• E = {e0, . . . , ee} is the set that includes the goal expression
(e0) and all the “head” expressions appearing in the left hand
sides of Orc definitions.

Orc metadata

• M = {μ1, . . . , μn}
where μi = <tj ,mdk>
with tj ∈ S ∪ E and mdk = f(p1, . . . , pnk).

• f is a generic “functor” (represented by an identifier) and pi are
generic “parameters” (variables, ground values, etc.).

Example: site placement

• Suppose one wishes to reason about Orc program site
“placement”, i.e. about information concerning the relative
positioning of Orc sites with respect to a given set of physical
resources potentially able to host one or more Orc sites.

• Let R = {r1, . . . , rr} be the set of available physical resources.

• Then, given a program with S = {siteA, siteB} we can consider
adding to the program metadata such as

M= {<siteA, loc(r1)>, <siteB, loc(r2)>}
modelling the situation where siteA and siteB are placed on
distinct processing resources.

Example: site placement

• Define also the auxiliary function
location(x) : S × E → R

as the function returning the location of a site/expression

• the cost of a communication with respect to the placement of
the sites involved can be characterized by distinguishing
cases:

kComm = knonloc if location(s1) ≠ location(s2)
kloc otherwise

where s1 and s2 are the source and destination sites of the
communication, respectively and, typically, knonloc >> kloc.

Example: security

• Suppose “secure” and “insecure” site locations are to be
represented.

• Add to the metadata tuples such as <si, trusted()> or
<si, untrusted()>.

• kSecComm = kInSecComm if <s1, untrusted()> ∈ M
∨ <s2, untrusted()> ∈ M

kComm otherwise

Metadata generation: placement metadata

• Completely distributed strategy: it is assumed that each time
a new site in the Orc program is encountered, the site is
“allocated” on a location that is distinct from the locations
already used.

• Conservative strategy: new sites are allocated in the same
location as their parent (w.r.t. the syntactic structure of the
Orc program), unless the user/programmer specifies
something different in the provided metadata.

• Then, for example, an Orc spec. can be analysed w.r.t.
communication cost based on metadata.

Reference

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick.
Adding Matadata to Orc to Support Reasoning aboutGrid
Programs.
In T Priol, M Vanneschi, Proc. of CoreGRID Symposium 2007,
Rennes, France, Aug. 2007.

Other Work

• Using Orc to model Grid Programming:
A. Stewart, J. Gabarro, M. Clint, T.Harmer, P. Kilpatrick, R.Perrott.
Managing grid computations: an ORC-based approach. In: M Guo et al
(Eds) Proc. International Symposium on Parallel and Distributed
Processing and Applications (ISPA 06), Sorrento. LNCS 4330. Springer.
pp 278-291. 4-6 December 2006.

• Probabilistic Reasoning about the Reliability of Grid
applications using Orc models:
A. Stewart, M. Clint, T.Harmer, P. Kilpatrick, R. Perrott, J. Gabarro.
Estimating the reliability of Web and Grid Orchestrations. In: S Gorlatch, M
Brubak, T Priol (Eds.) Proceedings of the CoreGRID Integration
Workshop, Krakow. pp. 141-152. ISBN: 83-915141-6-1. 19-20 October
2006.

Other Work

• Orc -> Partial order of events -> Probabilistic analysis using
TOrQuE tool.
Sidney Rosario Albert Benveniste Stefan Haar Claude Jard.
Probabilistic QoS and soft contracts for transaction based Web services
orchestrations.
In Proc. of IEEE Int. Conf. on Web Services (ICWS), July 9-13, Salt Lake
City, 2007.

• Using Game theory to reason about reliability of Grid systems.
Joaquim Gabarró, Alina García, Maurice Clint, Peter Kilpatrick, Alan
Stewart. Bounded Site Failures: An Approach to Unreliable Grid
Environments. CoreGRID Workshop on Grid Programming Model, Grid
and P2P Systems Architecture and Grid Systems, Tools and
Environments. Heraklion - Crete, Greece, June 12-13, 2007.

	Using Orc to aid Design and Analysis of Dynamic Distributed Systems
	Muskel

