European Research Consortium
2 for Informatics and Mathematics

A Layered Model for Communicating
Hierarchical Components

University of Westminster

= A component Model for the Grid:
Hierarchy and Asynchrony

e« A layered organisation of components
v& Conclusion and Perspectives
Ludovic Henrio




Context (previous works)

. Fractal: a component model specification

An implementation in ProActive

- Hierarchical composition

- Asynchronous, distributed components
- Non-functional aspects and lifecycle

Formal aspects
- Kell calculus — component control (passivation)

- ASP components — Hierarchical aspects and
deterministic components

(oreGRMD—__




Components from ASP Terms:
Primitive Components

. Server Interface = potential service

. Client Interface = reference to an active object

Server Interface Client Interface




Hierarchical Composition

Composite component

\

Primitive
component

Binding

aoeiajul JndinQo

Asynchronous \/

method calls CcC

S

/

PC

n
[¢))
8
=
)
wid
=
o
-
Q
<




Invalid composition

i

Except with group communication ...

(oreGRMD—__




Valid Compositions

Non-confluent

\ Nonfconfluent

saoeuajul 3ndinQ

"
@
o
®
k=
@
whd
c
wid
S
<3
=

dIN!
!

Non-confluent

(oreGRMD—__




Deterministic Components

. Specification of deterministic components:
- Deterministic primitive components
- Deterministic composition of components:

Based on a one-to-one mapping from Server to
client interface

. Semantics as a translation to ASP

Components provide
a convenient abstraction
for statically ensuring determinism

(oreGRMD—




A Layered View

Jinput

Jusuodwog

E— on-functional input

~ {controllers)

AN

/

Functional
|nput




Composition Rules: Components

System Components provide / trigger non-functional
services

System components are part of the component platform

System components can themselves be managed by
another layer of components ...




Composition Rules: Behaviour

Effects of system component actions must not modify the
functional semantics

Composition rules between non-functional and functional
aspects: Transparency and independence

- (functional) programmer point of view

- Better adaptativity




Conclusion

Organize components and interfaces by layers
- Functional aspects are addressed by the layer

- Non-functional aspects are managed by the higher
layer

. A layered model:

Same composition rules between the above layers

Define composition rules between layers for better
transparency and adaptativity

» Provide design methodology and link between
component platform and applications




Perspectives (ongoing work)

Show application to existing (or envisioned) features /
platforms

- ProActive Components

- Grid platforms and Grid management aspect
Reconfiguration, adaptation, fault tolerance, migration, ...

Loosen strict independence between layers and
propose new composition rules

- Compromise between transparency and expressivity
- Which semantic properties can still be ensured ?




