
A Layered Model for Communicating
Hierarchical Components

A component Model for the Grid:
Hierarchy and Asynchrony

A layered organisation of components
Conclusion and Perspectives

Ludovic Henrio

University of Westminster

Context (previous works)

 Fractal: a component model specification

 An implementation in ProActive
− Hierarchical composition
− Asynchronous, distributed components
− Non-functional aspects and lifecycle

 Formal aspects
− Kell calculus → component control (passivation)
− ASP components → Hierarchical aspects and

deterministic components

Components from ASP Terms:
Primitive Components

 Server Interface = potential service

 Client Interface = reference to an active object

Hierarchical Composition

Composite component

Primitive
component

PC

PC PC
CC

In
pu

t i
nt

er
fa

ce
s

O
utput interfaces

Asynchronous
method calls

E
xp

or
t

Im
po

rt

Binding

Active Object

Active
Object

Active Object

Active Object

Invalid composition

Interface exported twice Output plugged twice

Except with group communication …

Valid Compositions

Non-confluent

Non-confluent

Non-confluent

In
pu

t i
nt

er
fa

ce
s

O
utput interfaces

Deterministic Components

 Specification of deterministic components:
− Deterministic primitive components
− Deterministic composition of components:

Based on a one-to-one mapping from Server to
client interface

 Semantics as a translation to ASP

Components provide
a convenient abstraction

for statically ensuring determinism

A Layered View

S
ystem

C

om
ponent

Non-functional input
(controllers)

input

output

Functional
Input

Composition Rules: Components

 System Components provide / trigger non-functional
services

 System components are part of the component platform

 System components can themselves be managed by
another layer of components …

Composition Rules: Behaviour

 Effects of system component actions must not modify the
functional semantics

 Composition rules between non-functional and functional
aspects: Transparency and independence

− (functional) programmer point of view

− Better adaptativity

Conclusion

 Organize components and interfaces by layers
− Functional aspects are addressed by the layer
− Non-functional aspects are managed by the higher

layer
 A layered model:

Same composition rules between the above layers
 Define composition rules between layers for better

transparency and adaptativity
 Provide design methodology and link between

component platform and applications

Perspectives (ongoing work)

 Show application to existing (or envisioned) features /
platforms
− ProActive Components
− Grid platforms and Grid management aspect

Reconfiguration, adaptation, fault tolerance, migration, …

 Loosen strict independence between layers and
propose new composition rules
− Compromise between transparency and expressivity
− Which semantic properties can still be ensured ?

