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Context (previous works)

. Fractal: a component model specification

An implementation in ProActive

- Hierarchical composition

- Asynchronous, distributed components
- Non-functional aspects and lifecycle

Formal aspects
- Kell calculus — component control (passivation)

- ASP components — Hierarchical aspects and
deterministic components
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Components from ASP Terms:
Primitive Components

. Server Interface = potential service

. Client Interface = reference to an active object

Server Interface Client Interface




Hierarchical Composition

Composite component
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Invalid composition

i

Except with group communication ...
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Valid Compositions

Non-confluent
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Deterministic Components

. Specification of deterministic components:
- Deterministic primitive components
- Deterministic composition of components:

Based on a one-to-one mapping from Server to
client interface

. Semantics as a translation to ASP

Components provide
a convenient abstraction
for statically ensuring determinism
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A Layered View
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Composition Rules: Components

System Components provide / trigger non-functional
services

System components are part of the component platform

System components can themselves be managed by
another layer of components ...




Composition Rules: Behaviour

Effects of system component actions must not modify the
functional semantics

Composition rules between non-functional and functional
aspects: Transparency and independence

- (functional) programmer point of view

- Better adaptativity




Conclusion

Organize components and interfaces by layers
- Functional aspects are addressed by the layer

- Non-functional aspects are managed by the higher
layer

. A layered model:

Same composition rules between the above layers

Define composition rules between layers for better
transparency and adaptativity

» Provide design methodology and link between
component platform and applications




Perspectives (ongoing work)

Show application to existing (or envisioned) features /
platforms

- ProActive Components

- Grid platforms and Grid management aspect
Reconfiguration, adaptation, fault tolerance, migration, ...

Loosen strict independence between layers and
propose new composition rules

- Compromise between transparency and expressivity
- Which semantic properties can still be ensured ?




