
A Layered Model for Communicating
Hierarchical Components

A component Model for the Grid:
Hierarchy and Asynchrony

A layered organisation of components
Conclusion and Perspectives

Ludovic Henrio

University of Westminster

Context (previous works)

 Fractal: a component model specification

 An implementation in ProActive
− Hierarchical composition
− Asynchronous, distributed components
− Non-functional aspects and lifecycle

 Formal aspects
− Kell calculus → component control (passivation)
− ASP components → Hierarchical aspects and

deterministic components

Components from ASP Terms:
Primitive Components

 Server Interface = potential service

 Client Interface = reference to an active object

Hierarchical Composition

Composite component

Primitive
component

PC

PC PC
CC

In
pu

t i
nt

er
fa

ce
s

O
utput interfaces

Asynchronous
method calls

E
xp

or
t

Im
po

rt

Binding

Active Object

Active
Object

Active Object

Active Object

Invalid composition

Interface exported twice Output plugged twice

Except with group communication …

Valid Compositions

Non-confluent

Non-confluent

Non-confluent

In
pu

t i
nt

er
fa

ce
s

O
utput interfaces

Deterministic Components

 Specification of deterministic components:
− Deterministic primitive components
− Deterministic composition of components:

Based on a one-to-one mapping from Server to
client interface

 Semantics as a translation to ASP

Components provide
a convenient abstraction

for statically ensuring determinism

A Layered View

S
ystem

C

om
ponent

Non-functional input
(controllers)

input

output

Functional
Input

Composition Rules: Components

 System Components provide / trigger non-functional
services

 System components are part of the component platform

 System components can themselves be managed by
another layer of components …

Composition Rules: Behaviour

 Effects of system component actions must not modify the
functional semantics

 Composition rules between non-functional and functional
aspects: Transparency and independence

− (functional) programmer point of view

− Better adaptativity

Conclusion

 Organize components and interfaces by layers
− Functional aspects are addressed by the layer
− Non-functional aspects are managed by the higher

layer
 A layered model:

Same composition rules between the above layers
 Define composition rules between layers for better

transparency and adaptativity
 Provide design methodology and link between

component platform and applications

Perspectives (ongoing work)

 Show application to existing (or envisioned) features /
platforms
− ProActive Components
− Grid platforms and Grid management aspect

Reconfiguration, adaptation, fault tolerance, migration, …

 Loosen strict independence between layers and
propose new composition rules
− Compromise between transparency and expressivity
− Which semantic properties can still be ensured ?

