
The Fractal Model

Reflective components for configurable distributed
systems

Jean-Bernard Stefani -- INRIA
(joint work with: E. Bruneton, T. Coupaye [Fractal], A. Schmitt [Kell

Calculus])

Executive summary

❑ Programming for large scale, dynamic systems must be
component-based programming
♦ open systems, constantly evolving, many sources of functionality

and service
❑ Component (run-time entity)

= membrane + content
= object + reflection

❑ No pre-defined semantics for component membranes and
component bindings
♦ component = composition operator

❑ Components can be shared
♦ DAG composition structures (not just trees)

❑ A “Fractal semantics” can be formally defined
♦ abstract co-algebraic one, more concrete operational one

Outline

❑ Motivations
❑ Fractal: concepts & principles
❑ Programming with Fractal: the Julia example
❑ Kells: co-algebraic foundations for Fractal
❑ Kell calculus: operational semantics for Fractal
❑ Perspectives
❑ Conclusion

Motivations

❑ Components for computing in the wide: a fact of life
♦ plug-ins, xBeans, packages, COM & .Net, etc

❑ Components: at the crossroad of multiple concerns
♦ modularity
♦ software architecture
♦ unplanned software evolution
♦ distribution
♦ mobility
♦ deployment
♦ configuration management

Motivations

❑ Building dynamically configurable & manageable distributed
systems
♦ Applications & their software infrastructures (OS & middleware)
♦ System software architecture

✧ maintenance, reuse, design communication
♦ Distributed dynamic configuration

✧ distributed deployment, un-planned on-line system/software evolution,
adaptive behavior, specialization and optimization

♦ Control & management
✧ instrumentation, monitoring & controlling behavior

❑ Limitations in current component programming models & ADLs
♦ limited support for extension and adaptation
♦ fixed forms of composition
♦ fixed forms of introspection & intercession (fixed MOPs)

Fractal

❑A component model
♦ for building dynamically reconfigurable distributed systems
♦ programming language-independent
♦ with lightweight implementations (C, C++, Java)

❑Used in particular for building distributed systems
infrastructures
♦ operating systems
♦ middleware (application servers, grids, etc)

Fractal: « classical » concepts

❑ Components are runtime entities.
♦ Not only design time or load time.

❑ Interfaces are the only access points to components.
♦ Interfaces emits and receives operation invocations.

❑ Bindings can be primitive (in the same adress space) or
composite.
♦ In the latter case, they are represented as components and

bindings.

♦ No fixed semantics for bindings.

Fractal: more original concepts

❑ A component comprises a membrane and a content
♦ A membrane is made of controllers.

✧ It can export control interfaces for some of these controllers.
✧ The membrane exercises an arbitrary control over its content.
✧ Components can export arbitrary details of their implementation.
✧ No fixed meta-object protocol for component introspection &

intercession

♦ A content is made of other components.

♦ A component has state.

❑ Components can be shared by multiple enclosing components.
♦ Shared components are crucial for modeling software architectures

with resources.

server interface
(exported)

client interface
(exported)

membrane content

control interface

internal interfaceinternal control interface

A Fractal Component

interface

Fractal: concepts

❑ Structure of a component
♦ interfaces: named access points (can be “client” or “server”)
♦ membrane: set of controllers
♦ controllers exercize arbitrary forms of control on the

content of a component
♦ controllers = meta-objects, meta-groups, advices
♦ content: set of components
♦ contents may overlap: sharing

❑Opaque membrane = no visible control: plain objects
♦ dealing with legacy object-based systems

Component sharing

components

contents

Fractal: useful controllers

❑Minimal introspection:
♦ Component interface
♦ Interface interface

✧ cf COM, IUnknown

❑ Component introspection (I)
♦ Content controller

✧ to add/remove sub-components
♦ Attribute controller

✧ to set/get component attributes

Fractal: useful controllers

❑ Component introspection (II)
♦ Binding controller

✧ to set up/remove communication paths to/from component
✧ a “binding” between components:

– a component
– can have arbitrary communication semantics

✧ connecting components via a binding involves:
– creating a binding (component)
– using binding controllers on components to bind to set up ‘primitive bindings’

(e.g. language references) with binding (component)

♦ Lifecycle controller
✧ to start/stop a component

Fractal: additional elements

❑ Instantiation
♦ Factories

✧ esp. binding factories
♦ Templates: “homomorphic” factories
♦ Bootstrap: “well-known” generic factory

❑ Simple type system
♦ Interface
♦ Component

Supporting the Fractal model

❑General component structure
♦ membrane = set of controllers
♦ content = set of components

❑No pre-determined control => support must facilitate
the definition of membranes
♦ library of controllers

✧ default ones from Fractal specification
✧ interceptors

♦ ability to combine controllers
✧ e.g. using mixins, components

Supporting the Fractal model: Julia

❑ Supporting Fractal in Java
♦ primitive components defined by Java classes
♦ primitive bindings are Java references
♦ controllers are Java objects
♦ controller (mixin) classes can be combined at load-time

using a byte-code generator

Julia: component structure

control object

interceptorin
te

rfa
ce

 re
fe

re
nc

e

list of control objects

list of interface references

Julia: component structure

no
optimization

merge of
control
objects

merge of
control objects
& interceptors

merge of
control objects
interceptors,
& content

Fractal: Sample uses
❑ Operating system kernels

♦ Think (FTR&D & INRIA Sardes)
❑ Asynchronous middleware & communication subsystems

♦ DREAM (INRIA Sardes)
❑ Transaction management

♦ GOTM, Jironde (LIFL-INRIA Jacquard, INRIA Sardes)
❑ Persistency services

♦ Speedo, Perseus (FTR&D, LSR)
❑ Software architecture for Grid applications

♦ Proactive (INRIA Oasis)
❑ Self-adaptive structures

♦ (EMN-INRIA Obasco)

Fractal foundations: Kells

❑ A kell interacts with its environment through signals
♦ signal : [m1: v1, ..., mk : vk]
♦ m : label, v : argument
♦ arguments can be names (e.g. labels), values and kells

❑ The behavior of a kell is a collection of possible transitions
♦ [content: Mf(C), input: Mf(S), output: Mf(S), residue: Mf(C)]
♦ content : finite multiset of kells
♦ input : finite multiset of signals
♦ output : finite multiset of signals
♦ residue : resulting configuration (finite multiset of kells)
♦ NB: ‘the membrane is the kell’

Fractal foundations: Kells

❑A co-algebraic definition of kells
♦ characterize kells in a syntax-free manner
♦ use hypersets to get final models with a straightforward

interpretation
♦ hypersets = non-well-founded sets (cf. Aczel, Barwise &

Moss)
✧ a system of equations is a tuple (X,A,e), where X and A are 2

disjoint sets and e : X ->P(X U A)
✧ AFA (Anti-Foundation Axiom): every system of equations

(X,A,e) has a unique solution s

Hypersets

❑ Examples
✧ streams : X -> A x X

– x = < a, y > y = < b, x>
– x = abab... y = baba...

✧ automata : X -> P(A x X)
– x = {<a, y>, <a, z>, <b, x>}
– y = {<a,y>, <b,z>}
– z = {<c,x>, <b,y>}

x

y z

a
a

a

b

b

b
c

Coalgebras

❑ Coalgebra
✧ An operator G on hypersets is monotone if for all a,b:

a ⊂ b => G(a) ⊂ G(b)
✧ A G-coalgebra is a pair <X,e> where X is a set, and e is a

function
e : X -> G(X)

❑ Final coalgebra theorem
Let G be a monotone operator. Then:
♦ G has a greatest fixed point G*,
♦ and every G-coalgebra has a unique solution in G*

Kells: formal definition

❑Operator G (on hypersets)
✧ G(X) = P(Mf(X) x Mf(S) x Mf(S) x Mf(X))
✧ S = U k ∈ N (L x D)k
✧ D = L + V + X (names + values + kells)
✧ P: powerset Mf: finite multisets

❑A kell c is the unique solution of a pointed G-
coalgebra, <X, e, x>

✧ <X, e> is a G-coalgebra
✧ x is an element of X
✧ e is a set of (hyperset) equations: e: X -> G(X)
✧ the solution of <X, e, x> is s(x), where s is the solution of <X,

e>

Example kells

❑ Simple objects
♦ empty content
♦ signal arguments : names and values only

❑Higher-order objects
♦ empty content

❑ Components with interfaces
♦ named access points = receiving signals with target name

argument
❑Meta-objects, meta-groups

♦ M[c], M[a1, ... an]
♦ M intercepts, introspects, etc.

Fraktal: Fractal & the Kell calculus

❑ Kell calculus
♦ higher-order π + hierarchical localities + passivation
♦ a family of process calculi, parameterized by input patterns (µ)
♦ common syntax
P,Q ::= stop -- inaction

 | x -- process variable
 | new a in P -- restriction
 | (µ => P) -- input
 | a<P>.Q -- output
 | (P | Q) -- parallel composition
 | a[P].Q -- locality or kell (strong form)

 | a{P}.Q -- locality (weak form)

Fraktal: Local programming

❑Messages: a< l1<v1> | ... | ln<vn> >
♦ a : channel (or interface, or port) name on which messages

are sent and received
♦ l : parameter name
♦ v : parameter value
♦ v can be a name, or a program (including another message)
♦ Convention: a< v1; ... ; vn > = a< 1<v1> | ... | n<vn> >

❑ Triggers: (µ => P)
♦ µ : input pattern; specifies messages to receive
♦ P : program triggered on receipt of messages matching µ

Fraktal: Local programming

❑ Standard π-calculus congruence rules apply
❑ Operational semantics

M1 | ... | Mn | (µ => P) -> P{xi := vi}
if M1, ..., Mn match µ
xi are formal parameters of pattern µ
vi are values extracted by µ from messages Mk

❑ Note: replication can be encoded (standard)
♦ (µ ==> P) = new t in t<Yµ,P,t> | Yµ,P,t
♦ Yµ,P,t = (t<y> | µ => P | t<y> | y)

Fraktal: Components

❑As in Fractal, components have a membrane and a
content: a[P | Q]
♦ a[P | Q] : component named “a”, with membrane “P”, and

content “Q”
♦ Q must take the form of a parallel composition of

components, i.e. Q = c1[..] | ... | cn[..]
♦ P is an arbitrary program, e.g. P can be a parallel

composition of components, or simple local programs

❑ The construct a[.] provides strong encapsulation
♦ new a in a[c[Q]] is a perfect firewall : Q cannot

communicate with the environment surrounding a

Fraktal: Components

❑ Patterns for communication across component
boundaries: a<...>up:u and a<...>down:u
♦ a<...>up:u matches a message of the form a<...> coming from

the environment of the current component
♦ a<...>down:u matches a message of the form a<...> coming from

a subcomponent

❑ Semantics
a<v> | c[(a<z>up:u => P)] -> c[P{u:= c, z:= v}]
c[a<v> | Q] | (a<z>down:c => P) -> c[Q] | P{z := v}

Fraktal: Components

❑ Patterns for matching on sub-components
♦ a[x] : pattern that matches a sub-component named a
♦ Example: suspending and resuming a subcomponent “a”:

Suspend = (suspend<a> | a[x] => ca<x>)
Resume = (resume<a> | ca<x> => a[x])

suspend<a> | resume<a> | a[P] | Suspend | Resume
-> resume<a> | ca<P> | Resume
-> a[P]

Fraktal: Components

❑ In a component a[P | Q], the membrane “P” may
contain several constituent programs, running in
parallel

❑ This is exactly as in Fractal, where a component
may have several controllers and interceptors

❑Note that the asymmetry between membrane “P”
and content “Q” is present due to the constrained
form of “Q”

Fraktal: Components

❑ Programming Fractal-like controllers and interceptors
♦ interceptors: routing processes in membranes
♦ content controller: adding and removing subcomponents

✧ the content Q of component a[P | Q] is supposed to be
composed of several components, i.e. Q = c1[..] | ... | cn[..].

✧ P can maintain a list <c1,...,cn> of its subcomponents (e.g. as a
message cons<c1; cons<...; cons<cn; nil>...>>)

✧ the content controller CC in P (i.e. P = CC | T, for some T), can
be written

CC = Add | Remove
Add = (add<w;x>up:y ==> x | addToList<w>)

Remove = (rm<w> | w[y] ==> rmFromList<w>)

Fraktal: Components

❑ Programming Fractal-like controllers (bis)
♦ life-cycle : as in Fractal, allow for the suspension and

resumption of sub-components
✧ cf previous slide on suspension and resumption of sub-

components
✧more sophisticated controls of life-cycle are possible

♦ binding controller : as in Fractal, put in place a local binding
with an external component (typically a binding component)
✧ assume the membrane P in component a[P | Q] maintains a list

of client interfaces
✧ a binding controller BC in P can be written

BC = (bindL<a,w,x>up:a | isClientItf<w,t> ==> Bc(w,x,t))
Bc(w,x,t) = (w<z>down:t ==> x<z>)

Fraktal: Components

❑ Binding factories and bindings between components
♦ Assume two components a[..] and e[..]

✧ Component a has a client interface of name c (i.e. a emits on
channel c)

✧ Component e has a server interface of name s (i.e. e receives
on channel s)

♦ A binding factory BF for creating bindings between a and e
can be written as follows

BF = (bindBF<a,c,s> ==> new s’ in B(c,s,s’) | bindL<a,c,s’>)
B(c,s,s’) = (s’<x>down:a ==> s<x>)

♦ BF creates a new binding between c and s

Fraktal: Components

s’<x>down:a ==> s<x>

a (c<z>down:t ==> s’<z>)

(s<z>up:b ==> ...)e

client

server

binding
component

Perspectives
❑ Bisimulation semantics for Fraktal
❑ Type systems for Fraktal

♦ e.g. adapting Hennessy & Yoshida process types
❑Dealing with sharing

♦ early results obtained with D. Hirschkoff, T. Hirschowitz, D.
Pous [GPCE 05]

❑Dealing with failures & recoverable actions
♦ failure detectors, non-fail-stop models
♦ combining micro(nano) reboot and transactions

❑ Fraktal as a basis for a type-safe, dynamic ADL
♦ also a primitive workflow language with reconfiguration

capabilities

Conclusion

❑ Cf. executive summary + perspectives
❑Not mentioned

♦ extensible ADL
♦ code packages as components
♦ dynamic code evolution in Fractal/Java
♦ towards Fractal v3:

✧ combining Fractal & AOP, dynamic ADL, controller libraries, etc

❑ Links:
♦ Web site: http://fractal.objectweb.org
♦ mailing list: fractal@objectweb.org

