
Components for the Grid
with

ProActive and Fractal

Matthieu Morel

(with Denis Caromel and Françoise Baude)

OASIS Team - INRIA

CoreGrid meeting
june 16-17th 2005

Objectives
Observation : complexity and heterogeneity of the Grid

 complex design, deployment and reusability
 performance issues

Answer : framework for programming and deploying
components for the Grid
 implementation of the Fractal model for ProActive
 extensions for the Grid

Outline
Context
Functionalities
Architecture
Optimisations
Perspectives

Context : ProActive
A library for parallel, distributed and concurrent

computing
Written in Java
Active object model
Meta Object Protocol
Deployment framework

A new implementation of Fractal
Why not use Julia?

Could not reuse features offered by ProActive!
 had to go for our own implementation

Specific goals
Specific architecture
Conformance to the Fractal specification :

 reflective (controllers : Life Cycle, Content, Binding, Attributes)
custom controllers
Component and Interface
 typed components
bootstrap component
no templates, no sharing
 conformance level 3.2 (max is 3.3)

Standard FractalADL

ProActive components : 4 flavors

Functionalities : distribution
 1 component can be distributed over several hosts
Distribution is transparent

Host
JVM

getA()

getB()

getAandB()

Functionalities : concurrency
Example 1 : synchronous method calls

getA()

getB()

getAandB()

getB()

getA()getAandB()

getA()

getB()

getAandB() getA()

getB()

getAandB()

getB()

getA()getAandB()

Functionalities : concurrency
Example 2 : asynchronous method calls with futures

and automatic continuations

Non blocking method calls

value of A

value of B

Functionalities : groups
Typed group communications
 2 modes : broadcast or scatter

Functionalities : tools
Deployment framework

virtual nodes
connection to hosts
creation of remote JVMs
 instantiation / assembly / binding of components

 common ADL = common tools with the Fractal community
composition of virtual nodes
FractalGUI

• run-time capabilities

Design and monitoring tools

IC2D FractalGUI

U

VM1 VM2

body

Stub_a

mobility

asynchronism

proxy

ab

service
meta-
objects

Architecture : MOP

ab

body

mobility

asynchronism

Stub_a

proxy

component
meta - objects

component
representative

Architecture : component stubs

body

a

mobility

asynchronism

b

proxy

component
meta - objects

component
representative

Architecture : component stubs

method calls are reified

component
representative

component
meta - objects

body

ab

proxy

Architecture : communications

component
representative

component
meta - objects

body

ab

proxy

Architecture : request queue

Optimisations
Optimisations

shortcuts for distributed communications
• local components :

Optimisations
Optimizations

shortcuts for distributed communications
• distributed components

Optimisations
Optimizations

shortcuts for distributed communications
• distributed components

Optimisations
Optimizations

shortcuts for distributed communications
• distributed components : tensioning

Sharing ?
A feature of the Fractal model
Currently not in our implementation
Used for representing resources (database, sensors etc…)

Dynamic reconfiguration?
Specified in the model but :
Shortcuts ?
Sharing ?

 complex operations !

Perspectives : load-balancing
Adaptability to stressed environment
Connections maintained :

bindings preserved, NO lost communications

Perspectives : load-balancing
Adaptability to stressed environment
Connections maintained :

bindings preserved, NO lost communications

Perspectives : load-balancing
Adaptability to stressed environment
Connections maintained :

bindings preserved, NO lost communications

Perspectives : co-allocation
When lots of communications between components

Perspectives : co-allocation
When lots of communications between components

Perspectives : co-allocation
When lots of communications between components

Perspectives : co-allocation
When lots of communications between components
 Dynamic behavior or specified during design (virtual nodes)

Perspectives : packaging
Archives of components (sub-systems)

ADL
Classes
Native codes

Composition of :
components
virtual nodes

MPI Code (C/Fortran)method calls
 messages on
tags

messages on tags
 method calls

Perspective : legacy code wrappers

Perspective : MxN communications

M components

N components

GATHERING

SCATTERING

REDISTRIBUTION from M to N

Conclusion
Fractal model a viable candidate for a Grid component

model
Simple
Extensible
Powerful

A part of a framework for Grid / distributed components

(http://proactive.objectweb.org)

Thank you !

