M etadata for Component
Optimisation

Olav Beckmann, Paul H J Kelly and John Darlington

ob3@loc.ic. ac. uk

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ
United Kingdom

2] o-SC
——— “@ Metadata for Component Optimisation — p.1/11

Componentisation vs. Optimisation

® Componentisation is arguably all about abstraction and separation of
concerns

o Separating behaviour from implementation
» Components are separately built, tested, verified ...
® Optimisation is arguably all about adapting a component to its context of
use
o Software performance optimisation is often a disruptive, poorly
separated, cross-cutting concern
® This talk describes some ideas on the role of metadata in managing the
complexity of optimisation.

Metadata is declarative information about components and data.
The aim in desighing metadata has to be to manage the complexity
of optimisation decisions.

o Optimisation should be a separate concern, which does not
Interfere with the component code base.

X

(oreGRMD— (| e-sC
—— *@) Metadata for Component Optimisation — p.2/11

=3

Context

Context consists of Context is Staged
® Platform (becomes known in stages)
architecture » Compile time
resource availability ® Link time
® Compositional structure ® Deployment time
& sequential composition ® Run-time

» parallel composition

» data flow : : -
Context is Domain-Specific

$» Data
o properties of the data that $ components
components operate on ® data
layout of the data

°

aliasing information

 loresRdm [@ e

Main Entities Involved in Optimisation

1. Components

9o

9

Carry declarative metadata, which form the basis of optimisation
decisions

May have a performance interface of tunable parameters that affect
performance but not behaviour

2. Component Manager

9
9

Holds the workflow specified by the application “programmer”.
Plug-in interface for optimisations

3. Optimisations (“Meta-Components”)

K

L I I

...:Fc-n F"F*n
0reG-RAmBD— (| esC
[
V X

Separate pieces of code

Independently developed, independently re-usable etc.
Work on components and/or the workflow

Select an efficient overall implementation

Metadata for Component Optimisation — p.4/11

oy 3

Component Metadata for Optimisation

® Component metadata for optimisation has to be extensible, with an open
interface for optimisations to access (and write new) metadata.

® Constraints are used to determine the validity of applying optimisations

® Tunable Performance Parameters. Optimisation components need to
select the right “settings” when components are composed

® Performance Information. Describes performance characteristics as a
function of tuning parameters. May be dynamic, i.e. gathered as the
component runs.

Metadata for Component Optimisation — p.5/11

Case Study 1: Multigrid Solver

® Components involved: Relaxation (e.g. Jacobi), Coarsen, Refine

® Hierarchical, nested composition

l'
Jacobi :'|
I
A 4
_|
l —
Ja(Iobi :'|
Refine :|'
(oreGRAmD—_

® Metadata
use /def sets (not enough!)
dependence vectors
performance in MFLOP/s

®» Optimisations
Skewing

changes dependence
vectors

Execution by slices
should change
performance

(SMP) Parallelisation?

Metadata for Component Optimisation — p.6/11

Case Study 2: Image/ Movie Processing Pipeline

® For feature extraction etc,
compose routines to build a
data-processing network.

® This might be done dynamically
INn an interactive environment.

source_image

[3x3 Average J
[:%x3 Horizontal SobeJ [3x3 Vertical Sobel J

-/

)
N\

Add]

)

Metadata for Component Optimisation — p.7/11

Case Study 2: Image/ Movie Processing Pipeline

ssssss _image Optlmlsat|0ns

® Data-driven / demand-driven

® Execution by chunks

3x3 Vertical Sobel

& Intermediate data?
® Task farm for stream of frames

® Eachfilter is actually a
specialisation of a generic filter.

Specialisation can yield

Metadata > %10 speedup.

® Use /Def Regions

—ruse

® Components should be
optimised for particular
architecture.

o Up to 30% improvement by
recompiling for a particular
1686-style architecture.

def

® Execution by-chunks requires
regions to grow/shrink through

SR the pipeline.
(oreGRMB— { | eSC
—— o Metadata for Component Optimisation — p.8/11

=3

Case Study 3: Parallel Linear Algebra Solver

® Iterative Solver, implemented Metadata

by composing parallel basic ® Placement constraints
linear algebra components

® enumerate placements?

& compact representations
(affine functions, shown in
part in the diagram)

®» Performance: Number of
communications?

Optimisations

$ Data placement optimisation

& minimise overall
redistributions

compact representation
reduces O-complexity of
optimisation

Metadata for Component Optimisation — p.9/11

What makes good metadata for optimisation?

® It's all about managing the complexity of optimisation

® \Well-designed metadata must
» factorise a complex optimisation space
mean that optimising the composition is cheaper than “opening the
boxes” and optimising the whole.
®» We must be able to reason about the cost of optimisation.
o This is made necessary by the staged nature of context
Need to decide whether to (re-)optimise at multiple stages.

® Context is staged, so metadata should be “staged”
Optimisations must be able to (re-)write metadata
® Domain-specific
Using domain-specific semantics should facilitate better

optlmlsatlon
* 5
—— o Metadata for Component Optimisation — p.10/11

Component Optimisation and Program Generation

® |tis unrealistic, and infeasible, to have a component repository that
contains optimised implementations for all contexts of component use.
® On-demand program generation is the answer
o Optimisation(high-level component) — optimised implementation
componentl o component2 — composite_component
this has to include generating metadata
® Require program generation technologies that allow expressing
optimisation / code transformation as a separate concern, and which
allow formal reasoning
» AOP?
Probably not powerful enough, others?
® This talk has outlined a set of ideas on where the hard work in the
optimisation part of WP3 Task 3.3 lies.
[X
—— '“%f’n Metadata for Component Optimisation — p.11/11

	Componentisation vs. Optimisation
	Context
	Main Entities Involved in Optimisation
	Component Metadata for Optimisation
	Case Study 1: Multigrid Solver
	Case Study 2: Image / Movie Processing Pipeline
	Case Study 2: Image / Movie Processing Pipeline
	Case Study 3: Parallel Linear Algebra Solver
	What makes good metadata for optimisation?
	Component Optimisation and Program Generation

