
Metadata for Component
Optimisation

Olav Beckmann, Paul H J Kelly and John Darlington
ob3@doc.ic.ac.uk

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ

United Kingdom

Metadata for Component Optimisation – p.1/11

Componentisation vs. Optimisation

Componentisation is arguably all about abstraction and separation of
concerns

Separating behaviour from implementation

Components are separately built, tested, verified . . .

Optimisation is arguably all about adapting a component to its context of
use

Software performance optimisation is often a disruptive, poorly
separated, cross-cutting concern

This talk describes some ideas on the role of metadata in managing the
complexity of optimisation.

Metadata is declarative information about components and data.
The aim in designing metadata has to be to manage the complexity
of optimisation decisions.

Optimisation should be a separate concern, which does not
interfere with the component code base.

Metadata for Component Optimisation – p.2/11

Context

Context consists of

Platform

architecture

resource availability

Compositional structure

sequential composition

parallel composition

data flow

Data

properties of the data that
components operate on

layout of the data

aliasing information

Context is Staged
(becomes known in stages)

Compile time

Link time

Deployment time

Run-time

Context is Domain-Specific

components

data

Metadata for Component Optimisation – p.3/11

Main Entities Involved in Optimisation

1. Components

Carry declarative metadata, which form the basis of optimisation
decisions

May have a performance interface of tunable parameters that affect
performance but not behaviour

2. Component Manager

Holds the workflow specified by the application “programmer”.

Plug-in interface for optimisations

3. Optimisations (“Meta-Components”)

Separate pieces of code

Independently developed, independently re-usable etc.

Work on components and/or the workflow

Select an efficient overall implementation

Metadata for Component Optimisation – p.4/11

Component Metadata for Optimisation

Component metadata for optimisation has to be extensible, with an open
interface for optimisations to access (and write new) metadata.

Constraints are used to determine the validity of applying optimisations

Tunable Performance Parameters. Optimisation components need to
select the right “settings” when components are composed

Performance Information. Describes performance characteristics as a
function of tuning parameters. May be dynamic, i.e. gathered as the
component runs.

Metadata for Component Optimisation – p.5/11

Case Study 1: Multigrid Solver

Components involved: Relaxation (e.g. Jacobi), Coarsen, Refine

Hierarchical, nested composition

Jacobi

Coarsen

Jacobi

Refine

Metadata

use / def sets (not enough!)

dependence vectors

performance in MFLOP/s

Optimisations

Skewing
changes dependence
vectors
Execution by slices
should change
performance
(SMP) Parallelisation?

Metadata for Component Optimisation – p.6/11

Case Study 2: Image / Movie Processing Pipeline

For feature extraction etc,
compose routines to build a
data-processing network.

This might be done dynamically
in an interactive environment.

3x3 Average

3x3 Horizontal Sobel 3x3 Vertical Sobel

Add

Add

source_image

Metadata for Component Optimisation – p.7/11

Case Study 2: Image / Movie Processing Pipeline

3x3 Average

3x3 Horizontal Sobel 3x3 Vertical Sobel

Add

Add

source_image

Metadata

Use / Def Regions

def

use

Execution by-chunks requires
regions to grow/shrink through
the pipeline.

Optimisations

Data-driven / demand-driven

Execution by chunks

intermediate data?

Task farm for stream of frames

Each filter is actually a
specialisation of a generic filter.

Specialisation can yield
> ×10 speedup.

Components should be
optimised for particular
architecture.

Up to 30% improvement by
recompiling for a particular
i686-style architecture.

Metadata for Component Optimisation – p.8/11

Case Study 3: Parallel Linear Algebra Solver

Iterative Solver, implemented
by composing parallel basic
linear algebra components

�
�

�
�

� � �� � �	�
 ��� � � � ��� � � � � ���� �

�
�

�
�

� � � � �	�� ��� � � � ��� � � � � ���� �

�
�

�
�

� � ��� �	�� �� � � � ��� � � �� � ���� �

�

�
�

!

� � "� �	�� �� � � �� �� � � �� � ���� �

�
�

�
�

" � #�	�$ ��� � � �� ��� � � � ���� �

�
�

�
�

#	&% ��� � � � ��� � � � � ���� �

' ' ' ' ' '�(

�
�

�
�

� �)* �+ �	�, ��� � � � ��� � � � � ���� �
-

-

�
�

�
�

�	�. ��� � � � ��� � � � � ���� �

�

/ / / / / / / / /0
1111111112

3 3 3 0
4444444444444444445

6 6 6 6 6 6 6 6 6 6 67
�

�

�
�

�	
 ��� � � � ��� � � � � ���� �

888888�9

Metadata

Placement constraints

enumerate placements?

compact representations
(affine functions, shown in
part in the diagram)

Performance: Number of
communications?

Optimisations

Data placement optimisation

minimise overall
redistributions

compact representation
reduces O-complexity of
optimisation

Metadata for Component Optimisation – p.9/11

What makes good metadata for optimisation?

It’s all about managing the complexity of optimisation

Well-designed metadata must

factorise a complex optimisation space

mean that optimising the composition is cheaper than “opening the
boxes” and optimising the whole.

We must be able to reason about the cost of optimisation.

This is made necessary by the staged nature of context

Need to decide whether to (re-)optimise at multiple stages.

Context is staged, so metadata should be “staged”

Optimisations must be able to (re-)write metadata

Domain-specific

Using domain-specific semantics should facilitate better
optimisation

Metadata for Component Optimisation – p.10/11

Component Optimisation and Program Generation

It is unrealistic, and infeasible, to have a component repository that
contains optimised implementations for all contexts of component use.

On-demand program generation is the answer

Optimisation(high-level component) −→ optimised implementation

component1 ◦ component2 −→ composite component

this has to include generating metadata

Require program generation technologies that allow expressing
optimisation / code transformation as a separate concern, and which
allow formal reasoning

AOP?

Probably not powerful enough, others?

This talk has outlined a set of ideas on where the hard work in the
optimisation part of WP3 Task 3.3 lies.

Metadata for Component Optimisation – p.11/11

	Componentisation vs. Optimisation
	Context
	Main Entities Involved in Optimisation
	Component Metadata for Optimisation
	Case Study 1: Multigrid Solver
	Case Study 2: Image / Movie Processing Pipeline
	Case Study 2: Image / Movie Processing Pipeline
	Case Study 3: Parallel Linear Algebra Solver
	What makes good metadata for optimisation?
	Component Optimisation and Program Generation

