
Mobile Code for
Component Customization and Optimization

CoreGRID WP3 Meeting, June 2005, Barcelona, Spain

University of Münster, Germany
Jan Dünnweber

1

SOFTWARE COMPONENTS FOR GRID PROGRAMMING

Design:

• Repository provides a few, simple, ready-made components

• Complex structures are build by nesting and combination

Vision:

• Grid programming becomes as easy as stacking building blocks

Components
Applications

SOFTWARE COMPONENTS FOR GRID PROGRAMMING 2

DEPLOYING COMPONENT SOFTWARE ON THE GRID

Topologies for recurring patterns can be prearranged

• Example 1: The compute farm
➜ One server hosting the scheduler component
➜ Various additional servers hosting worker components

connect

scheduler

client

worker

worker

worker

worker

compute farm
task delegation

DEPLOYING COMPONENT SOFTWARE ON THE GRID 3

COMPONENT DISTRIBUTION OVER THE GRID

Component applications are optimally distributed

• Example 2: The pipeline
➜ One server dispatches incoming tasks
➜ Various additional servers process data in successive stages

client

dispatcher

Task Object

Stage n + 3Stage n + 2Stage n + 1Stage n

pipeline

COMPONENT DISTRIBUTION OVER THE GRID 4

MOBILE CODE FOR COMPONENT CUSTOMIZATION

• Reusable components are implemented partially and expect
application specific code, provided via parameters
➜ mobile code is required,

i. e. code that is transferable and portable

� �� �� �
� �� �� �

� �� �� �� �
� �� �� �� �
� � �� � �� � �� � �
� � �� � �� � �� � �

� �
� �

� �
� �

� �
� �

� �
� �

� �
	 	

	 	
	 	

� �� �� �

� � � �

� � � �

� � � �

� � � �

� � �
� � �

� � �
� � �� � �

� � �
� � �

� � �
� � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �

mobile code

(portable across platforms
+ transferable across networks)

parameters

components

component
applications

MOBILE CODE FOR COMPONENT CUSTOMIZATION 5

EXAMPLE APPLICATION 1: BIOINFORMATICS

➜ Protein sequence distances are described using similarity
matrices with elements defined as follows:

si,j := max (si,j−1+penalty , si−1 ,j−1+δ(i , j), si−1 ,j+penalty)

wherein

δ(i, j) :=







+1 , if ε1(i) = ε2(j)

−1 , otherwise

➜ Computations of this kind are called global alignment

➜ Similarity definition is expressed via mobile code parameters

➜ Matrix is calculated using a compute farm component

EXAMPLE APPLICATION 1: BIOINFORMATICS 6

EXAMPLE APPLICATION 2: WAVELET TRANSFORM

• DWT is a recurring, compute intensive operation in image
processing, data compression etc.

• The lifting-algorithm defines the transform via repeated
application of three functions called split, predict and update

update

predict

update

+

+

−

−data
predict

split

split

subset u

subset v

subset v

subset u2

2

1

1

➜ Transform is programmed using a pipeline component

➜ split, predict and update are expressed via mobile code

EXAMPLE APPLICATION 2: WAVELET TRANSFORM 7

PROBLEM 1: FIXED COMPONENT BEHAVIOR

➜ In the bioinformatics example, every element depends on
north-, northwest- and west-neighbor

G G A C T

G

T

T

C

T

0 −2 −8−6

−2

−4

−6

−8

−10

−10−4

1 −1 −3 −5 −7

−1 −2 −4 −4

−3 −2 −1 −3 −3

−5 −4 −3 −2

−7 −6 5 −2 1

0

0

➜ Independent Elements are positioned along the matrix’
antidiagonals

➜ A compute farm will calculate the matrix as one atomic task
anyway

PROBLEM 1: FIXED COMPONENT BEHAVIOR 8

PROBLEM 2: SUBOPTIMAL COMPONENT ARRANGEMENTS

➜ In the wavelet application example, the input data is bisected
in each pipeline stage

� �� �� �� �
� �� �� �� �

� �� �� �� �� �� �� �� � � �� �	 		 	

� �� � � �� �

� �� �� �� � � �� �� �� �

� �� �� �� �
� �� �� �� �

� �� �� �� �� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
 ! ! ! !! ! ! !

" " "" " "" " "# # ## # ## # #
$ $ $ $$ $ $ $% % % %% % % %

& & && & && & &' ' '' ' '' ' '
(((((((())))))))

Task Object

Data

Pipeline

Stage n Stage n + 1 Stage n + 2 Stage n + 3

➜ Disadvantage: finished tasks will unnecessarily be passed
through numerous remaining pipeline stages

➜ Inefficiency: reduced degree of parallelism
➜ Problem: tasks with a varying number of stages do not fit into

the pipeline model

PROBLEM 2: SUBOPTIMAL COMPONENT ARRANGEMENTS 9

SOLUTION: MOBILE CODE FOR COMPONENT OPTIMIZATION

➜ The bioinformatics example can be optimized by prepartitioning
the input data according to the wavefront pattern

➜ The wavelet application can be optimized by skipping stages in
the pipeline, once a task is finished

➜ Both optimizations require a pre- or post-processing of data that
is independent from the standard farm worker resp. pipeline
stage operations

➜ Such optimizations can be expressed using mobile code
parameters that are applied by the components before resp.
after each single operation

SOLUTION: MOBILE CODE FOR COMPONENT OPTIMIZATION 10

FEATURES OF OUR COMPONENT MODELS

feature 1 2 3 4 5 6 7 8

ProActive yes ongoing yes ongoing yes yes yes

Reflex yes yes

QUB yes yes yes yes

HOC-SA yes yes yes yes yes yes

Polytope yes yes yes yes yes yes

ASSIST yes yes yes yes yes

MALLBA yes yes yes

GAT yes yes yes yes yes

Ibis yes yes yes via GAT

FEATURES OF OUR COMPONENT MODELS 11

SPECIFICATION OF COMPONENT INTERFACES

A WSRF compliant service definition:
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MasterService"

targetNamespace="http://org.gridhocs/Master"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"

... <!-- more namespace declarations -->
xmlns="http://schemas.xmlsoap.org/wsdl/">

<wsdl:import location="../../wsrf/properties/WS-ResourceProperties.wsdl"/>
... <!-- more WSR-import statements -->

<wsdl:types>
<schema targetNamespace="http://org.gridhocs/Master"

xmlns="http://www.w3.org/2001/XML
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

<complexType name="ArrayOf_xsd_double">...
</complexType>

... <!-- more parameter type and -->
</element> <!-- resource property declartions -->

</schema>
</wsdl:types>

<wsdl:message name="configureRequest">
<wsdl:part name="in0" type="impl:ArrayOf_xsd_string"/>

</wsdl:message>
<!-- more message declarations -->

<wsdl:portType name="MasterPortType"
wsdlpp:extends="wsrpw:GetResourceProperty
wsrlw:ImmediateResourceTermination"
wsrp:ResourceProperties="tns:MasterResourceProperties">

<wsdl:operation name="configure" parameterOrder="in0">...
</wsdl:operation>
... <!-- more operation declarations -->

</wsdl:portType>
</wsdl:definitions>

Parameter types are specified using XML-Schema
➜ No support for mobile code

SPECIFICATION OF COMPONENT INTERFACES 12

CONCLUSION

➜ Using XML-Schema solely is insufficient for specifying flexible grid
components and their interfaces

➜ External references are required to support mobile code

➜ Higher-Order Components (HOCs) are a workaround in the
context of Java

➜ HOCs support Java Bytecode or scrips as a format for mobile
code

➜ A programming language independent grid component model
must support even more formats for expressing customizations
and optimizations

➜ We propose to allow for arithmetic expressions, graphical
specifications, etc.

CONCLUSION 13

