BUHE

Information Society
e s

GRM-—__
Lore

Project No. FP6-004265
CoreGRID

FEuropean Research Network on Foundations, Software Infrastructures and
Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Network of Excellence

GRID-based Systems for solving complex problems

D.PM.05 — Survey of advanced component programming
models

Due date of deliverable: September 30, 2006
Actual submission date: December 19, 2006

Start date of project: 1 September 2004 Duration: 48 months

Organisation name of lead contractor for this deliverable: UNIPI

Revision: final

Project co-funded by the European Commission within the Sixth Framework Programme
(2002—-2006)
Dissemination level

PU [Public | PU

Keyword list: Components, programming models, skeletons

CoreGRID FP6-004265

Contents

1 Executive summary

2

3

Introduction

Advanced programming environments

3.1

3.2

3.3

ASSIST . . o e
3.1.1 ASSIST Features,
3.1.2 ASSIST components and grid
3.1.3 Programming model Institute perspective
Higher-Order Components (HOCs)
3.21 HOCs and the Grid
3.2.2 Programming model Institute perspectives.
3.23 Future Worko
Dynaco
3.3.1 Dynaco components and grid
3.3.2 Programming Model Institute perspective

Abstract support models and tools

4.1

4.2

4.3

ORC . . . e
4.1.1 Components and grids with ORC
4.1.2 Programming model institute perspective
Deductive verification tools L oL
4.2.1 Components and grids and deductive verification
4.2.2 Programming model Institute perspective
Specification and verification of component behaviour
4.3.1 Specification and verification of GRID component programs .
4.3.2 Programming model Institute perspective

Conclusions

Glossary

CoreGRID - Network of Excellence

24
24
25
29
30
33
36
36
38
40

41

47

CoreGRID FP6-004265 2

1 Executive summary

This deliverable summarizes the experiences of the Programming model Institute
partners participating in Task 3.3 activities. As defined in the original CoreGRID
DoW, Task 3.3 (“Advanced programming models”) takes the component model
result of subtask 3.2 (“Components and Hierarchical Composition”) as a starting
point and it considers how useful compositions of components can be provided to
the grid programmer that are able to handle commonly arising situations in grid
application development. Component compositions are studied that:

e can be used to solve common situations

e are parametric in the kind of computation performed, i.e. they can be instan-
tiated to program different applications according to the same implementation
schema,

e can be optimized to take advantage of additional knowledge concerning the
parallel /distributed computation they model in such a way that grid mecha-
nisms can be better exploited and better performance can be achieved.

Task 3.3 also takes into account the study and design of high level, implementa-
tion independent programming models, and of (possibly dynamic) program trans-
formation techniques for efficient implementation development. The component
technology derived from task 3.2 is used as the building block for these high level
programming models.

Task 3.3 is also aimed at investigating the possibility of dynamic adaptation
for parallel and distributed components on the grid. Since grid architectures are
known to be highly dynamic, using resources efficiently on such architectures is a
challenging problem. Software must be able to dynamically react to changes of the
underlying execution environment. In order to help developers to create reactive
software for the grid, therefore, task 3.3 investigates a model for the automatic
adaptation of parallel components.

This document is organized in two parts:

e the first part covers three topics related to component based programming
environment development. Two of these topics are related to structured pro-
gramming environments (ASSIST in Sec. 3.1 and HOCs in Sec. 3.2) that are
based on the algorithmic skeleton approach [30]. The third topic (Dynaco in
Sec. 3.3) is specifically about adaptation techniques (that are also covered in
the ASSIST framework) implemented in a grid component context.

e the second part covers three topics related to the development of formal models
and tools for the support of component based grid programming environments.
The first approach (the one exploiting the ORC model in 4.1) demonstrates
how a formal model, originally developed to model web computations, can be
reused in grid component programming. The second (in Sec. 4.2) shows how
formal techniques using temporal logic can be used in the same context. Fi-
nally, the third (in Sec. 4.3) presents some advances in the Fractal component
model [16] and their application to the GCM context.

Overall, the ideas presented in this deliverable all contribute to the design of the
GCM (the Grid Component Model) that constitutes the main research result of the
CoreGRID Programming model Institute. GCM, as defined in the Institute, can be
summarized as follows.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 3

First , GCM is a hierarchical component model. This means users of GCM
(programmers) have the possibility of programming GCM components as composi-
tions of existing GCM components. The new, composite components programmed
in this way are first class components, in that they can be used in every context
where non-composite, elementary components can be used, and programmers need
not necessarily perceive these components as composite, unless they explicitly want
to consider this feature. This property is already present in existing component
models. In particular, the Fractal component model assumes components can be
hierarchically composed, and this is one of the reasons that led to the Fractal com-
ponent model being chosen as the reference model upon which GCM would be
based.

GCM allows component interactions to take place with several distinct mech-
anisms. In addition to classical “RCP-like” use/provide (or client/server) ports,
GCM allows data, stream and event ports to be used in component interaction.
Data ports allow data sharing mechanisms to be implemented. Using data ports,
components can express data sharing between components while preserving the abil-
ity to properly perform ad hoc optimization of the interaction among components
sharing data. Stream ports allow one way data flow communications among com-
ponents to be implemented. While stream ports can be easily emulated by classical
use/provide ports, their explicit inclusion allows much more effective optimizations
to be performed in the component run-time support (framework). Event ports may
be used to provide asynchronous interaction capabilities to the component frame-
work. Events can be subscribed and generated. Furthermore, events can be used
just to synchronize components as well as to synchronize and to exchange data
while the synchronization takes place.

As regards collective interaction patterns, GCM supports several kinds of col-
lective ports, including those supporting implementation of structured interaction
between a single use port and multiple provide ports (multicast collective) and be-
tween multiple use ports and a single provide port (gathercast collective). The
two parametric (and therefore customizable) interaction mechanisms allow imple-
mentation of most (hopefully all) of the interesting collective interaction patterns
deriving from the usage of composite (parallel) components. The current definition
of GCM does not exclude the possibility of having further collective interaction
patterns in the future, should the ones included in the current definition turn out
to be insufficient to support commonly used grid component patterns.

GCM is intended to be used in grid contexts, that is in highly dynamic, hetero-
geneous and networked target architectures. GCM therefore provides several levels
of autonomic managers in components, that take care of the non-functional
features of the component programs. GCM components have thus two kind of inter-
faces: a functional one and a non-functional one. The functional interface includes
all those ports contributing to the implementation of the functional features of the
component, i.e. those feature directly contributing to the computation of the result
expected of the component. The non-functional interface comprises all those ports
needed to support the component manager activity in the implementation of the
non-functional features, i.e. all those features contributing to the efficiency of the
component in the achievement of the expected (functional) results but not directly
involved in actual result computation. Each GCM component therefore contains
one or more managers, interacting with other managers in other components via
the component’s non-functional interfaces and with the managers of the internal
components of the same component using the mechanism provided by the GCM
component implementation. Each component has a manager whose job it is to
ensure efficient execution of the component on the target grid architecture.

The GCM component program architecture is described using a proper ADL
(Architecture Description Language) that decouples functional program develop-

CoreGRID - Network of Excellence

Hierarchical

Advanced comms

Autonomic

CoreGRID FP6-004265 4

ment from the underlying tasks needed to deploy, run and control the components
on the component framework. In GCM, the ADL is mostly inherited from the
Fractal ADL.

Last but not least, the GCM component model supports interoperability at
several levels. First, interoperability is guaranteed in terms of the ability to support
several grid middle-ware environments as possible platforms on which to implement
GCM and, in particular, to host the GCM framework. Second, interoperability is
guaranteed by the possibility of wrapping GCM components into standard Web
Services, in such a way that the WS framework can benefit from the “services” pro-
vided by the GCM framework (passive WS-GCM interoperability). Third, GCM
components are allowed to invoke standard Web Service services during their exe-
cution (active WS-GCM interoperability). The current definition of GCM does not
prevent the extension of the interoperability features to other frameworks in the
future.

GCM supports the features mentioned above according to several compliance
levels, in order to allow easy transition to GCM from other existing component
frameworks. Lower compliance levels accommodate components that do not support
all the features required by the GCM model, but at least can be identified as GCM
components with limited support for the GCM features. High compliance levels
host full-featured GCM components.

The above mentioned features allow GCM to be viewed in the light of other
component models currently available. For example, GCM can be characterized
as CCA plus hierarchical composition, advanced communication patterns and au-
tonomic control; or again, it can be ragarded as Fractal plus autonomic control
together with advanced communication patterns.

This document is not a standard “research paper”: rather, it summarizes the
ideas pursued in the context of the Programming model Institute, Task 3.3. There-
fore there is not survey of related work, e.g. of other component models or com-
ponent based programming models developed outside CoreGRID or outside the
CoreGRID Programming model Institute. Partners of the Institute contributed to
several publications on the subject (see the CoreGRID bibliography web page at
the address http://www.coregrid.net/mambo/component/option, com_wrapper/
Itemid,237/) and a comprehensive survey of component based/related program-
ming models can be found in the Institue roadmaps (D.PM.01 and D.PM.03). Nor
do we present a deep motivation of the main Sections in this document. Section 3
presents tools and environments for the implementation of component-based grid
programming. Section 4 presents complementary work on abstract models and as-
sociated reasoning mechanisms which support the development of the tools and
environments of section 3 and indeed, subsequently, grid applications themselves.

CoreGRID - Network of Excellence

Interoperability

Compliance levels

CoreGRID FP6-004265)

2 Introduction

The main goal of the Programming model Institute is to investigate new program-
ming models, exploiting component technology, and suitable for use in implementing
grid applications. Therefore, three aspects are investigated within the Institute:

e a component based programming model suitable for managing the details
which programmers must typically deal with when programming grid appli-
cations;

e programming models and techniques suitable for implementing a single com-
ponent among those used to build the grid applications;

e programming models and techniques that can be used to provide program-
mers with advanced programming environments, that is programming envi-
ronments “raising the level of abstraction” perceived by programmers when
implementing their applications.

Each of these topics is covered by one of the three subtasks of the Institute. In
particular, all the research activities relating to advanced programming models are
performed in the framework of Task 3.3. The goal of this document is to summarize
the more relevant activities performed by Institute partners in Task 3.3 “advanced
programming models” during the first two years of activity of the Institute.

These activities mostly originated from projects the partners were (and, cur-
rently, are) involved in independently of CoreGRID. However, these research activ-
ities have been re-targeted or at least re-focussed by partners in the light of the
Programming model Institute activities. Therefore, despite the fact that the differ-
ent sub-sections of these documents clearly summarize research experience mainly
performed by a single Institute partner, they have to be considered both preliminary
and consequent to the integration activities within the Institute. For example, the
ASSIST experience in Section 3.1 or that of HOC in Section 3.2 mainly report on
the results achieved at UNIPI and WWU Muenster, respectively, but the results re-
ported here heavily contributed to the development of the GCM as a programming
environment supporting advanced programming models. Both ASSIST and HOC
exploit structured (skeleton based) programming models while implementing their
own component model. In this respect, these two component worlds will coexist
within the GCM framework, or, at least, both the environments will be accessible
to the Institute and NoE partners to allow experimentation with their “advanced”
facilities offered on top of GCM.

This paper is divided into two main parts: the first, Section 3, presents ad-
vanced programming models, i.e. programming environments that can be actually
(currently) used by programmers and that provide programming abstractions which
are higher level than simple (composable) component abstraction as provided by the
plain GCM initially defined in D.PM.02 and currently being refined and assessed
in D.PM.04. The latter, i.e. Section 4, presents more abstract models that can be
used to reason about advanced programming models such as those investigated by
the Programming model Institute and by Task 3.3 in particular.

Each of the sub-sections reporting the different experiences relating to advanced
programming models and abstract models is organized in two parts: in the first part,
a summary of the research activity is presented, with pointers to relevant, more
technical and specific references the reader can use to gain a deeper knowledge of
the particular topic. In the latter part, the relationships with the research activities
of the Programming model Institute, as defined in the Institute roadmaps, are
outlined. In this part the reader should appreciate the contribution made by the
different research experiences to the overall Programming model research scenario.

CoreGRID - Network of Excellence

CoreGRID FP6-004265

As we focus on the partner research activities relating to Task 3.3, this docu-
ment does not pretend to be exhaustive in its treatment of programming models
for grid applications. In particular, some relevant research activities usually taken
into account when considering programming models and environments suitable for
grid application development are not considered here. The most notable research
framework “omitted” is the one dealing with services. Current grid programming
environments are strongly promoting the “web/grid service” concept. The activities
in the Programming model Institute do not explicitly investigate any kind of service
concept. We believe a component can be viewed as a service with some additional
information/functionality associated (typically more extensive meta-information re-
lated to its life-cycle) and therefore we have concentrated the efforts in the Institute
on the component research topics. However, we took into account the fact that more
and more possibilities and functionalities are being made available through services.
As a consequence, we have defined GCM in such a way that interoperability with
the (Web) services world is guaranteed. Although (Web) services and some other
relevant concerns are not highlighted in this document, results described here are
due in part to partners’ activities in these areas. For example, the research ac-
tivities related to CCA and CCM were considered by the Institute partners. The
ASSIST experience reported in Section 3.1 built on the CCA and GrADs results
when investigating the possibility of including some kind of autonomic management
within each one of the components and in the parallel components in particular;
and it exploited the results of CCM when investigating the possibility of providing
component interaction mechanisms different from classical use/provide ports. The
reader can refer to the more specific cited references to learn more about how these

concepts relate to the results discussed here.

H ASSIST [Dynaco/AFPAC [HOC ”
Main developers UNIPI INRIA/IRISA WWU Meunster
Awvailability GPL LGPL OGF Incubator Project
Skeleton components * *

Autonomic components * *

Interoperabilty WS, CORBA/CCM WS
Host languages C, F77, C++ C, MPI Java
Heterogenous grid support * *

Table 1: Summary of component based advanced programming environments

CoreGRID - Network of Excellence

CoreGRID FP6-004265 7

3 Advanced programming environments

In this Section we include three different research items, all related to the way
an advanced programming environment can be made available to the grid appli-
cation developer. By the term “programming environment” we mean an actual
programming environment, that is an environment that can be used to program
real applications running on different kinds of grid. This is to distinguish from the
“programming models” presented in Section 4. In the latter case, we will present
actual abstract models, that is theoretical frameworks that can be used to support
implementation of actual programming environments, by allowing modelling and
reasoning about their properties.

In sections 3.1 and 3.2 we present two programming environments that are both
based on structured programming models and, in particular, on the algorithmic
skeleton programming model as originally elaborated by Cole [30, 29], while in
Section 3.3 we present a programming framework which can be used to provide
programmers with support for (semi-)automatic adaptivity. Each of these three
programming environments has been developed by Programming model Institute
partners within their own research projects, outside CoreGRID. However, in dif-
ferent ways, the results achieved in these projects have had an impact on the Pro-
gramming model Institute roadmap (for instance, some of the primitive features of
these environments are currently being considered as primitive features of GCM)
and have contributed to the Task 3.3 “advanced programming model” research
activities within the Institute.

The skeleton programming model considered in both ASSIST and HOC (in Sec-
tions 3.1 and 3.2) is particularly important from the Task 3.3 perspective. Skeleton
programming models have been around since their introduction in the seminal Phd
thesis by Cole [30]. However, skeleton programming models targeting grids have
only recently been designed. In a world where grid programmers must explicitly
deal with a surfeit of complex, cumbersome and error prone details (program and
data placement, resource management, process mapping and scheduling, communi-
cation implementation and handling, etc.) down to the “fabric layer”, the skeleton
approach promises to raise the level of abstraction provided to the grid programmer
to that advocated by the invisible grid concept in the NGG documents [49].

3.1 ASSIST

ASSIST represents an actual and advanced programming environment that allows
programmers to easily design and implement Grid-aware applications. It has been
mainly developed in the framework of the Grid.it project (see http://www.grid.it).
In particular, the environment provides applications with a run-time support fea-
turing dynamicity and adaptivity management. As a consequence, the ASSIST
environment is able to satisfy user-defined performance levels while, at the same
time, relieving application programmers of almost all the burden usually associated
with typical grid issues, such as the high dynamicity of resource availability. The
Grid.it model represents a step for the ASSIST environment into the world of soft-
ware components. A Grid.it component is defined in a hierarchical way, exploiting
structured parallelism as an efficient composition tool, and includes all the interfaces
needed for supporting adaptive computations. Moreover, interactions and wrapping
between different component models are also targetted. The definition includes also
an infrastructure of entities managing the component execution, and featuring the
same hierarchical organisation of applications.

In this section we highlight some important points and features related to the
development of the ASSIST programming environment, and its component model
that will be useful, in the near future, in the process of designing and implementing

CoreGRID - Network of Excellence

CoreGRID FP6-004265 8

a GCM compliant programming environment.

In the next section we briefly describe the ASSIST programming environment,
highlighting aspects related to the adaptive support provided to applications. Then
we describe the Grid.it component model. In the final section we list the points
of convergence between the Grid.it component model and the GCM specification,
describing the experience we gained in the context of our research work, and how
ASSIST and Grid.it can be leveraged to obtain a GCM compliant programming
environment.

3.1.1 ASSIST Features

ASSIST programs are structured as generic graphs (identified by the generic key-
word), where nodes can be primitive modules or composite ones and arcs represent
typed streams of data. The interactions between modules follows a data-flow se-
mantics. A generic graph can be used as a module in other composite modules.
This allows exploitation of streams as a particular composition construct. No con-
straint is imposed on the form of graphs, though structured graphs, such as those
typical of a classical skeleton model, are a notable class of cases that have efficient
implementations. Primitive modules can be both sequential or parallel.

A sequential module wraps one or more functions implemented in one of the
host languages. A parallel module is expressed by a general-purpose skeleton, called
parmod. This means that the parmod construct can be tailored, for each application,
to specific instances of classical stream parallel and/or data-parallel skeletons, and
also to new forms of regular and irregular parallelism. This allows programmers
to easily provide solutions to new, uncommon problems and to support specific
efficiency needs.

While sequential modules operate according to a straightforward data-flow se-
mantics, a parmod can operate on multiple input streams and multiple output
streams, and exploits a richer semantics. Several distribution and collection strate-
gies are provided for the input and output streams, respectively. Moreover, input
streams can be controlled in a data-flow or in a non-deterministic manner. The
control of non-determinism is important to model several instances of workflow
structures, as well as event driven interaction.

The parallel computation expressed in a parmod is decomposed in sequential
units assigned to abstract executors called virtual processors (VP). The parmod
can have an explicitly defined internal state for the duration of the computation.
Parmod state can be decomposed and distributed across virtual processors, accord-
ing to a chosen naming rule and topology. These features are important in many
cases, for example in non-deterministic/reactive computations, as well as in many
irregular and dynamic computations.

The exploitation of the structured approach to parallel computing allowed us
to define and implement reconfiguration strategies, exploiting structural properties
of skeletons and parallel programs expressed by the parmod construct. Thus, each
parmod has associated a performance model, and a reconfiguration strategy that
can be generated automatically whenever a known parallel structure is employed,
or that can be programmed directly in all other cases.

The implemented ASSIST support natively provides for a wide range of dynamic
adaptation strategies for parallel modules: new processes can be added/removed at
run-time within a parmod, and can be migrated across heterogeneous platforms,
using a specifically optimised checkpointing strategy. This allows exploitation of
remapping strategies of virtual processor sub-computations onto processing nodes
(see [3]).

Reconfiguration actions are implemented and optimised for each parmod taking
into account its parallel computation semantics. Migration overhead is especially

CoreGRID - Network of Excellence

CoreGRID FP6-004265 9

dependent on the knowledge we can infer from the high-level specification of the
computation that a parmod provides.

It is possible to design reconfiguration run-time support exploiting the same
synchronisation points already induced by the parallel semantics. Thus, the actual
implementation is designed to provide efficient reconfiguration support without in-
troducing further synchronisation points, other than those previously provided for
the non-reconfigurable parmod implementation.

The parmod implementation includes also a Module Autonomic Manager (MAM).
This receives real-time information on the state of the parmod from the support,
and accepts Quality of Service contracts from the user. The task of the application
manager is to apply the reconfiguration strategies to satisfy the user requirements.
The current implementation provides monitoring information on the performance
of the parmod to the application manager, while it can accept only Performance
Contracts.

3.1.2 ASSIST components and grid

The ASSIST programming model has been extended with the concept of compo-
nent in the context of the Grid.it project. Grid.it components feature some notions
of hierarchy and autonomicity. These are especially important in the context of
Grid platforms, as they provide means to deal with the high levels of dynamicity
of resource availability. The definition of components is general enough to allow
the wrapping of applications developed in the context of other frameworks (e.g.
CCM, WS) in a Grid.it component. The main issue in supporting such wrapping
resides in defining different interaction semantics between Grid.it components, e.g.
it is possible to wire a component accepting requests in a stream semantics with
a client issuing requests in a RMI semantics. The targetted implementation of
Grid.it components are ASSIST programs, as their adaptive support is exposed
straightforwardly by the component interfaces. The run-time support of the AS-
SIST environment is implemented on top of a Grid Abstract Machine (GAM), that
provides as abstract services the functionalities needed by the programming envi-
ronment to support high-performance, component-based Grid-aware applications.
These include resource discovery, management and monitoring; component deploy-
ment, execution, and wiring; and, routing of communications through networks
with private addresses. In particular, wiring among components may be done via
buffered ports, enabling multi-site deployment without a strict co-allocation mecha-
nism. Whenever possible, all these services rely on the underlying Grid middleware
(e.g. Globus services), which are just abstracted out at the GAM level. In other
cases ([1]), GAM services extend Grid middleware ones (e.g. providing monitoring).

As mentioned above, the Grid.it model has a recursive, hierarchical definition.
The model includes ground components, i.e. components that do not contain other
sub-components, and composite components, formed by multiple sub-components.
As usual in component models, a component is characterised by provide and use
ports, that allows the functional wiring of components.

The interactions between a composite component and its sub-components, and
the control of these, are part of the definition of the model itself. These features
are encapsulated in the concept of non-functional interfaces. Grid.it non functional
interfaces enable introspection and run-time configuration control of the components
and exhibit either an RPC behaviour or an event-based one.

The low-level RPC, non-functional interfaces of Grid.it components are:

e request for monitoring measurements;

e describe the current parallel layout of the component;

CoreGRID - Network of Excellence

CoreGRID FP6-004265 10

e apply a user-provided reconfiguration script;
e suspend/resume the component computation;

e stop the computation, releasing all involved grid resources allocated for the
component.

Any Grid.it component can directly be asked to report its instantaneous per-
formances or details about its own modules, their location on the grid and current
parallel behaviour. They can also be asked to perform a sequence of run-time re-
configurations: e.g. change of parallel degree, processes mapping onto processing
elements. Components can explicitly be suspended (and subsequently resumed or
stopped), without affecting the semantics of the parallel computation. Gracefully
stopping a component is a low-level mechanism to implement stateless migration
3, 2].

The low-level event-based interface, instead, provides for the subscription to
continuous performance monitoring measures, at regular time intervals. It allows
real-time monitoring of the execution of controlled components.

The user or a software manager may leverage these low-level interfaces to mon-
itor and control the component run-time behaviour. In the latter case, a com-
ponent together with its manager constitute an autonomic component. A Grid.it
autonomic component no longer relies on low-level non-functional interfaces, as de-
scribed above, and replaces them with high-level interfaces for the static or dynamic
submission of a QoS contract, and the subscription for QoS contract violations.

Currently, QoS contracts are described by a specific XML file, and include the
specification of the processing bandwidth (service time) in stream-based computa-
tions, and/or the completion time, which is often more significant for non-stream
computations. Such contracts may be subject to constraints on the amount and on
the kind of computing resources.

In the most general definition, a Grid.it QoS contract comprises a component
QoS goal and the description on how it should be achieved. The concepts that are
part of the definition of QoS contracts, or that influence it, are:

e Performance features: a set of variables, which can be evaluated from module
static information, run-time data, collected through monitoring, and perfor-
mance model evaluation.

e Performance model: a set of relations among performance features variables,
some of them representing the performance goal.

e Performance goal: a set of inequalities involving performance features.

e Deployment annotations describing resource needs of processes, such as re-
quired hardware (platform kind, memory and disk size, network configuration,
etc.), required software (O.S., libraries, local services, etc.), and all other strict
constraints to enforce correct execution.

e Adaptation policy: a reference to the desired adaptation policy chosen among
the ones available for the module. Standard adaptation policies are repre-
sented as algorithms and embedded within MAM code at compile time.

The Grid.it component model includes also the definition of a hierarchical in-
frastructures of managers that are responsible for dynamically controlling the be-
haviour of components. The hierarchical organisation of this infrastructure reflects
the actual organisation of application components themselves. The managers can
be automatically generated by the ASSIST programming environment.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 11

] [}] [}
] [} I [}
.) | _o="] Ssall) 1
provided CAM, Zagervm ! NF port I~ :
port | MAM | : 1 |
~ : = |
]
S O |
e ———————— —
NF port i
r HE component ¢ |
component
functional
interaction @)
(e.g. RPC)

ASSIST stream

«

Figure 1: Hierarchical composition of ASSIST managers in a running ASSIST com-
ponent program

In particular we distinguish: Module Autonomic Manager (MAM), Component
Autonomic Manager (CAM), and Application Manager (AM) being the manager
of the top component since it (indirectly) controls the whole application (Figure 1
illustrated this manager hierarchy concept).

Each CAM applies control strategies at the level of the associated component,
leveraging on non-functional ports of the nested components. The hierarchical
CAM interaction obtained in this way is used to implement the abstraction of
super-component, which is discussed below.

The CAM can implement strategies based on the dynamic component creation
and the wiring functionalities provided by the component model. These allow def-
inition of strategies for managing wrapped legacy components that do not provide
native adaptation.

In the most general case, a CAM can receive proposals of restructuring by the
child CAMs (monitor). In this case, the CAM has to apply a global performance
model in order to detect the need to restructure more children modules and devise
a good solution (analyse € plan). Recursively, a CAM can receive reconfiguration
requests from parent CAMs, and can send reconfiguration proposals (ezecute). The
root manager (AM) is the eventual agent responsible for the final decisions in the
global reconfiguration control.

Overall, an application is described as a hierarchy of natural self-governing com-
ponents that in turn comprise a number of interacting, self-governing components at
the next level down. They should continually adapt their configuration to changes
in grid resources with the goal of sustaining the requested QoS. Each component
should be equipped with a compositional QoS model, in order to orchestrate local
reactions to enhance the overall global behaviour.

Among all possible QoS goals, Grid.it managers currently support the perfor-
mance related ones that are achievable through adaptation within each parallel
module. Some of the issues relating to module coordination, as well as application
to QoS measures such as reliability, availability, and security, are currently under
investigation.

The advantages offered by a hierarchical structure of a component application
based on the manager interactions, and the need to coordinate them, suggested the

CoreGRID - Network of Excellence

CoreGRID FP6-004265 12

notion of super-component, i.e. a container that can host both other components
or super-components. Super-components are higher-order, parametric components
which can be instantiated with other components. They describe common compu-
tation paradigms (in fact, skeletons [29]).

The Grid.it support offers the programmer the possibility to describe new or
known computation paradigms manually using a graph, possibly including custom
code in the related managers. Super-components are well-known parallel structures
for which the compiler and support tools can provide suitable performance models
and heuristics, and can produce fully-fledged working managers with no programmer
intervention.

In the Grid.it model two kinds of super-components are currently defined:

e DAG: this enables the wiring of components/super-components as nodes of
a Direct Acyclic Graph, as a generalisation of the pipeline parallel pattern,
and takes care of automatic load balancing and performance.

e Farm: this enables dynamic and adaptive replication of a given host component /super-
component, and is functionally equivalent to the replicated component, ex-
posing the same use and providing functional ports as the host. The farm can
of course expose different non-functional ports, allowing control of the QoS of
the aggregate entity.

These super-components are particularly suited for connection via one-way streams,
describing a flow of data that is computed in different logical phases.

Super-components turn the Grid.it component model into a hierarchical com-
ponent model, in accordance with the GCM specification.

3.1.3 Programming model Institute perspective

The ASSIST programming environment, together with the Grid.it component model,
represents a partial implementation of the GCM proposal. The Grid.it implemen-
tation constitutes a testbed for several aspects of the GCM specification draft,
providing results and opportunities to experiment with key features of the GCM
model, such as dynamicity and multi-language/multi-framework interoperability.
In the following we underline the contact points with, and main contributions to,
the GCM design of the ASSIST and Grid.it research.

Component inner programming model. One of the GCM key issues is that
a programming model for the single component has to be provided. The
ASSIST programming model allows design of individual parallel components
which are adaptive and malleable. The model is user friendly as it is based on
a coordination language to espress parallel aspects, with a strong commitment
toward modularity and clear definition of interfaces.

Language neutrality. An additional advantage of the coordination-language ap-
proach is that ASSIST allows reuse of existing serial code to express the
elementary units of computation, and supports multiple serial programming
languages at the same time within any application/component. This is a de-
sirable feature, as GCM aims to be a language-neutral model. In designing
the GCM standard, the needs of implementations dealing with language in-
teropeability balance those of implementations exploiting a virtual machine
based approach.

Interoperability. Along the same lines, GCM targets interoperability with other
component frameworks, and ASSIST research has already experimented with
support for interoperability among multiple standards, and in particular the
CORBA 2, CCM and Web Service ones.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 13

Dynamic reconfigurability. ASSIST’s long-time built-in support for dynamic re-
configuration and autonomic management of portable applications is an im-
portant source of experimental results for understanding the needs and or-
ganization of non-functional interfaces for the single component in the GCM
specification. The definition within GCM of several component controller en-
tities, devoted to component autonomic control over Grid execution platforms,
will exploit the knowledge gained using Grid.it as a testbed.

Component composition and Hierarchical Management. The same synergy
is also evident at the level of component composition. As it raises in GCM
the issue of defining and building hierarchies for autonomic control into com-
posite components, it is useful to draw on the experience of Grid.it super-
components. Besides turning the Grid.it component model into a hierarchical
model, complying with the GCM specification, super-components exploit well-
known skeleton patterns and their underlying performance models to achieve
autonomic performance control, as well as processing and orchestration of
higher-level QoS models and contracts. The very same approach can be ap-
plied to GCM component hierarchies, making a substantial contribution in
terms of known models, control policies and tested heuristics.

Research on QoS contracts. Already under investigation within ASSIST are
means to deal with measures of QoS and SLA related to security, fault toler-
ance and execution cost, exploiting the same basic mechanisms used to imple-
ment autonomic control w.r.t. performance. This work represents a point of
contact with the research underlying the GCM definition of controller entities
dealing with the various aspects of autonomicity.

Deployment Process and GCM Interfaces. As a programming environment
supporting multiple languages, OS’s and CPU architectures in the same com-
ponent, ASSIST can generate quite complex deployment requirements. Sev-
eral systems of increasing complexity have been developed (ASSISTConf,
GEA) to satisfy these contraints within a grid environment, interfacing to
Grid.it component managers and supporting anytime component reconfigu-
ration. These experiences, resulting in a deployment process for multi-site,
structured parallel applications, can be generalized to the GCM case, provid-
ing basic algorithms and a common understanding of component interfaces to
interact with the underlying middleware in a portable way.

3.2 Higher-Order Components (HOCs)

Higher-Order Components (HOCs) [48] are software components running on top
of a grid middleware which handles the communication amongst them and other
software in the grid using standardized portable formats. HOCs got their name
from the fact that the input they accept to be sent to them over the network may
be data and executable code as well, in analogy with higher-order functions that
take other functions as arguments. Specifically aimed at grid programming, HOCs
combine two different approaches from software development:

1. Software Components [66] are one of the fundamental concepts HOCs origi-
nate from: components, such as HOCs, are reusable units of composition, i.e.
not fully self-contained programs, but pieces of software which become useful
once they are deployed onto middleware and possibly combined with other
components. In most instances, the deployment process consists in packaging
the compiled implementation code together with plain text definitions of the
components’ interfaces (formatted in a middleware-specific style) and copying

CoreGRID - Network of Excellence

CoreGRID FP6-004265 14

these packages into a subdirectory of the middleware installation. Thereby,
communication issues (i.e., the encoding and decoding of data into a portable
format, for its exchange over the network) are delegated from the components
to the middleware which handles them according to the interface definitions.
This way, components, which may be implemented in different programming
languages and run on different kinds of machines, may interoperate provided
that they are hosted using the same kind of middleware.

2. Algorithmic Skeletons [30] is the conceptual foundation of the HOC model:
a skeleton implements a recurring structure of parallelism in a customizable
manner, allowing programmers to take advantage of parallel processing, while
they only write the application-specific (sequential) parts of a program. Con-
trary to the design pattern approach to software development [46] which re-
quires, first, the identification of an applicable program structure for solving
a given problem, and, second, the full implementation of this structure, skele-
tons only require the selection and customization of existing code. Moreover,
skeletons are not restricted to a specific programming paradigm (e. g., object-
oriented programming) or target platform type (e.g., SMP servers).

HOCs make skeletons accessible as components, i.e., they include the required
middleware support, to select an efficient skeleton implementation from a network-
accessible repository and to customize it by sending it application code. HOCs sim-
plify grid programming because many grid applications, despite their great variety,
exploit recurring algorithmic patterns. Examples of such commonly known, often
used patterns are the farm, the pipeline, divide-and-conquer and others. Whereas
these patterns may be used in different applications in a slightly different manner,
their high-level structure remains mostly unchanged. It is, therefore, advisable to
make use of these recurring patterns by pre-packaging their parallel implementations
and necessary grid middleware arrangements (consisting in multiple configuration
files) together as HOCs in the HOC repository.

3.2.1 HOCs and the Grid

HOCs bridge the gap between grid middleware and grid applications. This chal-
lenge is accomplished by the HOC-Service Architecture (HOC-SA) [37], the runtime
environment for HOCs, which abstracts over the middleware used in the grid. The
most recent HOC-SA implementation uses the Web service resource framework
(WSRF) [56] as its middleware and, thus, Web services for interconnecting HOCs
and applications. HOCs and the applications using them are distributed across the
Internet, thus, forming a grid, where hosts of heterogeneous architectures can be
combined for distributed processing. The HOC-SA serves for a separation of con-
cerns: All the technical concerns, related to the required WSRF configuration for
making the HOCs accessible via Web services are readily provided by the HOC-SA,
while HOC users only deal with application-specific concerns. HOCs allow their
users to benefit from the grid middleware to the extent that they can run tasks
on remote servers without having to care about how data is exchanged with these
servers. Not even the number of executing servers must be known to the HOC
users.

The process of grid application programming using HOCs is shown in Fig. 2. The
programming and middleware arrangement tasks are divided between two groups of
programmers: grid experts and application programmers. While the former (right)
prepare the necessary implementations and arrangements for HOCs, the latter (left)
develop applications using these HOCs.

For the application programmer, program development proceeds as follows:

CoreGRID - Network of Excellence

CoreGRID FP6-004265 15

select

HOC Repository

D(I:\/Ide&
Map me Pipeline Scan K OO(I:\qucr
OC HOC HOC Hoc ~
stored i m .

GAR prov1des
pdedEC & deploys

N

Application Developer

contains: WSDL, Grid Expert
WSRF/GT4-Code, WSDD

Figure 2: Using HOCs: The Idea

e Select suitable HOCs for the application from the HOC repository;

e Express the application by composing HOCs and customizing them with
application-specific code parameters expressed, e.g., as Java code or in a script
language such as Ruby that is interpreted on the remote server (the treatment
of native code parameters in HOCs is discussed in [36]);

e Rely on the pre-packaged implementations and middleware configuration code
of the selected HOCs, packaged as Grid Application Archive (GAR) in the
HOC repository.

The person “with a hat” in the figure, is the HOC developer, who is an expert
in grid middleware set-up. It is the grid expert who in the HOC approach frees
the application programmer from much of the burden related to the necessary mid-
dleware arrangements. The grid expert develops the implementation of each HOC,
including the necessary Web service configuration for accessing them remotely in
the grid. Note that the task of the grid expert in arranging middleware in Fig. 2 is
even simpler than it is for an application programmer without HOCs: whereas the
expert prepares the arrangement once for each HOC, the programmer had to do it
again and again for each application and even for each new version of the runtime
environment or the same application.

The code mobility mechanism

In the grid context, a HOC and its code parameters usually reside on different
machines of a grid, so code parameters must be mobile, i.e. transferable over the
network.

Handling the transfer of code using current grid middleware is a technical chal-
lenge, since Web services technology, as used, e.g., in the WSRF middleware, pro-
vides only limited support for code transmissions: a job submission system, like

g., the Globus Resource Allocation Manager (GRAM) [56] or the Sun Grid En-
gine [65], allows remote execution of any code that represents full programs, i.e.,
code that can be executed without a specific interface by calling it directly from
the Unix shell of the target server. When a Web service should be used to transmit
such code, the code is declared as raw data and encoded for the transmission in the
same manner. By contrast, the customizing code parameters for HOCs are specific
component codes, i.e., they are not programs but rather collections of subroutines
(or methods in OOP) which only serve a purpose within a particular context like,
e.g., evaluating a pipeline stage or the division predicate of a divide-and-conquer
algorithm. These subroutines have different signatures and locations within a code
parameter, and, thus, executing them requires for each different parameter a differ-
ent interface giving the single subroutine access points, i.e., their addresses/names

CoreGRID - Network of Excellence

CoreGRID FP6-004265 16

and their signatures. However, defining types via interfaces of their own is not sup-
ported within a Web service interface definition, where the code parameters must
be defined for allowing their exchange over the network.

The HOC-SA provides the HOC developer with two specific technologies pro-
viding a workaround for the described parameter range limitation of Web services:
the code service and the remote code loader which enable code mobility in the grid.
While the code service is directly used by the clients to upload customizing code
for a HOC, the remote code loader is only used by the HOC developer and hidden
from the HOC user.

The code service

The code service is a Web service connected to a database for storing and sharing
code among distributed computers. It offers two operations: 1) a client can upload
a code parameter which is then stored in the database and assigned to one unique
identifier which is returned to the client. Besides the code parameter itself, the
upload operation takes as its input another identifier, which refers to the required
interface for running the uploaded code. This identifier is not necessarily unique for
each parameter, but unique for one interface, as many code parameters can be ac-
cessed using the same type of interface. There is only a limited set of such interfaces
(which corresponds to the number of HOCs in the HOC repository) and, therefore,
the interface definitions themselves are not sent over the network, but they reside
at the server side and clients refer to them using the type identifiers. 2) a server
can retrieve a code parameter from the code service using its download operation
which includes an interface detection mechanism. When the download operation
is passed a code parameter identifier, it copies the respective code parameter to a
buffer accessible by the server. Moreover, the download operation returns the type
identifier of the interface required for running the downloaded code parameter to
the calling server.

The remote code loader

The remote code loader is used locally on the servers hosting the HOCs and makes
the uploading and downloading of code via the code service transparent to the HOC
developer. It downloads code by invoking the download operation of the code ser-
vice, which supplies the code in a buffer, as if it was some primitive data. The inter-
face identifier returned by the download operation determines the required interface
for running the downloaded code. Using this interface (which is locally available
to the server) the remote code loader converts the data back into executable code
by applying a type cast. In a Java-based HOC, the standard Java class loader is
replaced by the remote code loader, allowing the HOC to use classes uploaded by
a client as if they were local classes. In the case of C/C++, the interface is defined
by a collection of function prototypes and the gateway mechanism described in [36]
enables location transparency of the actual implementation for MPI-based code in
a manner similar to how it is handled in Java.

3.2.2 Programming model Institute perspectives

There is only little divergence between the GCM specification and the HOC model.

Adaptations of Components

The most notable point is a different notion of the term component adaptation:

1) In the GCM specification, component adaptation means platform adaptation,
i.e., a component is adapted to its execution platform at runtime (e.g., by mi-
grating code, once a server slows down due to heavy processor load or bandwidth
variations). 2) In the context of HOCs, the term adaptation has been used to
describe application adaptations, i.e., a component is adapted to a particular ap-

CoreGRID - Network of Excellence

CoreGRID FP6-004265 17

plication [39]: whenever a component is needed that is not readily provided in the
HOC repository, an adaptation code can be sent as a code parameter to a HOC
which almost offers the required functionality and alter this HOC’s behavior ac-
cording to the application requirements (e.g., by re-ordering tasks or by running
additional processes/threads).

Both, platform adaptation and application adaptation are required in the grid
context: platform adaptation addresses the problem that the grid is a highly dy-
namic platform. Application adaptation addresses the problem, that there is such
a great variety of possible grid applications that the HOC repository can never hold
adequate HOCs for every conceivable grid application.

Fortunately, this conflict is only a clash of terms, while both technologies are
complementary. Using the KOALA scheduler, it has been shown [35] that mon-
itoring information from the Globus MDS [56] can be used to perform platform
adaptations of HOCs in a similar manner than it is described in the GCM specifi-
cation.

An ongoing CoreGRID fellowship between the University of Miinster and the
University of Passau (“Middleware for smart code distribution” granted to Eduardo
Argollo de Oliveira Dias) currently deals with an attempt to use loop parallelization
techniques [52] for making application adaptations transparent to the user. The goal
of this project is making components so flexible that no specific HOC is needed
anymore for every particular application. Instead, advanced HOCs are developed
which adapt themselves automatically when needed and which free the programmer
from dealing with application adaptation. Anyway, this is future work, and in the
current documents, occurrences of the term adaptation should be explained to avoid
conflicts.

Enabling HOC Features for the GCM

The main advantages of every HOC are the combination of the interoperability
features enabled by the middleware, as explained in Section 3.2.1, with the flexible
skeleton approach, described in the front of Section 3.2. Since this kind of synergy
is also desirable for the GCM, the current GCM specification (CoreGRID D.PM.02)
includes Section 4.4 on “Higher-Order Components and Code Mobility”.

The GCM specification requires that the GCM programmer may use Higher-
Order Components, which can be accessed via Web services and take data and
also code as their parameters, but it is not specified how this support should be
technically realized. The GCM specification is mainly adopted from the Fractal
model [16] which focuses on composing components together and nesting them us-
ing component controllers. The most recent Fractal implementation (the current
GCM prototype) uses ProActive [31] as its middleware. The connection to other grid
middleware is given by a dynamic component exposure mechanism which allows au-
tomatic deployment of Fractal components onto, e.g., the WSRF middleware [56],
where they can be accessed via Web services.

Unfortunately, this convenient mechanism is limited to components which take
only primitive parameters. In the CoreGRID workshop on grid systems, tools and
environments, it has been shown that the remote code loader and the code service
are tools which are independent from the component implementation [38]. They can
enable the use of Higher-Order Components in the context of Fractal/GCM as well.
In this deliverable, we therefore propose to include the remote code loader and the
code service from the HOC-SA in the GCM. We note that there is another ongoing
effort to include these tools into the popular WSRF implementation available from
the Globus Alliance within the scope of the Globus incubator process [4].

In the remainder of this section, we summarize the main contributions from [38],
explaining the role of the code service and the remote code loader in the context of

CoreGRID - Network of Excellence

CoreGRID FP6-004265 18

the GCM.

Integrating the Code Service and the Remote Code Loader in the GCM

The Fractal implementation, which serves as the current GCM prototype, uses the
Axis [6] library to generate WSDL descriptions and the Apache SOAP [5] engine
to deploy Web services automatically. Service invocations are routed through a
custom provider (a part of the ProActive framework). When a GCM component
should be exposed as a Web service, the user simply calls the static library method
exposeComponentAsWebService, which generates the required service configuration
and makes a new Web service available. The URL of this new service is specified
as a method parameter.

ProActive Framewor!

Web Server HOC Interface

1. Service Call

Service -
Cons\ﬂmer %

dl

» 2. Unmarshal setWorker
Data (Worker w)
setMaster

(Master m)
4.ProActive call E
(ol

3. Get the ProActive| m
reference
of the service

6. Return result

to consumer 5. Marshal
SOAP Resoponse

HOC code service i

id code
: unit)) HOC component
Retrieve the code corresponding
WorkerID

Worker to the parameter code
impl

Figure 3: Fractal’s Web services mechanism with HOC remote code loading

The Web services automatically created from GCM components do not require
the processing of SOAP messages in the code written by the GCM users: when
a Web service call (Fig. 3, step 1) reaches the provider, the Apache SOAP engine
has already unmarshalled the message and knows which method to call on which
object (step 2). Only the logic required to serve the requested operation must be
implemented when a new service should be provided. Specifically, the provider gets
a remote reference to the targeted interface (step 3), it performs a call from the
Web server side to the remote side using the reference (step 4), and it returns the
result to the SOAP engine. The engine then marshals a new SOAP message and
sends it back to the service consumer (steps 5 and 6).

Whenever the exposeComponentAsWebService method is applied to a HOC,
parameters of complex types must be transferred indirectly by uploading them to
the code service and passing only references to them (e. g., the WorkerID in Fig. 3)
to the newly created Web service, as explained in Section 3.2.1. A practical way to
develop a HOC that complies with the GCM specification is deriving a HOC-class
from the base class for defining components in the GCM (the Fractal Component-
class). Inside the ProActive provider, Java’s instanceof operator is used to detect
this HOC type and all non-primitive parameters of the HOC are then simply replaced
by the xsd:string type for declaring the parameter identifiers in the Web service
interface definition. In the server-sided HOC code, the remote code loader is used
to obtain an Object-type instance of the class corresponding to such an identifier.
Any of these Objects is cast there appropriately, for making it available, e.g., as
the Worker in the Farm-HOC.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 19

N |

x .
1 Observation

Planning
w Execution }-l—‘

Actions
L3 |
1 Component 1

Adaptable Dynaco component

ion LR
Observatlon. i

-

Decision

- .
e m

L]
-

Figure 4: Instantiating the Dynaco framework within the controller of a component
makes that component adaptable.

In summary, our extensions of the GCM Web service creation mechanism in-
volves two steps:

e First, we generate a WSDL description that maps behavioral parameters (the
code carrying ones) to identifiers for denoting the respective code in the HOC-
SA code service.

e Second, we extend the routing in the service provider to retrieve the right code
unit according to the identifier sent by the client (Fig. 3, step 2.1) and use
the HOC-SA remote code loader for instantiating the parameter via reflection,
i.e., inside the GCM implementation there is no need to differentiate between
primitive data and behavioral parameters.

3.2.3 Future Work

An experimental integration of HOCs and Fractal has already been accomplished [38].
However, there is more potential for integration activities for HOCs and the GCM.

In the currently available HOC implementations [61], the HOC repository is
dispersed over the grid and there is no lookup directory. The HOC developer has
to know which HOCs are hosted by which server and also the Web service URLs
for accessing them. Recent research on software ontology, match-making for Web
services and also the ASSIST approach towards the “invisible grid” described in
Section 3.1, may help to improve this situation in the future.

3.3 Dynaco

Dynaco is a design method and a framework developed at INRIA. It is intended
to provide tools for implementing adaptability in the context of component-based
software engineering. From the design phase to the execution, Dynaco helps de-
velopers in making adaptable their own components, including those encapsulating
legacy codes.

In the context of Dynaco, adaptability is an ability that is given to individ-
ual components to adapt themselves to their context. Components are thus able
to modify themselves and the way they work in order to better fit their execu-
tion context. Furthermore, when the execution context evolves, components evolve
consequently, at runtime, in such a way they continuously remain best fitted.

As depicted on Figure 4, Dynaco defines a structural model of adaptability. It
defines a collection of subcomponents, which provides adaptability when assembled
together. Defining clearly the responsabilities and interfaces of those subcompo-
nents helps developers in designing adaptability. Basically, adaptability is decom-
posed into four major functionalities:

CoreGRID - Network of Excellence

CoreGRID FP6-004265 20

e The observation of the context (including the execution platform and the
component itself) permits the component to track changes of the parameters
to which it adapts.

e Given the observations, an adaptable component has to decide whether the
changes that are observed are significant enough to make an adaptation worth-
while. If it is the case, the component needs to determine which configuration
should be used accordingly to the observations.

e In order to achieve decisions that have been taken, the component has to plan
which actions must be performed. In this phase, low-level mechanisms are
assembled in a runtime generated program, which transforms the component
to make it adopt the particular configuration that has been decided. The
low-level mechanisms may be implemented into the component; they can also
be added when the component is made adaptable.

e In the end, the component should execute the actions that have been identified.
More precisely, the actions should be scheduled in such a way that it takes
into account the progress of ongoing executions within the component.

This decomposition is similar to a materialization of the control loop envisioned by
Kephart and Chess for autonomic computing [50], while specifying more precisely
roles and responsabilities. It focuses on separating as much as possible the concerns
depending on their dependencies to the environment, to the adaptation or to the
component.

From the implementation point of view, Dynaco is a component framework. De-
velopers are expected to specialize it to their actual components and adaptations.
A policy indicates how decisions are made for each individual component. A guide
maps decisions to plans. And several actions are implemented in order to be used
by plans. The Dynaco framework does not specify the formalisms in which those
subcomponents should be expressed. It rather defines placeholders for reusable
generic engines for decision-making, planning and execution. Developers are thus
given the ability to choose the most suitable formalism depending on their actual
needs. For instance, the decision-making engine can be a simple delegating com-
ponent to a policy expressed thanks to classical programming languages; an expert
system engine that uses a rule-based policy; a generic optimization engine (such
as a genetic algorithm) that expects an objective function as a policy; a machine
learning algorithm; and so on. The framework approach and the ability to highly
customize it make Dynaco generic enough to be virtually suitable to any adaptation
and any component.

In addition, Dynaco provides an implementation of its execution subcomponent
for parallel components: Afpac [25]. Based upon a general execution model of adap-
tation in the context of parallel executions, Afpac applies to the particular case of
SPMD codes. It defines a criterion for the global states from which the adapta-
tion occurs; and it includes an algorithm for finding such global states amongst the
upcoming ones. Basically, the idea of Afpac’s criterion consists in considering the
adaptation as a collective operation. Consequently, adaptation actions are imple-
mented with the same SPMD paradigm as the component itself. The criterion thus
matches the ideas of the SPMD paradigm.

Integrating adaptability within a component requires that the execution flow
can be intercepted, in order to suspend the component and execute the adaptation.
Furthermore, Afpac requires to track the progress of the execution along the con-
trol structures. Afpac suggests a semi-automated approach to the integration of
adaptability: developers are expected to manually insert calls to Afpac when the
execution flow can be intercepted; then automatic program transformation inserts

CoreGRID - Network of Excellence

CoreGRID FP6-004265 21

additional calls at enclosing control structures. Thanks to this approach, Dynaco
and Afpac can be successfully used to make adaptable legacy components, without
requiring any restructuring of the code. Nevertheless, it assumes a manipulable
representation of the components’ programs, such as their source code.

In order to make things clearer, here follows an example scenario of using Dy-
naco. Given an existing parallel component, it may be desirable to make it adapt-
able to the actual number of processors: the component should execute as much
processes as processors. Developers then pick a monitor that tracks the number of
available processors in the system. They also compute the performance model of
the component as a function parameterized by the number of processes. Developers
reuse an existing genetic algorithm component as the decision-making engine; the
policy is the performance model of the component. Two reactions can be envisaged:
spawning new processes or terminating some of the running ones. Developers can
thus choose a simple match-and-map function as the planning engine. In addition,
developers are expected to implement the two subprograms that respectively spawn
and terminate processes. To terminate, developers can choose Afpac as the plan
execution engine. Consequently, they have to insert a statement at each code po-
sition where the two subprograms for spawning and terminating processes can be
executed. Those statements are added to the component’s program. Additional
required statements are added thanks to the source-to-source transformation tool
provided by Dynaco. Finally, inserting the Dynaco framework instance within the
controller makes the component effectively adaptable, as shown in Figure 4.

3.3.1 Dynaco components and grid

The several existing grids show that resource availability is not constant over time
within such platforms. Of course, the high amount of resources reduces drastically
the mean time between each failure. Nevertheless, faults are not the only reason to
varying resource availability. Grids are platforms that are shared amongst several
users: there is usually no exclusive access to such a platform. Users are thus
allowed to submit and execute their own applications concurrently. As concurrent
applications consume some of the resources, activities of the users impairs resource
availability. In addition, grids are commonly built by pooling resources from distinct
institutions. Moreover, each single institution may participate to several grids.
Consequently, there is usually no unique political and administrative head to the
whole platform. It results in more frequent administrative tasks such as software
updates and hardware upgrades.

Experiments have shown that applications in the context of grid computing
can perform better if they take into account those variations, i.e. if they adapt
dynamically. Indeed, if they do so, they may execute faster when more resources
are available, while avoiding the requirement for fault tolerance techniques when
resources disappear.

Fault tolerance techniques permit components to deal with sudden resource dis-
appearance. However, they may be costly in other circumstances. For instance,
preventive checkpointing should not be required to take into account resource ap-
pearance. The approach proposed by Dynaco aims at providing a lightweight mech-
anism for handling resource availability variations. Indeed, Dynaco suggests that
adaptation is performed without stopping, checkpointing nor restarting the com-
ponent. To do so, Dynaco focuses on cases when the component can continue its
execution after being notified of the variation: for instance, when an administrator
updates some software, components can be notified in advance, even before the
affected resources become effectively unavailable.

In addition, the Afpac implementation of the execution subcomponent of Dynaco
allows the adaptation of parallel components. Thanks to this, dynamic adaptability

CoreGRID - Network of Excellence

CoreGRID FP6-004265 22

is made available to scientific applications. Dynaco is thus applicable in the context
of grids.

Dynaco has been designed with component-based software engineering in mind.
Furthermore, the framework has been implemented for the Fractal component
model. First, the framework itself is an assembly of components: each function
described previously is one component. Second, the framework is designed to be
integrated in part within the controller of adaptable components. In particular, the
execution of plans should be a part of the controller in order to get sufficient access
to the content of the components to be able to execute the adaptation actions. On
the other hand, outsourcing the observations of the environment permits to fac-
torize this function when several adaptable components need to collect the same
information. The status of the other functions (decision-making and planning) is
not constrained by Dynaco.

3.3.2 Programming Model Institute perspective

Adaptability has already been mentioned in several preceding deliverables of Core-
GRID and of the Programming Model Institute, sometimes with a different termi-
nology (adaptivity, autonomic component). In particular, D.PM.02 (Proposals for
a Grid Component Model) cites adaptability as one of the expected GCM general
features. The institute has agreed in this deliverable that components should be
able to change their configuration at runtime in order to react to dynamic resource
behaviour; to reconfigure themselves upon fault recovery; and to evolve depend-
ing on data’s, parameters’, and other components’ characteristics. It also refers to
the functionalities envisaged by Kephart and Chess for autonomic computing [50]
(self-configuring, self-healing, self-optimising and self-protecting).

Within the institute, activities about adaptability appear in tasks 3.2 and 3.3
according to D.PM.03 (Roadmap version 2 on programming model). In task 3.2,
the institute agreed to provide specifications for controllers for the adaptability and
autonomy of components. Several levels of autonomy are expected to be specified.
In task 3.3, the institute proposes to work about autonomic control of adaptable
components, and in particular about the interactions with the underlying middle-
ware.

At last, in D.STM.02 (JPA 2), the Programming Model Institute identified
adaptability as the topic of one of the fine-grain activities. This activity concerns
mainly task 3.3, but also task 3.2.

This short review of the institute deliverables shows well that the institute has
considered adaptability as one of its topics since the early stages. Several scenar-
ios of GCM component adaptation have been envisioned as motivations. Dynaco
may provide the institute with some initial experience to achieve its goals. Further-
more, Afpac, as a part of Dynaco, gives some reusable basis for the adaptability
of GCM components, which are expected to encapsulate parallel codes as stated in
the previous deliverables.

In addition, the design and implementation of Dynaco rely on the Fractal com-
ponent model, which also serves as a reference for GCM. Furthermore, both Dynaco
and GCM consider that components can encapsulate parallel codes, such as those
using MPI.

Unlike GCM as described in D.PM.02, Dynaco makes no distinction between dif-
ferent types of adaptability (i.e. the self-* functionalities mentioned in D.PM.02 and
previously recalled). Furthermore, while specifications in D.PM.02 list a collection
of functionalities (self-configuring, self-healing, self-optimising and self-protecting),
Dynaco focuses on specifying how component developers can implement and inte-
grate adaptability within their components. The institute should consider whether
Dynaco’s approach is relevant for GCM specifications or not.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 23

Experience resulting from the work on Dynaco shows that most of the usual soft-
ware engineering techniques do not provide fully satisfactory solution to the problem
of integrating adaptability. In the case of the Afpac part of Dynaco, it is suggested
that integration should be done by semi-automated program transformation. This
approach assumes a manipulable representation of the components’ programs, such
as their source code. As GCM is intended to be language independent, the assump-
tions made by Afpac do not hold in the case of GCM. Consequently, the proposed
approach is not applicable to GCM. The institute should thus investigate different
solutions to integrate adaptability.

Finally, Dynaco shows that component-based architectures are a valuable tool
for structuring the adaptabilty itself. The institute should propose a solution to
allow developers to work on the adaptability architecture separately from the ap-
plicative one.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 24

4 Abstract support models and tools

In this Section we present the results achieved by Programming model Institute
partners in the framework of Task 3.3 activities, in particular those results related
to abstract, theoretical models suitable for modelling advanced grid programming
environments and techniques.

In particular, Section 4.1 is related to the research activity performed by QUB
and UPC partners on the ORC model by Misra and Cook, Section 4.2 concerns
the work performed at UoW investigating the possiblities offered by different kinds
of temporal logic systems, and finally Section 4.3 is about the work performed at
INRIA on specific abstract models used to represent behavioral semantics of realistic
distributed programming frameworks, including component based ones.

Overall, the three contributions selected here should give the reader a precise
idea of the way theoretical results can be used to improve research in the field
of “advanced programming models” for grids based on component models such as
GCM, and give the reader an overview of Institute activities in this area.

It is worth pointing out, in this case, how the research items discussed in Section
4.1 already represent a joint research effort by two partners of the Programming
model Insitute (QUB and UPC) and a currently emerging joint activity with a third
partner (UNIPI) that also exploits a six months REP grant, and how the research
activity on temporal logic performed at UoW is currently (since the London meeting
in January 2006) being considered for common investigation with the QUB and UPC
groups. This significantly contributes to the integration of research efforts of the
Institute partners. Moreover, part of the research results described in Section 4.3 are
currently being considered for direct inclusion in the “assessed GCM” deliverable
D.PM.05.

4.1 ORC

Collaborative work between QUB and UPC has investigated the modelling of grid
systems with the aim of creating models which capture the essential grid-specific
properties of applications, i.e. properties which relate to, for example, resource
discovery, dynamic adaptivity in response to connection or site failure, load balanc-
ing, etc., rather than properties of the application domains per se. A preliminary
abstract model of a grid has been developed [64] and used in conjunction with the
ORC language to represent some typical grid operations.

ORC [55] was introduced by J. Misra and R. Cook in 2004 as a language for
specifying the orchestration of distributed services. A brief summary of ORC is
given here. It is based on the idea of a site call. In ORC all operations must be
realised as site calls (e.g. there are no in-built arithmetic operations - addition
of z and y may be simulated by the site call add(z,y)). In general a site call
M may update the recipient site which, in turn, may call other sites and reply.
A fundamental concept of ORC is that a site call may fail (i.e. the sender may
not receive a reply). This may be due to a faulty network (either the outgoing or
incoming message may fail) or to the recipient site being down. There are some
special sites:

e 0 never responds (0 can be used to terminate execution of threads);
e if b returns a signal if b is true and remains silent otherwise;
e Rtimer(t), always responds after ¢ time units;

e let always returns (publishes) its argument.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 25

In addition, calls made to the generic grid site are also are considered.

ORC site calls may be orchestrated using expressions. The simplest expression is a
site call, possibly with parameters. More complex expressions can be constructed
as follows, where F; and Fs are expressions:

1. operator > (sequential composition)
E; > x > E>(x) evaluates Fy, receives a result z, calls Ey with parameter z.
If E; produces two results, say = and y, then Es is evaluated twice, once with
argument x and once with argument y. The abreviation E; > F» is used for
Ey > x > E5 when evaluation of EF5 is independent of x.

2. operator | (parallel composition)
(E; | E3) evaluates E; and E, in parallel. Both evaluations may produce
replies. Evaluation of the expression returns the merged output streams of F
and EQ.

3. where (asymmetric parallel composition)
F4 where x :€ E5 begins evaluation of both F; and z :€ E5 in parallel. Ex-
pression £ may name z in some of its site calls. Evaluation of Fy may proceed
until a dependency on z is encountered; evaluation is then delayed. The first
value delivered by Fs is returned in x; evaluation of F; can proceed and the
thread Fs is halted.

4.1.1 Components and grids with ORC

In this section it is first shown how a grid may be modelled in ORC; then an abstract
component model is presented and it is shown how placement of components on a
grid may be specified.

Grids with ORC A grid is modelled as a collection of interconnected sites. A
user may wish to submit a software component(s) to a grid for execution. To do
this a means of navigating the grid (in order to find a suitable site for component
placement) is required. In this section a generic definition of grid site is proposed.

A site is defined to be a sextuple comprising a unique name (N), a set of com-
ponents, or jobs, awaiting execution (C), a collection of services (S) that can be
utilised by users, a directory (ID) providing information about grid sites, an engine
(E) which has the potential to execute components to produce results, and a local
manager (M) which co-ordinates workflow.

gridsite= (N, C, S, ID, E, M)

In a particular site only some of these fields may be instantiated. For example,
a “yellow pages” information site may contain only a site name, an information
directory and a manager:

yellow_pages = (yp, , ,id, ,ml)

Here id provides information about other sites (for example, the set of sites which
offer the capability to execute FORTRAN 90 programs). This information may
become obsolete or unreliable after a period of time. The manager m1 may interact
with other sites and update id as appropriate.

A supercomputer centre offering services, S, (compilers, operating systems, stan-
dard libraries such as SCALAPACK etc.) will typically contain a set of jobs awaiting

CoreGRID - Network of Excellence

CoreGRID FP6-004265 26

execution, J, a supercomputer, superl, for generating results, and a manager. This
may be expressed as:

super_computer_centre = (scc, J, S, , superl,m2)

Here the manager m2 interacts with users, accepts jobs for execution, manages
the“queue” of jobs and returns results to users.

Users wishing to submit software artifacts for execution on the grid can them-
selves be regarded as sites with components and managers.

user = (u,C, , , ,m3)

Here the manager m3 is software for placing a set of components C' on the grid for
execution. An example of such a manager is developed later.

Site Failure. In order to see how ORC and grid components are used together let
us consider a site failure. In the case of site failure (observed as silence) a user may
remain waiting for a response (non-termination). Silence may be temporary — due
to a delay in response from the target site — or permanent. Evaluation of some
ORC expressions must succeed. For example, given a grid site g the expression

Terminate = let(g) where g :€ {N | Rtimer(100) > let(stop)}

has one thread Rtimer(100) > let(stop) comprising local site calls only. These
calls must succeed and so evaluation of the expression must terminate. However,
this is not the case for an arbitrary site call. Grid programs should react when
a response, which they are awaiting, is not forthcoming. Typically, if there is no
response to a site call within a specified period then an exception handling routine
will be invoked. One way of dealing with site calls that do not respond is to repoll
the site. Thus, instead of conducting a single poll at once, polls may be carried out
at regularly or irregularly spaced intervals. Two such polls, Poll* and T Poll, which
repeatedly instantiate an ORC expression, F, are defined below:

Poll*(E) = let(r) where r:€ {|ien Rtimer(t) > E}

Here F is instantiated (infinitely often) at regularly spaced intervals. Each thread
in Poll* waits indefinitely for a reply.

Components and Component Placement with ORC In this subsection an
outline of a software component is given. In particular, those aspects of a compo-
nent that are grid oriented are modelled. Traditionally, a software component may
comprise functionality, input data, an interface (defining software dependencies)
and an output file (hereafter called an output component). In a grid setting it is
additionally necessary to supply constraints (which restrict the kinds of hardware
that can be used to execute a component). In this paper two different kinds of
constraints are defined: minimum constraints, which can be used to determine if
a grid site offers appropriate resources; and value constraints, which can be used
to rank grid sites according to their suitability for executing a given component.
A component is defined to be a sextuple comprising an external interface (a set
of component names, F), an output component name (o), functionality (f), data
(d), a minimum constraint (a predicate MC') and a value constraint (an expression
Vae).
component = (E , 0, f,d, MC, V()

The exernal interface of a component ¢ defines its dependencies such as input data
sources and utilised service components. Functionality may be supplied as a com-
bination of program code and service invocations.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 27

Let us give an example. Consider a user who wishes to execute a FORTRAN
program, F', on the grid using local data, d, and a data file, I, supplied by a
third party, to produce an output component, R. The user may construct a data
component, indata, and a program component, F'P:

anata - (’7 =) = I’ - 7)
P == ({Fortran90Compiler, indata}, R, F,d, MC,V)

where MC and VC are constraints (see below). The components F'P and indata
may be sent to, and executed on, any site offering the service Fortran90Compiler
and satisfying the hardware constraint MC.

Constraints Constraints are statements that can be used to specify hardware, perfor-
mance, cost and network requirements. These have two forms: minimum constraints
and value constraints. A minimum constraint is a set of requirements that must
be satisfied by any site which is delegated to execute the associated component. A
minimum constraint can be modelled abstractly as a predicate.

Let us give an example.The constraint that a grid machine should have at least 10
processors and a communication link with bandwidth of at least 10° bytes/sec may
be expressed as a predicate with free variables p and b:

MC =p>10Ab>10°

For a particular site the parameters p and b may be instantiated, allowing the
predicate to be evaluated. In order to evaluate a constraint MC on a site s it is
necessary to acquire the values of all free variables by means of a dialogue. For
example, p might be instantiated for a site, s, by means of a call s.processors. The
advantage of modelling constraints as predicates is that (uninteresting) underlying
dialogue can be excluded. Let s; be a site with p = 4 and b = 10° and s, be a
site with p = 16 and b = 10°. Let MC(s) be the value found by instantiating the
free variables of M C with the site parameters of s. Then MC(sz) but =M C(s1).
However, consider the weaker constraint MC’:

MC' =p>4nb>10°

Now MC’(s1) holds (that is, a component with constraint MC’ can be executed
on s1 as well as s2). Note that Vg.MC(g) = MC'(g) — that is, use of a weaker
constraint extends the set of possible sites for placing a component.

A minimum constraint provides a means of deciding whether or not a site can
execute a component. However, it is useful also to be able to determine the“best”
site on which to execute a component. A value constraint is an expression with free
variables. The expression can be instantiated via a dialogue as above. Instantiation
allows a set of potential sites to be ranked according to their ability to meet the
value constraint.

Let us give an example. Consider a component, ¢, with an associated constraint
VO =10"/ct +b

Here ct is a unit computational cost and b is the available bandwidth. Suppose that
the unit costs for s; and sp are 1 and 1000 respectively. Then VC(s1) > VC(s2) —
in this case a cheap but less powerful site is preferred.

As example of the usability of the approach, we consider the site selection problem.
Suppose that a user (or manager) knows the constituent sites in a grid G:

G={91,---,9n}

CoreGRID - Network of Excellence

CoreGRID FP6-004265 28

Consider the selection of an appropriate site on which to place a component, ¢, for
execution.

Arbitrary selection: Grid site selection can be made by choosing the first suitable
site to respond:

Select_First(c,G) = {let(g) where (g,v) :€ (

gico gi-can_execute(c))}

This selection generates a call to each of the sites in G to determine which are
suitable for the placement of ¢; the first site to respond returns its grid site name,
g, and the value, VC(g). Evaluation of Select_First publishes g. Note that if none
of the sites can execute ¢ then the evaluation will not terminate.

Selection using a site ranking operation. The first site to respond may not be the
best location for placing ¢. The set of best sites on which to place ¢, as determined
by the value constraint V' C, is:

{beG|VgegvVC(h) >VC(g)}

Here all sites which maximise the constraint V' C are included in the set. The ranking
of a particular site, s, may be found using the operation call s.can_execute(c). The
result of such a call is a pair comprising the site name and its constraint value;
these results are passed to a local variable z by means of the operation pass. The
expression Rank, below, constructs multiple threads which send a stream of site
information to variable z; after calling pass each thread is terminated.

Rank(c,G) = z.null >

(

Here z is initialised by means of the site call null. The best site available after ¢
time units may be selected as follows:

g.cg gi-can_execute(c) > (g,v) > z.pass(g,v) > 0)

Top_Rank(c,G,t) = let(g) where
(g,v) :€ (Rank(c,G)| Rtimer(t) > z.highest)

The pair which has the highest constraint value may be retrieved by the call
z.highest. Evaluation of Top_Rank is guaranteed to terminate; however, when
none of the active sites in G can execute ¢, a null site name is published.

Variants of this operation may be applied to rank sites using different metrics.
For example, suppose that yellow pages directories provide site reliability informa-
tion (the probability of a site responding, say). Then a ranking operation could be
constructed using reliability information.

Enlarged selection using a trawling operation. A user who polls the set of sites G
and does not receive in reply a valid site name may wish either to poll a larger set
of sites or alter the given constraint set. A larger set of potential sites may be found
using grid information directories.

Trawl(c,G) = z.empty >

(

Here each thread in Trawl determines a set of sites having the potential to execute
c. The sets are combined by distributed union and the result is held in a local
variable, . Distributed union is realised through a stream of local site calls, union,
each of which has the side effect of extending x with G’. The site call empty is used

gicg gi-all_can_ezecute(c) > G' > z.union(G") > 0)

CoreGRID - Network of Excellence

CoreGRID FP6-004265 29

to initialise . After ¢ time units the set currently stored by x is extracted using
the operation get:

Trawl_Select(c,G,t) = Top_Rank(c,G',t)
where G’ :€ (Trawl(c,G) | Rtimer(t) > z.get)

Note that the set of sites G’ found by browsing information directories may not
be valid. Direct contact is made with each of these sites using the expression
Top_Rank(c,G’,t) to verify that it can be used to place c.

Selection with weakened value constraints. A user may, in the event of not being able
to find a suitable site to place ¢, weaken the associated component value constraint.
Let ¢’ be a component which is the same as ¢ except that it has a weakened value
constraint. A selection mechanism which first tries to find where to place ¢ and, if
unsuccessful, then tries to find where to place ¢’ is:

Weakened_Select(c,G,t) =
(if =null(g) > let(g)| if null(g) > Trawl_Select(c,G,t))
where (g,v) :€ Trawl_Select(c,G,t)

This strategy can be repeated to allow the constraint to be further weakened.

It may happen that a user tries to select a site to place a component when the
grid network is congested — in such circumstances responses to site calls may not
be delivered. To make site selection more robust, it may be desirable to use a form
of repeated polling.

4.1.2 Programming model institute perspective

To date, involvement in the Programming model Institute of CoreGRID has acted
as a spur for QUB and UPC to pursue the modelling of grid systems. An abstract
grid model has been proposed, with the ultimate aim of offering a grid application
programmer a discipline within which to develop a grid program by first creating
an ORC model and then refining this model, ideally through a series of correctness-
assured steps, to an executable program. The importance of developing abstract
models of grid applications, with the attendant benefits of clarity and amenabil-
ity to formal reasoning, has been recognised in the Programming model Institute
RoadMap (D.PM.03): section 3.3 refers to the need for the development of “The-
oretical computation models that can be used to support the grid component model,
that is, abstract programming models raising the level of abstraction provided to grid
programmers”.

Tt is anticipated that ORC will provide a means to specify the adaptive/autonomic
aspects of grid applications, whether via the component managers of ASSIST (3.1)
or the controllers of the GCM.

Currently four threads of activity are under way:

e A probabilistic reasoning framework is being developed which may be used to
investigate and quantify reliability properties of grid networks [63].

e A Researcher Exchange Programme between QUB and UNIPI has commenced
at the beginning of September 2006 with the aim of combining the abstract
QUB/UPC grid model with the practical grid experience of UNIPI to investi-
gate the modelling and derivation of grid systems. This work will be carried
out in the context of the ASSIST programming environment of section 3.1.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 30

e A PhD student at QUB is beginning investigation of the derivation of grid ap-
plications from ORC specifications. Initially, this work will target the Belfast
e-Science Centre grid but will, it is anticipated, ultimately target the UK
e-Science grid and the CoreGRID testbed.

e A Masters student at QUB is beginning investigation of the derivation of in-
dustrial related grid applications from ORC specifications. This work is being
carried out in the context of the Belfast e-Science Centre (BeSC) where a
number of industrial sponsored grid applications have been completed. Re-
sources being available, it is intended to build on the work of BeSC to broaden
experimentation with grid application modelling in industrial settings.

4.2 Deductive verification tools

Temporal logic, which was originally developed as a logical framework in which to
describe tense in natural languages, is now considered to be an essential tool in both
Artificial Intelligence and Computer Science. Temporal logic becomes crucial when
the structures to be described invoke temporal aspects. This is relevant in the case
of temporal databases, planning, program specification and verification, problem
solving and information retrieval. For example, the sequence of steps of a program
execution can be considered as a sequence of moments, or states, within a temporal
logic. Thus, proofs about the correctness of programs correspond to proofs within
an appropriate temporal logic [40]. A particular area in which temporal logics
have been extensively used is in the specification and verification of properties of
concurrent and distributed systems. The power of the temporal language used in
formal specification of such systems allows the representation of a variety of complex
properties relating to these systems, such as liveness, deadlock and invariance.

As the applications that require temporal reasoning become more refined, so
the corresponding logical tools have to be extended. If a temporal model aims
to represent the behaviour of a complex dynamic system, for example a complex
multi-process system, the ability to refer to a range of possible execution paths
in a model becomes important [28]. An appropriate logical framework to reason
about such systems is called branching-time temporal logic. Here, the underlying
model of time represents a choice of possibilities branching into the future. The first
branching-time logics were originally developed for the specification of concurrent
and distributed systems [28]. Varieties of branching-time logics are characterised by
specific syntactic restrictions which, in turn, lead to different levels of expressiveness.
Within these constraints, Computation Tree Logic (CTL) has been shown to play
a significant role in many potential applications.

In our version of the syntax of CTL we use start as a constant that is true at
the initial state of the tree, operator O stands for ‘next time’ in the future, []
stands for ‘always in the future’ and <} stands for ‘at some time in the future’, while
path quantifiers A and E stand for the universal and existential path quantifiers
respectively.

It has been observed that this logic, first proposed in [28], is sufficient to ex-
press most of the properties concerning branching-time models, that is properties
of simple concurrent programs (which do not deal with fairness). There are several
extensions of CTL, for example, CTL"™, ECTL, ECTL™, and CTL*. In particular,
CTL can be generalized to Extended CTL (ECTL) [40], which incorporates simple
fairness constraints. It has been shown that CTL and ECTL can be respectively ex-
tended to CTL* and ECTL™, where Boolean combinations of temporal modalities
are allowed. Here, CTL™ is of equivalent expressive power to CTL, while ECTL™
is strictly more expressive than ECTL [40]. CTL* is commonly considered as a full
branching-time logic [42] as it is the most expressive logic of this family.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 31

With most research in verification methods associated with the specification
languages of CTL-type logics being concentrated on developing the explorative ap-
proach, relatively little attention has been paid to their efficient decision procedures,
and potentially more efficient, proof methods. Clausal resolution is one of the pow-
erful methods widely used in the framework of classical logic [8]. In [43] a clausal
resolution approach for the propositional linear-time temporal logic (PLTL) was
proposed. Its methodology suggests a definition of three key components: a trans-
lation to a mormal form, an application of step, or classical-style resolution, and a
novel temporal resolution technique. It has also found an efficient implementation
[32] and has been further refined [33, 44].

This technique of generating a normal form based on fixpoint characterization
of temporal operators [24, 40] has given a significant methodological tool which has
made it possible

In [19, 20] a clausal resolution approach to CTL was developed, extending the
original definition of the method for the linear-time case [43]. It has been further
extended to capture richer formalisms, ECTL and ECTL™ [23].

Given a formal specification of a distributed system there are two major ap-
proaches to formal verification of this specification: explorative and deductive.
While the former approach is fully automated, as in the case of model checking,
its application, in general, is restricted to finite state systems. On the other hand,
methods of the second, deductive approach, can handle arbitrary systems providing
uniform proofs.

The general problem structure that we are trying to solve is given in Figure
5. Here we are attempting to analyze a system specification (S) and provide some
(formal) verification of its properties (V).

If the specification (S) is given in a high-level language, for example a logic, then
we can either translate (S) to an automaton (A) and then carry out as verification
(V) an automaton emptiness check, or we can carry out the translation from (S) to a
Normal Form (N) and then use as verification (V) some form of efficient deduction,
for example clausal resolution. The complexity of the translation from (S) to an
automaton (A) is usually exponential [67]. For example, a PLTL formula ¢ can be
translated into a Biichi automaton with 20U states [67]. In contrast, checking
non-emptiness for a Biichi automaton is decidable in linear time [41, 67]. Note,
however, that the situation is different when we carry out the translation of a
PLTL formula ¢ into alternating automata [67, 17], where the translation (S)—(A)
results in an automaton of the size O(|¢|), while checking non-emptiness involves an
exponential blow-up. No direct methods of checking non-emptiness of alternating
automata are known. Usually an alternating automaton is simulated by a standard
non-deterministic automaton and the known emptiness check is applied to the latter
[17, 67].

On the other hand, the complexity of the translation from (S) to (N) is polyno-
mial or often linear [45]. In contrast, verification of formulae in the Normal Form
((N) — (V)) is usually exponential since it involves some form of proof (in our case,
clausal resolution) [15]. However, we are often able to use either improved proof
strategies [44] or restricted forms of the normal form [34] in order to improve the
practical efficiency of such proof.

Our particular concern here was the relationship between the Normal Form (N)
given as the normal form for PLTL or CTL and the Automaton (A) in the diagram
above. It has been shown that a normal form for the formulae of PLTL can represent
Biichi automata [21]. The essential reason for this is that, in translating a problem
specification into our normal form, we actually derive clauses within a fragment of
quantified propositional linear-time temporal logic (QPLTL) [62, 51]. In particular,
formulae within SNFpr 1, are existentially quantified. In order to utilise the normal
form as part of a proof, we effectively skolemize the normal form producing temporal

CoreGRID - Network of Excellence

CoreGRID FP6-004265 32

Specification

Automata Normal Form

Verification

Figure 5: Specification-Verification Problem

formulae without any quantification (i.e. PLTL).

Having established this relationship between the normal form and Biichi au-
tomata, we are able to represent a problem specification directly as a set of for-
mulae in the Normal Form and apply a resolution based verification technique to
the latter. With the set of works showing that normal form initially developed
for CTL, can also capture logics ECTL and ECTL™, we can expect similar results
in the branching-time setting. This enables us to directly specify properties of a
grid system in the language of normal form with the subsequent application of the
resolution technique as a deductive verification tool.

The verification of the generated specification includes application of the two
types of resolution rules already defined in [18, 20]: step resolution (SRES) and
temporal resolution (TRES).

Step Resolution Rules. Step resolution is used between Formulae that refer to
the same initial moment of time or same next moment along some or all paths. In
the formulation of the SRES rules below [is a literal and C' and D are disjunctions

CoreGRID - Network of Excellence

CoreGRID FP6-004265 33

of literals. Two step resolution rules that will be used in our example are given
below.

SRES 1 SRES 3
start = CVI P=AO(CVI)
start = DV -l Q=EO(DV _‘l)<ind)
start =C VvV D (PAQ)=EO(CV D)ing)

Temporal Resolution Rules. The temporal resolution rules resolve the so called
A and F loops in some property [[19], i.e. the situations where, given that P is
satisfied at some point of time, [occurs always from that point on all or some path
respectively, with the eventuality —.

When an empty constraint is generated on the right hand side of the conclusion
of the resolution rule, we introduce a constant false to indicate this situation and,
for example, the conclusion of the SRES 1 rule, when resolving start = [and
start = —[, will be start = false, which terminates the verification.

4.2.1 Components and grids and deductive verification

We worked on providing the deductive verification technique for the components
described in a Fractal framework. The developments described in the previous
section allow us to reason about the configuration/(re)configuration protocols of a
Grid component model on behalf of the following formal framework:

FCM| —] SNF.u(FCM) \ —[BTR

Figure 6: Deductive verification of Fractal Model

Here we suggest the translation of the Fractal component model (FCM) into the
SNF 1L (FCM), the SNForp, based formal specification of FCM, and to apply the
‘branching temporal resolution’ method (BTR), the temporal resolution technique
defined over the set of SNF o1, clauses.

We have shown how to extract the desired SN Fory, based temporal specification
for a given component model [14]. The output system would have an intelligent
verification engine strengthened with the corresponding search techniques [22] as
well as with the possibility of invoking powerful refinement methods developed for
the resolution in the classical setting [8].

In general, the initial configuration of a Fractal component is given by the de-
scription of the component using Fractal ADL.

From this first state, reconfiguration is obtained by triggering appropriate ac-
tions on the life-cycle, the binding, and the content control interfaces. A recon-
figuration can be triggered by any component that has a reference to a correct
non-functional interface.

We will illustrate our approach by considering a simple printing queue compo-
nent model which consists of a client and one printing queue component as primi-
tives. The client interfaces are of type CI, and the server interfaces of the printing
queue are of type SI,.. Finally, we have a simplified version of a life-cycle controller
that allows to safely add or remove a binding between a client and the printing
queue.

We will only specify the safe-unbinding part of a reduced Life-Cycle Controller
(LCC) so that it can be used in the deductive reasoning. Note that it is always
possible to create new controllers if needed, in this case an appropriate set of formal
specifications for each controller must be provided using a similar procedure. If a
controller follows the standard Fractal model, a standard set of general temporal

CoreGRID - Network of Excellence

CoreGRID FP6-004265 34

logic rules can be called and then modified to match the specification; otherwise,
in the case of user-made definitions, the programmers themselves must provide the
rules matching the criteria followed in the creation of the definition.

Next we will let the propositions Boundy, ..., Bound, denote the bindings be-
tween components. The format that each may take is Bound;(CI,, ST,.) (1 <i < n)
which is a proposition that (when true) specifies that a component with Client In-
terface CI, is bound to the Server Interface SI.. In this example we have two
primitive components, one for the Printing Queue and one for the Client using
the Printing Queue. We would add as many of these propositions as necessary to
describe the system.

LCC is a proposition which when true signifies that the Life Cycle Controller is
active.

Before introducing the Life Cycle Controller Formula we would need to specify
how components are started and stopped. However, for illustration in the context
of this paper we will only provide a partial specification of the Life Cycle Controller
and two primitive components; we only deal with the formula that captures the
bindings of the two components. We will model the start of the components by
attaching them to start.

Now we introduce the formula for our version of the Simplified Life-Cycle Con-
troller:

- LCC A —~(Boundy(Cl,, SI)V Boundy(Cl,, SI;))
= A[]LCC = (Bound, (Cl,, SI,) A Bounds(Cl,, S1,))

which states that if neither of the components are bound and the LCC is not
active then in all possible computations when the LCC is active then we must have
the two components bound.

In the following example the Client can send a request for printing: req(C1,)
abbreviated below as req. When true, this proposition states that a printing request
has been raised by the client which possesses the client interface C'I,. Similarly print
is a proposition stating that a printing request has been satisfied by the printer.

Let us consider a simple printing queue component model (see figure 7) which
consists of one client and one printing queue component as primitives. The client
interface of the client is labeled C'I,,, and the server interfaces of the printing queue
is labeled SI,.. We will also consider a simplified life-cycle controller LCC that
allows us to safely remove a binding between a client and the printing queue. This
simple example is sufficient to demonstrate the potential of deductive reasoning,
applied to a fractal model.

We will take into consideration the safety part of the specification and its re-
quirements. The Life-Cycle Controller LCC does not have a set specification being
a non-functional component. We suggest that the system has a common protocol
of communication (both Client and Printing Queue must follow a common process
when a request is raised).

Client specification:

(1) req = Request is kept until it
A(reqU (req A print)) is possible to execute it

(2) req = A(-req2U print) | There will be no other

request until job

is printed

(3) req = Ad—req The request for print will

be eventually released

CoreGRID - Network of Excellence

CoreGRID FP6-004265 35

LC Controller (LCC)

Printing Queue

Cla SIr

Figure 7: Example in Fractal

The complete specification of the primitive:
start = —reg A (1) A (2) A (3)
where —req defines the initial state for Client primitive.

Printing queue specification:

(4)A [1=(print A print2) | Mutual Exclusion property:
at every point in time,

the printer can perform at
most one printing operation:

(5) A(—print Wreq) There is no printing unless
requested

(6) print = A —print Printing will eventually end

(7) req = Adprint The request for printing

should be granted

The complete specification of the primitive:
start = —print A (4) A (5) A (6) A (7)

Finally we specify the Life-Cycle Controller properties which affect the receiving
of a printing request and the printing itself:

start = [(-LCC A —(reqV print)) = A [1(LCC = (req A print))]

When the life-cycle controller is activated, it ensures that Client Interface and
Server Interface are bound, therefore allowing for requests to be sent from the Client,
and prints to be carried out by the Printing Queue, for the specific binding.

To apply deductive reasoning to this model, various properties could be taken
into consideration. To illustrate the approach, let us consider a relatively simple
example. Let p stands for —req(Cl,, SI.) A —print(CI,, SI.). Assume now that
during the reconfiguration of the system the following property should be verified:

I AC(LOpA S H=p)

CoreGRID - Network of Excellence

CoreGRID FP6-004265 36

In the next section we will show how this formula can be represented in terms of
SNFc71, and then apply to this specification the resolution technique as a verifica-
tion method.

To verify (1) we apply the resolution method to the set of SN Forr (1) deriving
an empty clause [14]. This means that the refutation procedure has ended with the
contradiction, hence 1 itself is unsatisfiable (and its negation valid).

4.2.2 Programming model Institute perspective

The University of Westminster team worked on the issues of deductive verification
complying with one of the tasks 3.2 and 3.2 of the Roadmap. In particular, we
have aimed to establish the theoretical foundations for dynamic configuration and
reconfiguration of components in a distributed system in an automated way based
on the mathematically justified GCM. Following the initial plan, firstly, the team
has started working with the definition of configuration and reconfiguration and
adaptation of branching-time specification techniques to GCM. Our approach has
been successfully applied to simple GCM. We have found that the proposed specifi-
cation langauge may need to be extended to achieve a higher level of expressiveness
and to enable verification.

Secondly, the team has concentrated on the application of formal verification
techniques to the obtained specifications. We have applied resolution based ver-
ification techniques to a simple component model whose specification follows the
Fractal framework. This should be extended in the future to cover more sophisti-
cated cases. Ideally, we are hoping to consider a "real-life” case taken from some
working system.

A PhD student at the UoW has been working on adapting deductive verification
techniques to the Fractal component model. One of the important tasks derived
from our experience which the student is currently investigating is an attempt to
define and extract Metadata needed for the formal specification. Observe, that
the extraction of metadata is itself a very important task that is related to many
activities of the Programming Model institute.

A close collaboration with INRIA has been established and will have to continue
to enable a correspondence of our developments and Fractal GSM as well as to
provide life examples for the formal specification and verification to test.

During the reported period a few common issues have been found between our
work and the collaborative work of QUB and UPC on ORC, the language for spec-
ifying the orchestration of distributed services. Thus, further steps towards closer
collaboration, comparison of our approaches looks very promising.

Finally, our work on the deductive verification was carried out as part of AU-
TOGRID, the project started in the UoW. The project aims at the development of
theoretical foundations of a reasoning engine for multi-layer self-organizing systems,
which will automatically manage reconfiguration of components in a system in a
safe and optimal way. In [22] we proposed a framework that enables the application
of the Inferential Erotetic Logic (IEL) tools aiming at optimisation of the process
of reconfiguration of a component model.

4.3 Specification and verification of component behaviour

Component programming proposes to split the system into smaller pieces of soft-
ware that interact through well defined frontiers, called interfaces. In hierarchical
component models, and in particular in the Grid component model that is being
defined by the CoreGRID Institute, new components (called composites) can be
created by composing existing (and smaller) components in a hierarchical fashion,
enhancing the reusability of component libraries.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 37

Components can be bound through their interfaces only if typing requirements
are met, ensuring a basic compatibility. Although the GCM clearly exposes both
provided and required services (e.g. method signatures) of each component through
its interfaces, it is well-known that static typing of bound interfaces is not enough
for guaranteeing a correct assembly of components: even if they statically match
their interfaces, off-the-shelf components may not work together due to the lack of
a dynamic behavioural compatibility, resulting in mismatch between their commu-
nication protocols, and often deadlocks.

Our work aims at providing methods and tools for expressing the behaviour
expected by software components, help the component developer ensure that his
code matches the specification, and help the component user check if assemblies
behave properly.

Expressing a precise behaviour requires a solid mathematical background. For-
mal methods aim at defining a system without ambiguity, so that formal tools, im-
plementing either theorem proving or model-checking, can be used to bring strong
guarantees on the program properties. For being usable in real-life programming
environments, these methods require support from automatic software tools which
hide the complexity of the underlying logics from the developer. Although we can
find successful cases in the hardware industry, the usage of formal methods and of
verification tools is still limited when it comes to software.

Compared to existing formal methods in classical (sequential) software devel-
opment, the context of distributed components is more complex because of the
intricate interaction between the distributed parts of an application. This requires
specific care in handling asynchrony, remote failures, communication delays, etc.
We also have to take into account the managment functionalities provided by many
component frameworks: deployment, life-cycle management, component updates, or
even dynamic changes in the topology. On the other hand, component frameworks
provide both a programming model that helps the developer to abstract away from
the details of the underlying execution platform, and tools for supporting these ab-
stractions (description languages, middle-ware layers providing strong behavioural
guarantees, etc.).

In the Oasis team we have been developing a semantic model allowing the
description of parameterized structured applications communicating through syn-
chronous or asynchronous messages, and have applied this model to various kinds of
hierarchical components, including distributed and Grid components. We are now
in the process of providing prototype tools supporting this approach.

Amongst the research work being done on the formalisation of distributed com-
ponent behaviour, the closest to the motivations expressed above is certainly the
one developed by the Sofa team [60], similar to the Fractal component model. In
Sofa, components have a frame (specification) and an architecture (implementa-
tion) protocols, and verification is done through a trace language inclusion of the
architecture within the target frame. In a different flavor, the work of Carrez et
al on behavioural typing of components [27] defines a sound assembly and compat-
ibility concepts which ensure correctness of the composition, but in a framework
based on the Corba component model CCM [57], where they have no hierarchy of
components.

In the same spirit, we must mention the work of the ArchWare project [54, 58],
even if it does not explicitly address components. ArchWare was an IST-5 european
project, in which was defined a family of architecture specification languages based
on a m-calculus like semantics, including an Architecture Description Language m-
ADL, a logical requirement language m-AAL, etc. Being explicitly based on software
architecture, these formalisms are close to our concerns, except for the absence of
component management functionalities.

There exist a number of verification platforms for process algebras, and more

CoreGRID - Network of Excellence

CoreGRID FP6-004265 38

recently some supporting components. The only one supporting behaviours of hier-
archical components that we are aware of is Sofa; it includes a static analysis module
based on the Java Path Finder tool, and a home-made model-checker implement-
ing the Sofa compliance relation. The main difference with our approach is that,
being based on a trace language semantics, they have no support for (congruent)
minimization of state space. The ArchWare people also propose a set of verification
tools, using the CADP toolset, and taking into account only a finitary subset of
their m-calculus based model.

We made slightly different choices: our models are based on bisimulation the-
ories, and we take advantage of their congruence properties, together with the
structuring capability of hierarchical components, to keep their state-space com-
plexity manageable. Our work has been concentrated in the automatic building
of behavioural models for distributed component systems. In [10] we introduced
a new semantic model named pNet extending the networks of communicating au-
tomata [7], by adding parameters to their communication events and processes in
the spirit of symbolic transition graphs [53]. In [12] we used pNets to model the
behaviour of Fractal (synchronous) components, including the representation of the
Fractal “non-functional operations” for the dynamic management of the component
assemblies. Then in [13] we extended this work to the distributed implementation
of Fractal using the ProActive library, which features asynchronous communication
between distributed components. Finally in [11] we describe the tools we have de-
veloped suppporting the construction of pNet models from the description of the
components’ architecture, their instantiation to finite models and interface with ef-
ficient model-checking tools, and we illustrate their use in a non-trivial case-study.

We will describe these methods in detail in the next section.

4.3.1 Specification and verification of GRID component programs

Our pNet model is a very expressive tool for representing the behavioural semantics
of realistic distributed systems, that allows us to formalise in a coherent framework
the whole chain from behaviour specification and expression of requirements, to the
intermediate formats required for using automated model checking engines.

We can use it as a rudimentary language for the specification of primitive com-
ponent behaviours (in [11] we use Lotos as a syntax for representing parameterized
labelled transtion systems (pLTS), that are the leaves of a pNet hierarchy), though
we would prefer a much higher level language to be exposed to the component sys-
tem developer. We use it also as the target of code analysis in [10], so we have the
possibility to compare the semantics extracted from static analysis of a primitive
component with its specification (the tools for this are not yet available).

The specification of component architecture is based on the Architecture De-
scription Languages naturally available in the component frameworks. Historically
we started with the Fractal ADL, and proposed an extension to the Fractal com-
munity, that encompasses several behaviour specification languages [26]. The same
extension is also being defined in CoreGRID WP3 D.PM.04. The extension consists
in attaching to each level of the architecture (i.e. to primitives and composites com-
ponents) a behaviour description in some dedicated behaviour language (including
Sofa behaviour protocols and our pLTS in Lotos syntax). Because they require an
external parser, and may be quite large, the behaviours are usually provided in
separate files. An important technical point is that the information from the ADL
itself is not sufficient for expressing the behaviour events, we also need access to the
specification of the component interface, namely the methods and their argument
types used in communication.

The ADL2N tool (developed by the Oasis team), described in [11], generates the
pNets modelling a component hierarchy, expressing the synchronisation constraints

CoreGRID - Network of Excellence

CoreGRID FP6-004265 39

Architecture Description Language to Net - INRIA (Sophia Antipolis) Sroyx

File Description FC2 Param. Tools About
[T org.objectweb.dsrg be;h Description | FC2 Parameterized | Instantiation | LOTOS
[simulator Num. of bindings: 5 N
¢ [Firewall Client interfaces
[websServer AccessPolicy.lLogin bound to Firewall.ILogin
E] AccessPolicy Method: ¥ void loginWithFrequentFlyer ([v] intip, [v|intid) |
[y internet Method: [v] void quinWithFlyTicke
[Arbitrator Method: [v]void logout ([V]intip § name: V\D' Instantiation: (0,2} Help
E] FlyTicketClassifier .
D DbConnection AccessPolicy.IRedirect bound to WebSd g ——

. . Method: v| int redirectPage (|v|int .

FreguentFlyer 7 = =
fllj req e ip=in®,2 -]
database=ind,2) |=

Component AccessPolicy selected.

Set Cancel

Figure 8: The ADL2N tool

corresponding to component bindings. The tool also generates the controllers re-
quired for modelling the life-cycle and binding management of the components.
ADL2N also provides means to specify precisely which internal events should be
observed through the hierarchy, allowing an early control of the well-known state-
explosion problem.

The next step in the verification activity is the definition of abstractions trans-
forming our parametrized models into finite-state structures acceptable by the
model-checking engines. The types authorized by our methodology for the argu-
ments of communication events are simple (first-order) types. We use finite parti-
tions of those types to define abstract interpretations that preserve safety properties
of the models. We call “instantiation” the abstraction of a pNet into a finitary Net
structure, and apply the same abstraction to the Lotos models of the primitive
components. Then we build a finite state input to the verification engines from the
CADP toolset [47]; CADP provides us efficient tools for building, reducing, and
model-checking our behaviour models, including distributed and on-the-fly tech-
niques.

We have shown how to use automatic model-checking tools to check require-
ments, in the form of parameterized temporal logic formulas, against the generated
pNet models. Of course the instantiation at the previous step must be consistent
with the specific values, operators and predicates occurring in the formulas to be
proven.

To illustrate our results, let us give the main ideas from the case-study in [11].
The example comes from a realistic case-study provided by France Telecom, previ-
ously analysed by the Sofa team in Prague [59]. This example has several qualities
that motivated its choice: first it is extracted from a realistic case-study, that will
hopefully be part of a standard set of examples provided to the whole Fractal com-
munity for comparisons. Secondly it is small enough for a description in a research
paper, but big enough to illustrate some scalability issues. Last it is suitable to
illustrate some of the features we wanted to show, including the treatment of pa-
rameters, and the modelling of multicast interfaces.

The case study concentrates on a subset of an airport wifi system, involving
airline databases, a firewall and a webserver, and users with various status allowing
access to the wifi network. From the ADL description of the component system,
extended with Lotos specification of each primitive component, we build a param-
eterized model of various subsets of the system. Then we use small instantiations
of the parameters (web urls, ticket ids, ticket validity, databases) to check deadlock
detection and CTL properties. During this process the state-space is built in a com-
positional manner, using hiding and minimisation as much as possible; the biggest
intermediate structure, for a model including only the functional behaviour of the

CoreGRID - Network of Excellence

CoreGRID FP6-004265 40

example, has only 5000 states. Indeed we are able to find a deadlock in our speci-
fication of the system, and to disprove a CTL formula (expressing the inevitability
of an event), and show how the model-checker gives us diagnostics.

4.3.2 Programming model Institute perspective

The previous results are general enough to apply to various kinds of program-
ming methodologies, from module-based or object-oriented languages, and to vari-
ous kinds of behavioural semantics, including both synchronous and asynchronous
applications. Indeed, the results in [10] were established in the framework of dis-
tributed, asynchronous applications based on active objects.

The extension of our work to hierarchical components was initiated in the con-
text of the Fractal component model. It was an important step: the separation
from the code of primitive components (functional code) and the architecture de-
scription (Fractal ADL) gave us the opportunity to attach a behaviour specification
to each level of the component structure. This is the key to safe reusability of
components: beyond static typing of interfaces, it allows one to guarantee that a
composition of components behaves well together, respects their respective proto-
cols, does not block on deadlocks, achieves progress, and more generally implements
their own behavioural specification. At the same time it brought more complexity,
because Fractal components are more than modules, and come with their life-cycle
controllers, and provisions for dynamic updating of the architecture.

There are two other steps before reaching grid components: dealing with asyn-
chronous communication between distributed components, and dealing with “group
communication”, or more precisely with multicast and gathercast policies for the
interaction between large numbers of similar components in grid computing ap-
plications. In [9] we showed how to model the request queues and proxies of the
distributed implementation of Fractal based on the ProActive library. The imple-
mentation in our model generation tools is not yet available, and will require specific
care for dealing with finite abstractions of the queues. In [11] we also give an ex-
ample including multicast / gathercast modeling, that shows that it is possible on
small configurations to keep the state explosion local within the pNets structure.

A possible manner in which to consider this work is the following: having a strong
formal basis, the GCM implementation using the ProActive library provides a num-
ber of guarantees to the Grid application developer, namely safety of the message
mechanism, transparency of distribution, determinacy of distributed computation.
But it does not prevent programmers from creating complex communication and
distribution patterns, that may lead to inadequate usage of components, deadlocks
in communications or in computation dependencies, or non-termination. Our tools
cannot provide a 100% safe answer to these questions (this is non-decidable), but
provide a reasonable compromise between the capacity of automatic model-checking
engines and the effort required for specification and validation.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 41

5 Conclusions

We have presented in this report the more relevant research activities that the part-
ners of the Programming model Institute have performed in the framework of the
Institute Task 3.3: “advanced programming models”. Part of the research results
are related directly to the implementation of “advanced” actual grid programming
models. These are discussed in Section 3. Another part of the results and research
topics (those presented in Section 4) are related to abstract, theoretical models
that can be used to investigate/design/model different properties of grid program-
ming environments, in particular of advanced programming environments based on
component technology concepts.

The research topics and results presented and discussed in this work are clearly
placed in the framework of the research activities of the Programming model Insti-
tute, as stated in the Institute roadmaps D.PM.01 and D.PM.03. In particular, each
of the six “technical” Sections in this document ends with a part discussing how the
technical matter just presented relates to the activities of the Programming model
Insitute and, in particular, how it contributes to the general Institute roadmap and
to the specific Task 3.3 roadmap.

The activities described in this document must be considered as the basis on
which the integration among the Institute partners will be built in the last two
years of the NoE, in particular on the subjects listed under the Task 3.3 activi-
ties. Some (actually, most) of the research activities presented in this document
have already led to well defined integrated research involving more than a single
CoreGRID partner. Some of the ASSIST and HOC results have already been (or
they are currently being) migrated to the GCM design, as well as some of the re-
sults achieved in Dynaco and also the theoretical framework described in Section
4.3. On the other hand, HOC has already led to specific joint activities between
CoreGRID partners not previously working on integrated research issues (WWU
Muenster and UDELFT on advanced programming model process scheduling), AS-
SIST led to the same result (UNIPI and INRIA/OASIS + INRIA/PARIS teams
cooperating on autonomic component management, skeleton programming models
on top of components, shared memory support for component grid computations)
and the ORC framework stimulated previously unforeseen common research (in-
volving QUB, UPC and, more recently, UNIPI and, in part UoW). Overall, these
provide evidence that the durable integration which constitutes the main goal of
CoreGRID is actually being built within the Programming model Institute and
within its Task 3.3, in particular.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 42

References

[1]

M. Aldinucci, M. Coppola, S. Campa, M. Danelutto, M. Vanneschi, and C. Zoc-
colo. Structured implementation of component based grid programming envi-
ronments. In Future Generation Grids, CoreGRID series. Springer, November
2005.

Marco Aldinucci, Marco Danelutto, and Marco Vanneschi. Autonomic QoS
in ASSIST grid-aware components. In Proceedings of Intl. Euromicro PDP
2006: Parallel Distributed and network-based Processing, Montbéliard, France,
February 2006. IEEE.

Marco Aldinucci, Alessandro Petrocelli, Edoardo Pistoletti, Massimo Torquati,
Marco Vanneschi, Luca Veraldi, and Corrado Zoccolo. Dynamic reconfiguration
of grid-aware applications in ASSIST. In J. C. Cunha and P. D. Medeiros,
editors, Proc. of 11th Intl. Euro-Par 2005: Parallel and Distributed Computing,
volume 3648 of LNCS. Springer Verlag, August 2005.

Globus Alliance. Incubator project. http://dev.globus.org/wiki/Incubator/
Incubator_Management.

Apache Organization. The apache soap web site. http://ws.apache.org/soap/.

Apache Organization. The Apache Web Services Project: — Axis.
http://ws.apache.org/axis.

A. Arnold. Nivat’s processes and their synchronization. Theor. Comput. Sci.,
281(1-2):31-36, 2002.

L. Bachmair and H. Ganzinger. A theory of resolution. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, chapter 2. Elsevier,
2001.

T. Barros. Formal specification and verification of distributed component sys-
tems. PhD thesis, Université de Nice - INRIA Sophia Antipolis, November
2005.

T. Barros, R. Boulifa, and E. Madelaine. Parameterized models for distributed
java objects. In Forte’04 conference, volume LNCS 3235, Madrid, September
2004. Spinger Verlag.

T. Barros, A. Cansado, E. Madelaine, and M. Rivera. Model checking dis-
tributed components : The vercors platform. In 8rd workshop on Formal As-
pects of Component Systems, Prague, Tcheque Republic, Sep 2006.

T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchical
components. In Patrice Godefroid, editor, Model Checking Software, 12th Inter-
national SPIN Workshop, volume LNCS 3639, pages 154-168, San Francisco,
CA, USA, August 2005. Springer.

T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierarchi-
cal components. In International Workshop on Formal Aspects of Component
Software (FACS’05), Macao, October 2005. Electronic Notes in Theoretical
Computer Science (ENTCS).

Alessandro Basso, Alexander Bolotov, Artie Basukoski, Vladimir Getov, Lu-
dovic Henrio, and Mariusz Urbanski. Specification and verification of recon-
figuration protocols in grid component systems. In To be published in the
Proceedings of 1S-2006, 2006.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 43

[15]

[16]

[18]

[19]

[26]

[27]

Artie Basukoski and Alexander Bolotov. Search strategies for resolution in
ctl-type logics: Extension and complexity. In TIME, pages 195-197, 2005.

Francoise Baude, Denis Caromel, and Matthieu Morel. From distributed ob-
jects to hierarchical grid components. In International Symposium on Dis-
tributed Objects and Applications (DOA), Catania, Sicily, Italy, 3-7 November.
Springer, 2003.

O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In Computer Aided Verification, Proc. 6th Int.
Workshop, volume 818 of Lecture Notes in Computer Science, pages 142-155,
Stanford, California, June 1994. Springer-Verlag.

A. Bolotov. Clausal Resolution for Branching-Time Temporal Logic. PhD the-
sis, Department of Computing and Mathematics, The Manchester Metropoli-
tan University, 2000.

A. Bolotov and C. Dixon. Resolution for branching time temporal logics: Ap-
plying the temporal resolution rule. In Proceedings of the 7th International
Conference on Temporal Representation and Reasoning (TIME2000), pages
163-172, Cape Breton, Nova Scotia, Canada, 2000. IEEE Computer Society.

A. Bolotov and M. Fisher. A clausal resolution method for CTL branching time
temporal logic. Journal of experimental and theoretical artificial intelligence,
(11):77-93, 1999.

A. Bolotov, M. Fisher, and C. Dixon. On the relationship between w-automata
and temporal logic normal forms. In Proceedings of the Advances in Modal
Logic/International Conference on Temporal Logic 2000, Leipzig, October
2000. Extended version accepted for publication in Journal of Logic and Com-
putation.

A. Bolotov, P. Lupkowski, and M. Urbanski. Search and check. problem solving
by problem reduction. In Proceedings of The 8th International Conference on
Artificial Intelligence and Soft Computing, pages 87-106, 2006.

Alexander Bolotov and Artie Basukoski. A clausal resolution method for ex-
tended computation tree logic ectl. J. Applied Logic, 4(2):141-167, 2006.

J. Bradffield. and C. Stirling. Modal logics and mu-calculi. In J. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 293-330.
Elsevier, North-Holland, 2001.

Jérémy Buisson, Francoise André, and Jean-Louis Pazat. Afpac: Enforcing
consistency during the adaptation of a parallel component. Scalable Comput-
ing: Practice and Ezperience, 7(3):83-95, September 2006. electronic journal
(http://wuw.scpe.org/).

A. Cansado, L. Henrio, and E. Madelaine. Towards real case component model-
checking. In 5th Fractal Workshop, Nantes, France, July 2006.

C. Carrez, A. Fantechi, and E. Najm. Behavioural contracts for a sound as-
sembly of components. In Forte’038 conference, number 2767 in LNCS, Berlin,
2003.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronisation
skeletons using branching time temporal logic. In Logic of Programs. Proceed-
ings of Workshop, volume 131 of Lecture Notes in Computer Science, pages
52-71. Springer-Verlag, 1981.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 44

[29]

[30]

[31]

[35]

[39]

[40]

[41]

[42]

M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for
Skeletal Parallel Programming. Parallel Computing, 30(3):389-406, 2004.

Murray I. Cole. Algorithmic skeletons: a structured approach to the manage-
ment of parallel computation. MIT Press & Pitman, 1989.

Universit de Nice Sophia Antipolis. The proactive web site. http://www-
sop.inria.fr/oasis/ProActive/.

C. Dixon. Search Strategies for Resolution in Temporal Logics. In M. A.
McRobbie and J. K. Slaney, editors, Proceedings of the Thirteenth Interna-
tional Conference on Automated Deduction (CADE), volume 1104 of Lecture
Notes in Artificial Intelligence, pages 672—687, New Brunswick, New Jersey,
July/August 1996. Springer-Verlag.

C. Dixon. Temporal resolution using a breadth-first search algorithm. Annals
of Mathematics and Artificial Intelligence, 22, 1998.

C. Dixon, M. Fisher, and M. Reynolds. Execution and Proof in Horn-Clause
Temporal Logic. In H. Barringer, M. Fisher, D. Gabbay, and G. Gough, editors,
Adwvances in Temporal Logic, volume 16 of Applied Logic Series, pages 413—-433.
Kluwer, 2000. Proceedings the Second International Conference on Temporal
Logic (ICTL).

Catalin Dumitrescu, D.H.J. Epema, Jan Diinnweber, and Sergei Gorlatch. User
Transparent Scheduling of Structured Parallel Applications in Grid Environ-
ments. Technical Report TR-0034, Institute on Resource Management and
Scheduling, CoreGRID - Network of Excellence, 2006.

Jan Diinnweber, Anne Benoit, Murray Cole, and Sergei Gorlatch. Integrating
MPI-skeletons with Web services. In PARCO, Advances in Parallel Computing,
2005.

Jan Diinnweber and Sergei Gorlatch. HOC-SA: A grid Service Architecture for
Higher-Order Components. In International Conference on Services Computing
(SCC04), Shanghai, China, pages 288-294, Washington, USA, 2004. IEEE
computer.org.

Jan Diinnweber, Sergei Gorlatch, Francoise Baude, Virginie Legrand, and
Nikos Parlavantzas. Towards automatic creation of web services for grid com-
ponent composition. In Vladimir Getov, editor, Proceedings of the Grids@Work
Plugtest, Sophia-Antipolis, France, October 2005.

Jan Diinnweber, Sergei Gorlatch, Sonia Campa, Marco Danelutto, and Marco
Aldinucci. Using code parameters for component adaptations. In Sergei Gor-
latch, editor, Proceedings of the CoreGRID Integration Workshop, Pisa, Italy,
November 2005.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science: Volume B, Formal Models and Seman-
tics., pages 996-1072. Elsevier, 1990.

E. A. Emerson. Automated reasoning about reactive systems. In Logics for
Concurrency: Structures Versus Automata, Proc. of International Workshop,
volume 1043 of Lecture Notes in Computer Science, pages 41-101. Springer-
Verlag, 1996.

E. A. Emerson and A. P. Sistla. Deciding full branching time logic. In STOC
1984, Proceedings of, pages 14-24, 1984.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 45

[43]

[52]

[53]

[54]

[55]

M. Fisher. A Resolution Method for Temporal Logic. In Proc. of the XII
International Joint Conference on Artificial Intelligence (IJCAI), pages 99—
104, 1991.

M. Fisher and C. Dixon. Guiding Clausal Temporal Resolution. In H. Bar-
ringer, M. Fisher, D. Gabbay, and G. Gough, editors, Advances in Temporal
Logic, volume 16 of Applied Logic Series, pages 167-184. Kluwer, 2000. Pro-
ceedings the Second International Conference on Temporal Logic (ICTL).

M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Trans-
actions on Computational Logic (TOCL), 1(2):12-56, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Elements of reusable object-oriented software. Addison Wesley, 1995.

H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. Furopean
Association for Software Science and Technology (EASST) Newsletter, 4:13-24,
August 2002.

Sergei Gorlatch and Jan Diinnweber. From grid middleware to grid applica-
tions: Bridging the gap with HOCs. In Future Generation Grids. Springer
Verlag, 2005.

Next Generation Grid Expert Group. NGG report 1-3. Reports 1 to 3 available
at http://cordis.europa.eu/ist/grids/pub-report.htm, 2006.

Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, January 2003.

Y. Kesten and A. Pnueli. A complete deductive system for QPTL. In Proceed-
ings of the 10th Annual IEEE Symposium of Logic in Computer Science, pages
2-12, 1995.

Christian Lengauer. Loop parallelization in the polytope model. In CONCUR,
pages 398-416, 1993.

H. Lin. Symbolic transition graph with assignment. In U. Montanari and
V. Sassone, editors, CONCUR 96, Pisa, Italy, August 1996. LNCS 1119.

R. Mateescu and F. Oquendo. w-AAL: An Architecture Analysis Language
for Formally Specifying and Verifying Structural and Behavioural Properties of
Software Architectures. ACM SIGSOFT Software Engineering Notes, 31(2):1-
19, March 2006.

J. Misra. Computation Orchestration: A basis for a wide-area computing. In
M. Broy, editor, Proc. of the NATO Advanced Study Institute, Engineering
Theories of Software Intensive Systems, ASI. NATO, 2004. Marktoberdorf,
Germany.

OASIS Technical Committee. WSRF: The Web Service Resource Framework,
http://www.oasis-open.org/committees/wsrf.

OMG. Corba components, version 3. Document formal/02-06-65, June 2002.

F. Oquendo. w-ADL: An Architecture Description Language based on the
Higher Order Typed ?-Calculus for Specifying Dynamic and Mobile Software
Architectures. ACM Software Engineering Notes, 29(3):15-28, May 2004.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 46

[59] F. Plasil P. Jezek, J. Kofron. Model checking of component behavior specifi-
cation: A real life experience. In International Workshop on Formal Aspects
of Component Software (FACS’05), Macao, October 2005. Electronic Notes in
Theoretical Computer Science (ENTCS).

[60] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Transactions on Software Engineering, 28(11), nov 2002.

[61] WWU Miinster PVS work group. The higher-order component web site.
http://pvs.uni-muenster.de/pvs/forschung/hoc.

[62] A. Sistla. Theoretical issues in the Desing and Verification of Distibuted Sys-
tems. PhD thesis, Harvard University, 1983.

[63] A. Stewart, J. Gabarré, M. Clint, T. Harmer, P. Kilpatrick, and R. Perrott.
Estimating the Reliability of Web and Grid Orchestrations, 2006. Presented
at the CoreGRID Integration Workshop 2006, Poland.

[64] A. Stewart, J. Gabarré, M. Clint, T. Harmer, P. Kilpatrick, and R. Per-
rott. Managing grid computations: an ORC-based approach. In B. Di Mar-
tino, J. Dongarra, and L. T. Yang, editors, Proc. of the The Fourth Inter-

national Symposium on Parallel and Distributed Processing and Applications
(ISPA’2006), 2006. to appear.

[65] The Sun Grid Engine project. http://gridengine.sunsource.net.

[66] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[67] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Logics for Concurrency: Structures Versus Automata, Proc. of International
Workshop, volume 1043 of Lecture Notes in Computer Science, pages 238—266.
Springer-Verlag, 1996.

CoreGRID - Network of Excellence

CoreGRID FP6-004265 47

6 Glossary

Acronym H Meaning

ADL
AM
CAM
CCA
CCM
CTL
DAG
D.PM.xx
DoW
FCM
GAM
GCM
GRAM
HOC
HOC-SA
INRIA
JPA
LCC
MAM
MDS
MPI
NGG
NoE
OOP
0OS
RPC
SMP
SOAP
SPMD
QoS
QUB
UDELFT
UNIPI
UoW
UpC
VP
WPx
WS
WSDL
WSRF
WWU Muenster

Architectural Description Language

Application Manager

Component Application Manager

Common Component Architecture

CORBA Component Model

Computational Tree Logic

Direct Acyclic Graph

Deliverable No. xx of the Programming Model Institute
Document of Work

Fractal Component Model

Grid Abstract Machine

Grid Component Model

Globus Resource Allocation Manager

Higher Order Components

Higher Order Component - Service Architecture

Institut National de Recherche en Informatique et en Automatique

Joint Program of Activities
Life-Cycle Controller

Module Application Manager
Monitoring and Discovery System
Message Passing Interface

Next Generation Grid (expert group)
Network of Excellence

Object Oriented Programming
Operating System

Remote Procedure Call
Symmetric Multi Processor
Single Object Access Protocol
Single Program Multiple Data
Quality of Service

Queen’s University of Belfast
University of Delft

University of Pisa

University of Westminster
Universitad Politecnica de Cataluna
Virtual Processor(s)

Work Package x

Web Service(s)

Web Service Definition Language
Web Service Resource Framework
University of Muenster

CoreGRID - Network of Excellence

