CoreGRID: European Research Network on
Foundations, Software Infrastructures and
Applications for large scale distributed, GRID and
Peer-to-Peer Technologies

EIA-FR contribution to WP3

CoreGRID Pierre Kuonen, EIA-FR

http://www.coregrid.net
Pierre.kuonen@eif.ch

ParoC++
An Object-oriented model for HPC on the GRID (p2p)
Programming model level
Parallel object model

High level abstraction: to escape from send/receive paradigm

Programming tool level

ParoC++ programming system (C++ extension)
Developing and deploying Grid applications and components

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

The Parallel object model

Generalization of sequential objects (passive)
— Obijects are distributed on the GRID but....

The “good” proprieties of OO programming paradigm must be
conserved

— Interaction between objects by method invocations

— Encapsulation
— Inheritance
— Polymorphism
Parallel object
— Various method invocation semantics

— Transparent and dynamic object allocation guided by the
object resources need.

— Shareable, “transmissible”
— No explicit send/receive

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Parallelism support

Inter-object parallelism
— Asynchronous invocations
— Dynamic parallel object creation/destruction
— Passing parallel objects as arguments

— Control: Synchronous/Mutex method
invocations

Intra-object parallelism
— Concurrent method invocations

— Synchronization : block mutex and event
raise/wait

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Tnformation Society
Technologies

(ore GRD—

____——'——'"r

Methods invocations semantic

Caller side
- Synchronous invocation
Return when finished
- Asynchronous invocation
Return immediately

Object side
- Sequential
Partial serialization of invocations
- Mutex
Full serialization of invocations
- Concurrent
Concurrent execution

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Example : Integer Class

File: integer.h

class Integer ({
public:
Integer (int wanted, int minp);
Integer (char *machine) ;
void Set(int wval) ;
int Get();
void Add(Integer &other);

private:

1:
2:
3:
4:
5:
6:
7:
8:
9:

int data;

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Tnformation Society
Technologies

(ore GRD—

____——'——'"r

Example: Implementation
File: integer.cc

#include "integer.h"

Integer: :Integer (int wanted, int minp)

{}

Integer: :Integer (char* machine)

{}

void Integer: :Set(int wval) {data=val;}
{data=val;}

int Integer: :Get()

1
2
3
4
5
6
7
8
9

{return data;}
void Integer: :Add(Integer &other)
{data=other.Get () ;}

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Tnformation Society
Technologies

(ore GRD—

e
Example: The main program

File: main.cc

#include "integer.ph"
int main(int argc, char **argv) {
try { Integer 01(100,80), o2("localhost")
ol.Set(l); o2.Set(2);
ol.Add(o02) ;
cout<<"Value="<<ol.Get() ;
}

catch (paroc exception *e) {

1
2
3
4
5
6
7
8
9

cout<<"Object creation failure";

return -1;

}

return O0;

}

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Tnformation Society
Technologies

(ore GRD—

____——'——'"r

Syntax (ParoC++ = C++ extension)
File: integer.h

Integer {
public:
Integer (int wanted, int mini)
Integer (char *machine)
void Set (int wval);

int Get () ;
void Add(Integer &other);

private:

1:
2:
3:
4:
5:
6:
7:
8:
9:

int data;

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Execution

#include "integer.ph"
int main(int argc, char **argv) {
try {| Integer 01(100,80), o2("localhost");
ol.Set(l) Jlo2.5et (2);
ol.Add (02) ;
cout<<"Value="<<o0l.Get () ;
}

1
2
3
4
5
6
7
8

catch (paroc exception *e) {

cout<<"Object creation failure";

return -1; ‘
}
return 0; .

ol.Add (02)
}

cout<<"Value="<<0l.Get () ;

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Test case 2: Hydro@Alpine3D project
a collaboration with SLF/Davos

All Models are WRONG but some are USEFUL !
Michael Lehning, SLF

