
Managed by

CoreGRID: European Research Network on
Foundations, Software Infrastructures and

Applications for large scale distributed, GRID and
Peer-to-Peer Technologies

EIA-FR contribution to WP3
CoreGRID Pierre Kuonen, EIA-FR
http://www.coregrid.net
Pierre.kuonen@eif.ch

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 2

ParoC++
An Object-oriented model for HPC on the GRID (p2p)
Programming model level

Parallel object model
High level abstraction: to escape from send/receive paradigm

 Programming tool level
ParoC++ programming system (C++ extension)
Developing and deploying Grid applications and components

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 3

The Parallel object model
Generalization of sequential objects (passive)

– Objects are distributed on the GRID but….
• As close as possible from the semantic of sequential model !

The “good” proprieties of OO programming paradigm must be
conserved
– Interaction between objects by method invocations
– Encapsulation
– Inheritance
– Polymorphism
– …

Parallel object
– Various method invocation semantics
– Transparent and dynamic object allocation guided by the

object resources need.
– Shareable, “transmissible”
– No explicit send/receive

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 4

Parallelism support

Inter-object parallelism
– Asynchronous invocations
– Dynamic parallel object creation/destruction
– Passing parallel objects as arguments
– Control: Synchronous/Mutex method

invocations
Intra-object parallelism

– Concurrent method invocations
– Synchronization : block mutex and event

raise/wait

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 5

Methods invocations semantic

Caller side
- Synchronous invocation

Return when finished
- Asynchronous invocation

Return immediately

Object side
- Sequential

Partial serialization of invocations
- Mutex

Full serialization of invocations
- Concurrent

Concurrent execution

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 6

Example : Integer Class

File: integer.h

1: class Integer {
2: public:
3: Integer(int wanted, int minp);
4: Integer(char *machine);
5: void Set(int val);
6: int Get();
7: void Add(Integer &other);
8: private:
9: int data;
10: };

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 7

Example: Implementation

File: integer.cc

1 : #include "integer.h"
2 : Integer::Integer(int wanted, int minp)
3 : {}
4 : Integer::Integer(char* machine)
5 : {}
6 : void Integer::Set(int val) {data=val;}
7 : {data=val;}
8 : int Integer::Get()
9 : {return data;}
10: void Integer::Add(Integer &other)
11: {data=other.Get();}

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 8

Example: The main program

File: main.cc

1 : #include "integer.ph"
2 : int main(int argc, char **argv) {
3 : try { Integer o1(100,80), o2("localhost");
4 : o1.Set(1); o2.Set(2);
5 : o1.Add(o2);
6 : cout<<"Value="<<o1.Get();
7 : }
8 : catch (paroc exception *e) {
9 : cout<<"Object creation failure";
10: return -1;
11: }
12: return 0;
13: }

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 9

Syntax (ParoC++ = C++ extension)

File: integer.h

1: class Integer {
2: public:
3: Integer(int wanted, int mini);
4: Integer(char *machine);
5: void Set(int val);
6: int Get();
7: void Add(Integer &other);
8: private:
9: int data;
10: };

parclass Integer {

@{power>=wanted?: mini;};

@{host=machine;};

seq async void Set(int val);
conc int Get();
mutex void Add(Integer &other);

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 10

User

Localhost

Execution

main

O1

O2

o1(100,80)

o2("localhost") > 80 Mflops

o1.Set(1)
o2.Set(2)

o1.Add(o2)

1

2

O1

3

1 : #include "integer.ph"
2 : int main(int argc, char **argv) {

3 : try { Integer o1(100,80), o2("localhost");
4 : o1.Set(1); o2.Set(2);

5 : o1.Add(o2);

6 : cout<<"Value="<<o1.Get();

7 : }

8 : catch (paroc exception *e) {
9 : cout<<"Object creation failure";

10: return -1;
11: }

12: return 0;
13: }

cout<<"Value="<<o1.Get();

3

Remote Host

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 11

Test case 2: Hydro@Alpine3D project
 a collaboration with SLF/Davos

Snow research
 + Numerical simulation
 = Big real life application
Objective:

To parallelize the existing Alpine3D application
on a Grid-like environment
–ParoC++ has been selected

•Programming tool for parallelizing and coupling
different application modules

•Portal to deploy Alpine3D to the Grid
All Models are WRONG but some are USEFUL !

Michael Lehning, SLF

Processes at the Snow - Atmosphere Interface

Shortwave Radiation

Wind

Crus
t Fo

rmatio
n

Metam
orp

hism
 of

 lay
ere

d S
now

pac
k

Exchange of
Latent Heat
Sensible Heat
Longwave Radiation

Saltation

Erosion

SuspensionSnow Fall

Rain

Deposition

G
round H

eat Flux

Sublimation

W
ater Transport

Runoff

Insulation

Ventilation

Phase Change

H
eat Transport

Wind Stress
Abrasion

* *

* *
**

**
**

*
* *

** ***
*

*
**

*
*

**
* *

*
* *

*

All Models are WRONG but some are USEFUL !
Michael Lehning, SLF

