
Testing Service Composition

Antonio Bucchiarone1?, Hernán Melgratti1, and Francesco Severoni2

1 IMT Lucca, Italy
[a.bucchiarone,h.melgratti]@imtlucca.it

2 Dipartimento di Informatica, Università di L’Aquila
f.severoni@di.univaq.it

Abstract. Service Oriented Computing (SOC) is aimed at providing the bases
for building software by assembling independent, loosely coupled services. As
any software development activity, also building a composite service requires
strategies for performing quality assessment of applications and, in particular,
testing. In this paper, we analyse the main alternatives for testing compositions
(either in the form of choreographies or orchestrations), and survey current pro-
posal for doing it.
Keywords: Testing, Orchestration, Choreography

1 Introduction

Many recent efforts, mainly coming from the industry, have given birth to sev-
eral (proposals for) programming/description languages tailored to the specifi-
cation of web service integration, generally known as web service composition
languages (WSCL), like BPML [5], XLANG [17], WSFL [13], WS-BPEL [4], WS-
CDL [21], and WSCI [22].

While much effort has been spent on services and service composition spec-
ification, only recently the focus has been on the validation and verification of
service and service composition. Few testing techniques for SOC applications
have have been recently proposed. The goal of this research paper is to anal-
yse existing research work on service-oriented testing, so to highlight different
alternatives for testing service oriented applications that have been described
using standard web service composition languages. In such languages, services
can be composed by following the two complementary views of choreography
and orchestration. Web services composition address aggregation by following
two complementary views: Orchestration and Choreography.

The orchestration view focuses on the description of the computation carried
on by a single partner. In this way, an orchestration exposes the internal logic of

? Antonio Bucchiarone is also supported by the Marie Curie Host Fellowships for Transfer of
Knowledge (FP6-2002-Mobility 3 Proposal n. FP6-14525) and he collaborates with Nokia
Siemens Networks, Lisboa, Portugal.



2

a single component by specifying the control-flow structure and the data flow
dependencies of that particular component. The specification of the composite
service, called the orchestrator, states the order (i.e., the flow) in which compo-
nent services are invoked. Hence, the basic primitives for writing orchestrations
concern mainly to the interaction with other services: (i) invoking services, (ii)
receiving an answer, (iii) accepting an invocation, and (iv) answering an invoca-
tion. The flow of such interactions can be specified either: (i) in a structured way,
by using the operators of sequence, iteration and branching (as in any procedural
language), and the concurrent flows; or (ii) in an unstructured way, by specify-
ing the pair-wise dependencies among basic activities (i.e., by writing links).
Typical orchestration languages are XLANG, WSFL, and (executable) WS-BPEL.

The choreography view exposes the flow of interaction among all involved
parties: every participant is aware of the fact that it is taking part of compo-
sition and, thus, of the way it should interact. Choreography languages allow
for the definition of protocols that parties should follow. There are two main
approaches to define choreographies: (i) the global model, in which a proto-
col describes from a global perspective the messages exchanged by all parties,
and (ii) the interaction model in which each service describes the temporal and
logical dependencies among the messages it exchanges, i.e., a kind of interface
definition. WS-CDL adopts the global model style, while WSCI and abstract pro-
cesses of WS-BPEL are instances of the interaction model.

Consequently, we should distinguish between choreography-based and or-
chestration-based testing. Moreover, since both units (i.e., the services) and as-
semblies (i.e., the composed services) can be subject of malfunctions, both unit
and integration testing must be taken into consideration.

The following sections are organized as follows: Sections 2 and 3 discuss
the alternative ways for testing respectively orchestrations and choreographies.
Section 4 surveys the approaches proposed in the literature for testing service
compositions. Conclusions and future works are drawn in Section 5.

2 Testing Orchestrations

This section discusses the possibilities for performing unit and integration test-
ing of orchestrations. We advocate the two well-known levels of testing: unit and
integration. We assume that no information about the behaviour of the partners
is available (i.e., the choreography is not specified).

2.1 Unit testing

Unit testing is intended to find bugs on a particular unit (or basic service). There
are two main approaches for testing units: (i) specification-based or black-box,



3

in which test cases are generated from the specification without any knowledge
about the implementation, and (ii) implementation-based or white-box, in which
test cases are selected by taking advantage of the actual code.

An orchestrator codes the behaviour of a particular partner and, hence, it
can be seen as a unit of code. When the orchestration is just the specification
of a composite service (e.g., when the orchestration is implemented in a lan-
guage different from the specification), then the test suite generated from the
orchestration is part of the black-box testing plan. Differently, orchestrations
are executable specifications and can be considered as the actual code of the
services. Hence, the generation of test cases from an orchestrator is white-box
testing. In this case, we actually test the specification, since we assume the or-
chestration engine to be correct. Note that the in the first case we actually test
the implementation by assuming the specification to be correct. We remark that
testing orchestrations could be two-fold:

– Functional black-box testing of implementations: when the orchestrator is
implemented in a language different from the specification language.

– Functional white-box testing of the specification: when the description of
the orchestrator coincides with its implementation.

Test case generation Test case generation from orchestrations can be done by
applying the principles introduced by white-box testing of code, particularly,
test generation from control and data flow abstractions [14]. Either when the or-
chestrator is specified by structured or unstructured flows, its computation struc-
ture can be represented as a flowgraph, as for any ordinary program. (We refer
to [1] for the construction of ordinary flowgraphs.) Nevertheless, flowgraphs for
orchestration languages should manage the following distinctive features.

– Concurrency: flowgraphs should model parallelism, i.e., nodes that fork the
control flow of the program. Consequently, a computation is not represented
as a sequence but as a graph (i.e., a partial order).

– Links or synchronization: several parallel paths of executions can be syn-
chronized by links. Those links map directly to edges on the flowgraph.

– Exceptions and transactional scopes: flowgraphs should model flows of ex-
ecutions that are activated when some activity fails.

– Events and timers: flow structures should accommodate executions that are
activated at a particular time.

Starting from a flowgraph, test cases can be derived by taking advantage of
the usual adequacy criteria (see [1]), concerning both:

– control-flow, i.e., by taking into account the parts of the graph that are exer-
cised, like statement, branch, condition, and path coverage.



4

– data-flow, i.e., by considering the data dependencies among activities, such
as definition-use, all-definitions, all-uses, all-definition-use-path coverage.

Moreover, orchestrators are reactive systems, since basic operations are re-
lated to message exchanges. Hence, a test case should specify the order of the
interactive events [16], for instance, by considering a test case as a particular
subtree s of the flowgraph extended with a causal order among the concurrent
events of s. Such causal orderings can be selected by following some adequacy
criteria, like some-interleaving and all-interleavings.

Finally, any test case should be equipped with the expected result: a test ora-
cle, i.e., a mechanism for determining the behavioural correctness of executions.
As tradition, oracles could be generated from software specifications (see [16])
and, in this case, it will depend on the type of testing we are performing:

– For black-box testing of implementations: oracles could be generated di-
rectly from the orchestrator definition, i.e., the actual implementation of the
orchestrator should mimic its definition. Hence, the expected result is given
by the observed outputs in the order defining the test case.

– For white-box testing of the specification: oracles should be generated from
a different specification of the behaviour of the component. In the service
realm, they could be generated from the definitions of the choreographies
the orchestrator is involved in.

Test execution The execution of orchestration testing resembles ordinary test-
ing since it requires:

– the construction of drivers and stubs, or mock objects, simulating the be-
haviour of other parts of the system. Since orchestrations provide no in-
formation about the behaviour of other partners, they should be defined by
other specifications.

– monitoring the execution, i.e., the unit under test should be run with the
corresponding inputs, and all observable effects should be collected.

– Once the test case has been run, it should be decided whether the unit be-
haves as expected for that particular test case or not.

2.2 Integration

Integration testing is aimed at exercising the interaction among components and
not just single units. Hence, an integration test case involves the execution of
several components. A plan for integration testing is based on an integration
strategy, i.e., the order in which components are put together. The traditional
strategies are: top-down, bottom-up, threads, big-bang, critical modules.

For testing a single orchestrator we should overcome two main problems:



5

– the lack of information about the behaviour of involved components: an or-
chestrator is like the description of a top-level module in a functional decom-
position. Hence, the behaviour of particular components is underdefined.
From the orchestration point of view, the protocol followed by components
is given by the interactions they have with the coordinator.

– impossibility of exercising third party services in testing mode: some com-
ponents are out of the sphere of control of who is developing the orchestra-
tion, and hence it is frequently unlikely that those services can be used for
running tests for free.

The second problem may prevent or impose particular constraints to the use
of some integration strategies, since the executions of particular components
should be avoided or minimized in some way. Clearly, this may prohibit the use
of strategies like big-bang. Instead, the first point makes strategies like bottom-
up and threads infeasible, since we lack from a description of the complete
structure of the systems. Consequently, the most viable integration strategy is
the top-down, in which components are incrementally introduced. Information
about critical components (for instance, the number of interactions with the co-
ordinator) can be used for deciding the order in which such components are
introduced.

3 Testing Choreographies

Choreographies capture the interactions among services. Consequently, testing
choreographies resembles testing of systems described by interaction models.
This section reviews alternative strategies for doing this task.

3.1 Unit Testing

A unit is a particular partner of the choreography, and unit testing is aimed at
evaluating whether a particular partner follows an interaction pattern that is con-
formant to the agreed protocol (i.e., the choreography). This testing is known
as conformance testing, since it is intended to certify the capability of interac-
tion of a party in the composition. Conformance testing is a kind of functional
black-box testing, because test cases are generated from the specification of the
behaviour of partners, without any knowledge about their implementations.

Test case generation Global and local styles of choreography descriptions pro-
vide an operational definition of the protocols followed by services. Global pro-
tocols describe the interaction among all agents, while local protocols define the



6

order in which messages are received and sent by a particular component. Con-
sequently, we can reuse techniques developed for testing object or component
based systems at the unit level. Most proposals are based on test case generation
from finite state machines describing the behaviour of units. We omit here the
details about these techniques and refer the interested reader to [11,8], and we
discuss the main aspects of applying them to choreographies.

Firstly, local choreographies provide a kind of state machine description of
the protocol run by a particular service. For instance, abstract processes of BPEL
are structured programs containing non determinism, which can be modelled by
state machines. Since such programs handle data and their behaviours may de-
pend on the particular values of some variables, a comprehensive testing model
should consider advanced notions of state machines or, alternatively, suitable
abstractions, similarly to object oriented systems. The second point is whether a
service is described by using (i) a single point of view, i.e., like participating in
only one choreography or (ii) a multiple point of view, i.e., when the service is
described by several choreographies (i.e., the party plays different roles in dif-
ferent choreographies). In the first case, test cases are generated from the unique
description of the protocol (i.e., one state machine), while in the second case,
tests should consider the information provided by all choreographies. In such
situation, there are two alternatives: (i) to consider any model in isolation, or (ii)
to consider the complete abstract behaviour of the partner synthesized from all
choreographies associated with that party.

Instead, global choreographies are partial orders of message exchanges, like
interaction diagrams. Hence, the state machines describing components could
be inferred by using standard techniques for deriving state machines from inter-
action diagrams [7,20]. Also here, we may generate state machines either from
a unique description or from multiple models.

Given the state machine model of a unit, a test case is obtained by selecting
a particular path of the state machine. Analogously to control-flow coverage,
we have adequacy criteria based on the coverage of the state machine, like all-
states, all-transitions, or the W-method [6].

Oracle generation can be performed as for functional black-box testing of
orchestrations: the expected outputs can be recovered from the particular path
in the state machine. Nevertheless, such information may be incomplete. For
instance, a choreography may specify the receiver of a message but not the
exact content. When such information is relevant, extra information should be
provided by other specifications.



7

Style Testing Level Model Approach
Orchestration Unit BPEL Mayer and Lübke [15]

Yuan et al. [23]
Zheng et al. [24]

OWL-S Huang et al. [12]
Local Choreography Unit Finite State Machines Bertolino and Polini [3]

Graph Grammars Heckel et al. [9]
Integration Finite State Machines Bertolino and Polini [3]

Graph Grammars Heckel et al. [10]
Global Choreography Unit Scenarios Tsai et al. [18]

Tsai et al. [19]
Integration Scenarios Tsai et al. [18]

Tsai et al. [19]
Global Choreography and
Orchestration

Unit BPEL, State Machines Li et al. [14]

Table 1. Classification of Proposals for Testing WS Composition

3.2 Integration Testing

In addition to the strategies for doing integration testing of orchestrations, we
can take advantage of the description of the interactions among partners for
selecting test cases.

Test case generation For generating test cases we may reuse techniques like [2]
that take advantage of the interaction model for selecting cases that exercise
interesting patterns of interactions. In particular, these approaches start from
the behavioural specification of the services (e.g., state machines) and a test
directive (e.g., a sequence diagram), and produces as output a set of test cases.
The obtained test cases are paths of the state machines that cover the given
directive (or scenario). In other terms, each test case indicates the inputs of
the components that allow us to obtain the interaction expressed by the test
directive. For choreography testing, the specification of the behaviour of each
service can be obtained either from the local choreography or derived from the
global choreography as in the case of unit testing. The test directive may be
synthesized from the global choreography.

4 Classification of proposals

This section discusses the approaches proposed in the literature and classifies
them accordingly to the alternatives introduced in the previous sections. Table 1
summarizes the results of our classification.



8

Unit testing for orchestration have been addressed by several works. Mayer
and Lübke [15] have proposed a framework for performing white-box unit test-
ing. Nevertheless, non systematic way for defining test cases is presented. Dif-
ferently, Yuan et al. [23] provide a technique for white-box testing generation
based on an adaptation of classical control flow coverage criteria. With the same
aim, Yuan et al. [23] present a tool that uses model checking for generating test
cases satisfying flow and data coverage criteria.

Huang et al. [12] propose an integrated process for translating automatically
an OWL-S specification (i.e., the composition model) into a C-like specification
language, which can be processed by a concurrent version of the model checker
BLAST. They can generate positive and negative test cases while performing
model checking of a particular formula. Such formula is provided by the user
and not by the specification.

A general framework for doing unit black box testing of a local choreogra-
phy is presented in [3]. This proposal introduces a testing phase before a service
is registered into the Universal Description Discovery and Integration (UDDI)
registry. The idea is that UDDI registering role is extended to play also the role
of an external testing organism that validates the conformance of the service
w.r.t. the published interface (interfaces are modelled as local choreographies
in the form of finite state machine). In the line of conformance testing, a black
box approach for units is presented in [9], where choreographies are contracts
describing the mutually agreed behaviour among two partners. Contracts are
represented as graph grammars, and test cases are derived automatically from
them.

A basic form of integration testing checking the compatibility among two
services that are described by local choreographies has been addressed in [3,10].
These approaches use an operational model of the interface of the services (e.g.,
a finite state machine or a graph grammar) for generating test cases that check
the compatibility of a published service against the requirements of a particular
client. As in the previous case, such role is played by the UDDI registering
role. In the case of [3] the behaviour of a service is modelled as a finite state
machines, while [10] uses graph grammars.

The proposal in [18] tackles the generation of test cases from scenarios (i.e.,
a kind of global choreography). The generation method is inherited from previ-
ous works of the authors for testing object oriented software. No particular at-
tention to aspects related with service composition (mainly correlation and long
running transactions) are taken into account. The proposal in [19] is analogous.

Li et al. [14] propose a testing technique of BPEL specifications that uses
a mix of orchestration and local choreography information for generating test
cases at the unit level. This proposal is focused on the creation of a test frame-



9

work for giving support to the execution of test cases, providing an infrastructure
for invoking to and handling answers from particular services.

5 Conclusion and Future works

This work is an initial effort for understanding the current state of testing of web
service composition. The main conclusion is that, although several techniques
and methodologies can be reused in this particular context, the discipline is still
quite immature. Many aspects of testing from orchestrations and choreogra-
phies are still in dark corners. As far as orchestration is concerned, we highlight
the fact that typical aspects of orchestration languages, such as compensations,
timed events, correlation sets are overlooked when mapping orchestrations to
traditional control and data flow models. At the same level, there is no much
insight about the conceptual kind of testing (implementations or specifications)
when deriving test cases and, consequently, no much concerns about the gen-
eration of oracles. Similarly, to the best of our knowledge no work discusses
strategies for doing integration testing from orchestrations.

As far as choreographies is concerned, the situation is quite similar. In par-
ticular, the mappings from real orchestration languages to particular formalisms
(e.g., graph grammars and finite state machines) are still unclear. Crucial points
are the mapping of infinite models to finite ones, for instance, by disregarding
data. In such cases, how we generate oracles from such models to compare ac-
tual executions. How do we test a service involved in different choreographies?
We consider such specifications as independent or all together? In the later case,
how we combine the information given by different models.

Moreover, to the best of our knowledge there has been no effort in providing
guidelines, criteria, approaches (better if supported by evidence) for building
testing plans for service compositions.

Acknowledgment

Authors thank Henry Muccini for valuable insights about this topic.

References

1. B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York,
NY, USA, 1990.

2. A. Bertolino, E. Marchetti, and H. Muccini. Introducing a reasonably complete and coherent
approach for model-based testing. Electr. Notes Theor. Comput. Sci., 116:85–97, 2005.

3. A. Bertolino and A. Polini. The audition framework for testing web services interoperability.
In EUROMICRO-SEAA, pages 134–142, 2005.



10

4. BPEL Specification. version 1.1. Available at http://www.ibm.com/developerworks/
library/ws-bpel, May 2003.

5. Business process modelling language (BPML). Available at http://www.bpmi.org.
6. T. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Software

Eng., 4(3):178–187, 1978.
7. S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection

based on finite state models. IEEE Trans. Software Eng., 17(6):591–603, 1991.
8. S. Gnesi, D. Latella, and M. Massink. Formal test-case generation for uml statecharts. pages

75–84. IEEE Computer Society, 2004.
9. R. Heckel and M. Lohmann. Towards contract-based testing of web services. Electr. Notes

Theor. Comput. Sci., 116:145–156, 2005.
10. R. Heckel and L. Mariani. Automatic conformance testing of web services. In FASE, pages

34–48, 2005.
11. H. Hong, Y. Kwon, and S. Cha. Testing of object-oriented programs based on finite state

machines. apsec, 00:234, 1995.
12. H. Huang, W. Tsai, R. Paul, and Y. Chen. Automated model checking and testing for com-

posite web services. In ISORC, pages 300–307, 2005.
13. F. Leymann. WSFL Specification. version 1.0. Available at http://www-306.ibm.com/

software/solutions/webservices/pdf/WSFL.pdf, May 2001.
14. Z. Li, W. Sun, Z. Jiang, and X. Zhang. Bpel4ws unit testing: Framework and implementation.

In 2005 IEEE International Conference on Web Services (ICWS 2005), pages 103–110, 2005.
15. P. Mayer and D. Lübke. Towards a BPEL unit testing framework. In TAV-WEB ’06: Pro-

ceedings of Workshop on Testing, analysis, and verification of web services and applications,
pages 33–42. ACM Press, 2006.

16. D. Richardson, S. Leif Aha, and T. Owen O’Malley. Specification-based test oracles for
reactive systems. In ICSE ’92: Proceedings of the 14th international conference on Software
engineering, pages 105–118, New York, NY, USA, 1992. ACM Press.

17. S. Thatte. XLANG: Web Services for Business Process Design. Available at http://www.
gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm, 2001.

18. T. Tsai, R. Paul, L. Yu, A. Saimi, and Z. Cao. Scenario-based web service testing with
distributed agents. E86-D(10):2130–2144, 2003.

19. W. Tsai, R. Paul, W. Song, and Z. Cao. Coyote: An xml-based framework for web services
testing. In HASE, pages 173–176, 2002.

20. J. Whittle and J. Schumann. Generating statechart designs from scenarios. In ICSE ’00:
Proceedings of the 22nd international conference on Software engineering, pages 314–323.
ACM Press, 2000.

21. Web Services Choreography Description Language. Version 1.0. Available at http://www.
w3.org/TR/2004/WD-ws-cdl-10-20040427/, April 2004.

22. WSCI Specification. version 1.0. Available at http://www.w3.org/TR/wsci/, August
2002.

23. Y. Yuan, Z. Li, and W. Sun. A graph-search based approach to bpel4ws test generation.
In Proceedings of the International Conference on Software Engineering Advances (ICSEA
2006), page 14. IEEE Computer Society, 2006.

24. Y. Zheng, J. Zhou, and P. Krause. A model checking based test case generation framework
for web services. In Proceedings of the International Conference on Information Technology
(ITNG’07), pages 715–722. IEEE Computer Society, 2007.


