
Received 16 September 2019; Revised daymonth 2019; Accepted daymonth 2019
DOI: xxx/xxxx

SPECIAL ISSUE PAPER

Latency-aware adaptivemicro-batching techniques for
streamed data compression on graphics processing units
CharlesM. Stein1 | Dinei A. Rockenbach1,2 | Dalvan Griebler*1,2 | Massimo
Torquati3 | GabrieleMencagli3 | Marco Danelutto3 | Luiz G. Fernandes2

1Laboratory of Advanced Research on Cloud
Computing (LARCC), Três deMaio Faculty
(SETREM), Rio Grande do Sul, Brazil
2School of Technology, Pontifical Catholic
University of Rio Grande do Sul (PUCRS), Rio
Grande do Sul, Brazil
3Computer Science Department, University of
Pisa (UNIPI), Pisa, Italy
Correspondence
*Dalvan Griebler, School of Technology,
Pontifical Catholic University of Rio Grande do
Sul (PUCRS), Ipiranga Avenue, 6681, Porto
Alegre/RS, Brazil.
Email: dalvan.griebler@edu.pucrs.br

Summary
Stream Processing is a parallel paradigm used in many application domains. With the advance of
Graphics Processing Units (GPUs), their usage in stream processing applications has increased as
well. The efficient utilization of GPU accelerators in streaming scenarios requires to batch input
elements in micro-batches, whose computation is offloaded on the GPU leveraging data paral-
lelism within the same batch of data. Since data elements are continuously received based on
the input speed, the bigger the micro-batch size the higher the latency to completely buffer it
and to start the processing on the device. Unfortunately, stream processing applications often
have strict latency requirements that need to find the best size of themicro-batches and to adapt
it dynamically based on the workload conditions as well as according to the characteristics of
the underlying device and network. In this work, we aim at implementing latency-aware adap-
tive micro-batching techniques and algorithms for streaming compression applications targeting
GPUs. The evaluation is conducted using the Lempel-Ziv-Storer-Szymanski (LZSS) compression
application considering different inputworkloads. As a general result of ourwork,wenoticed that
algorithms with elastic adaptation factors respond better for stable workloads, while algorithms
with narrower targets respond better for highly unbalancedworkloads.
KEYWORDS:
Stream Processing, Service Level Objective, Parallel Programming, Data Compression Algo-
rithms, Dynamic Reconfiguration, Stream Parallelism

1 INTRODUCTION
Streamed data compression algorithms are used in several real-world systems such as data storage services, web protocols and in manymobile ad-
hoc network protocols. In the context of Internet of Things (IoT), data compression is frequently used to improve data transferring 1 due to limited
network bandwidth. Based on the specific technological scenario where data compression is employed, it might require different non-functional
requirements concerning either performance (latency and/or throughput) or power consumption 2 (e.g., when data compression is applied on
embedded devices). Such non-functional requirements can often be satisfied by leveraging heterogeneous multicores equipped with accelerators
specialized in compression activities 3. When such specialized co-processors are not available, Graphics Processing Units (GPUs) still represent
interesting candidates for offloading data compression tasks, also because they are becomingpopular in IoT embedded systems 4. However, the effi-
cient exploitation of GPU devices is considered challenging in the context of stream processing 5, in particular when the target performancemetric

Abbreviations: GPU, graphics processing unit; SLO, service level objective; FAF, fixed adaptation factor; PBAF, percentage-based adaptation factor;
LZSS, Lempel-Ziv-Storer-Szymanski; MBAF, multiplier-based adaptation factor
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to optimize is latency. This is because GPUs generally work well when a high volume of data is available at the same time, condition that in stream
processing applications can be obtained by properly batching input data before processing them as a whole.
Several studies 6,7,8 proposed new parallel data compression algorithms with the aim of maximizing GPU usage. One of the most effective ways

to increase the system throughput is to organize the computation as a pipeline where one or more stages offload batches of input data elements
into the GPU. This approach has been pursued in our previous work for the Lempel-Ziv-Storer-Szymanski (LZSS) compression algorithm 8. We
observed that the size of the offloaded batch plays an important role having a significant impact both on the system throughput and on its end-to-
end latency 5. The ideal batch size depends on several factors, among them, the current workload and the input data rate. The effect of using large
batches is generally to increase the system throughput at the expense of higher latency due to a longer buffering phase 9.
In real stream processing scenarios, the optimal micro-batch size, i.e. the one achieving the desired trade-off between throughput and latency, is

not a constant value. Workload fluctuations on stream processing applications are very common, changing the frequency at which new inputs are
received by the system and the average computational cost of the processing of each individual input element. This problem can be tackled using
dynamic techniques that adapt themicro-batch size based on themeasured behavior of the systemwith the goal of achieving a desired Service Level
Objective (SLO) 2. Generally, we intend SLO in this paper has an acceptable value for a given configuration parameter that keep the average latency
within a desired region, i.e. lower/higher than amaximum and aminimum threshold identified by the user.
It is widely acknowledged that implementing dynamic adaptations tomeet specific SLOs is a complex problem to face. GPU accelerators add fur-

ther complexity with respect to CPUs-only dynamic adaptation 10,11,12, because the number of underlying parameters to consider become greater.
In GPU-based systems, the dynamic thread creation and synchronization can add significant overheads because the hardware has been mainly
designed for data parallelism, where a batch of data is processed synchronously by many lightweight threads. Furthermore, most of the current
heterogeneous systems are based on PCI interconnects that make the overhead of data transfers significant if not properly dealt with 13,14. Only
a small number of research papers implemented adaptive micro-batching for stream processing applications (a discussion of them is presented in
Section 2). A significant fraction of the proposed algorithms and strategies were designed to reach the maximum performance as possible on a tar-
get platform primarily in terms of sustained input rate (throughput). For example, GASSER 15 automatically tunes the micro-batch size to optimize
throughput. However, it does this by assuming a stationary workload (e.g., stable input rate) and once the optimal size has been found it is never
recomputed.
In this work, we study the problem of providing adaptive micro-batching solutions. To this end, we focus on data compression applications (and

in particular to LZSS) owing to their importance in IoT domains. Our idea is that the application user is in charge of expressing the desired SLO
latency requirements, and the underlying system is able to meet such requirements automatically over the entire computation. To do that, we use
a mix of reactive adaptation approaches and closed-loop control algorithms that represent the core contribution of this paper. Finally, we validate
the proposed techniques using real-world workloads in order to provide a credible analysis.
This paper is structured as follows: Section 2 discusses the related work. Section 3 describes the scenario and the design choices, the streamed

data compression application adopted, our strategy based on a dynamic loop control for adapting micro-batches at run-time, and the four reactive
algorithmsproposed. Section4provides adescriptionof theexperiments conductedbyusingdifferentworkloads and theevaluationof theobtained
results Finally, Section 5 concludes this paper and briefly presents future directions.

2 RELATEDWORK
When reviewing the literature, we identified only few works tackling the problem of micro-batch adaptation in stream processing applications.
Some of them focused on multi-core architectures 9,16,11,12, while others tackled a similar problem for window-based streaming operators on het-
erogeneous systems equipped with GPUs 15,17. To the best of our knowledge, this paper presents the first attempt to provide algorithms for the
dynamic adaptationof themicro-batch size for streamprocessing applications runningonGPU-based systems tomeet auser-defined target latency
requirement.
Das et al. 9 explored the performance impacts of themicro-batch size. They aimed at increasing the robustness of the application by adapting the

batch to the changes at run-time. Their strategy was based on the Fixed-point Iteration method to find the intersection between batch processing
time and batch interval. However, the algorithm assumes the existence of a specific batch interval where the processing ratematches the data input
rate. If there is no such point, the algorithm will not converge with important implications on the application’s performance (unbounded running
time to find a stable solution).
DyBBS (Dynamic Block and Batch Sizing Algorithm) 16 is a proposed technique that tries to minimize the end-to-end latency of batched stream

systems, by dynamically adjusting the block and batch size based on the input rate. The input data is grouped in blocks, which are sized according
to proper heuristics. Historical measurements collected for the same data rate and block interval are fed to the Isotonic Regression 18 algorithm to
calculate the optimal batch interval. There are three parameters in the algorithm: a constant value used to control how frequent are the changes



Stein, C. M., Rockenbach, D. A., Griebler, D. ET AL 3
of the batch and block intervals, the block interval incremental step size, and the data injection rate discretization. The DyBBS algorithm has been
evaluated in the Spark Streaming framework 19, which is a batch-based stream processing system for distributed architectures.
GASSER 15 is a new system targeting window-based streaming operators on heterogeneous multicores. It offloads the execution of sliding-

windowoperators on local GPUs by using CUDA. The runtime is based on the FastFlow library 20. It implements an online learningmodel to find the
optimal value of parallelism (number of CPU threads) and batch size (configuration in the sequel), improving the system throughput and maintain-
ing at the same time the latency as lower as possible. The basic strategy involves generating random configurations (within a given range depending
on the number of cores and on the system features of the GPU) by using a low discrepancy generator. Then, these values are testedwhile the appli-
cation is running bymonitoring the system throughput. Finally, the prediction model is refined by using themeasured data until it finds the optimal
values thatmaximize throughput andminimize the latency.Differently fromGASSER, ourwork targets stream-baseddata compression applications
focusingmore on the aspect of reducing the end-to-end latency rather than improving the system throughput.
In GStream 21, the batch size is controlled by an elastic API bounded by two user-defined parameters called minimum (min) andmaximum (max),

where the default values are 1 and 4096. The communication between two distinct operators of the work-flow graph is implemented through data
queues. The batch size is controlled by the pop operation on the input queue of a given operator: if there is less than min elements in the queue,
the processing stage blocks and waits for the producer to enqueuemore data; if there is more thanmin but less thanmax elements in the queue, all
elements in the queue are removed to be processed; if there is more thanmax elements in the queue,max elements are removed for processing.
Both Saber 17 and G-Storm 22 aim to utilize the GPU for parallel stream processing. Saber 17 presents a scheduling strategy to execute streaming

window-based SQL queries on both CPU and GPU. G-Storm 22 integrates with Apache Storm to support GPUs using JCUDA. Both of them use
batching of data tuples before offloading them to the GPU. However, they do not adapt dynamically their batch size to improve a given latency
target.
Table 1 presents a summary of the related work to highlight the main differences among them. Micro-batch adaptation in general is pro-

vided by Das et al. 9 and DyBBS 16 for a distributed stream processing system while G-Storm 22 just implemented GPU support for Apache Storm
using JCUDA. Both Saber 17 and GStream 21 systems deal with data stream processing on GPUs without the adaptive micro-batching support.
Only GASSER 15 proposed the adaption of batch size for stream processing on GPUs, however, the adaptation was not elastic. Furthermore, it
is worth noticing that none of the previous research works aimed at meeting a target SLO expressed by the application programmer by using
C++ attributes. They followed the classical high-performance approach with the objective to extract the maximum performance possible from the
parallel architectures at hand providing the application programmer with a scalable solution.

3 ADAPTIVEMICRO-BATCHING FOR STREAMPROCESSINGONGPUS
Streamprocessing applications are characterizedby the continuous processing of data coming fromoneormore input streams. These input streams
are usually infinite, where the data are generated continuously by sources like sensors, financial tickers or social media. The data input rate usually
varies over the time, influenced by several different factors. Historically, programmers write these kinds of applications using smart sequential
algorithms. Often, such applications need to be parallelized to fully utilize the resources available on modern heterogeneous architectures and
accelerate the application execution to sustain the current input pressure without introducing bottlenecks in the streaming pipeline.
One of the available tools that can be used to quickly parallelize sequential stream processing applications by using high-level parallel abstrac-

tions is SPar a. SPar is aDomain-Specific Language (DSL) focused on expressing streamparallelism 24,25. It provides a set offive attributes that can be
expressed as C++ annotations to label: i) a stream parallelism region in the sequential code (using the attribute ToStream); ii) the code of each com-
puting phase (Stage attribute); iii) the data items passed from one stage to another (Input and Output attributes); iv) and the degree of parallelism
(Replicate attribute), which defines the number of replicas of a given Stage. The SPar compiler parses these attributes, and then source-to-source
transformations are performed to produce parallel code leveraging the FastFlow parallel library 20.
In our previous work 5, we identified the need for creating micro-batches of stream items to properly exploit many-core accelerators like GPUs

with SPar. This raised the problem of properly identifying the micro-batch size to improve the performance of stream processing applications. The
ideal batch size depends on several characteristics, such as the current workload and input rate. It also depends on the low-level features of the
underlying platform. In some cases, a large batch size allows achieving high throughput because of the better exploitation of the available data
transfer bandwidth. However, a large batch might significantly increase the end-to-end latency to produce new results 9. In addition to that, the
unbalancing workloadmay also interfere in the latency time, making useless any attempts to adapt to these changes proactively.

aSPar’s home page: https://gmap.pucrs.br/spar
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TABLE 1 RelatedWork Summary.

Reference Micro-batch stream processing
approach GPU support Goal Used technologies

Das et al. 9 Micro-batch sizes aredefinedby
the time intervals. No

Adaptive algorithm to find the minimum
batch size that is smaller than the batch
processing time to ensure the system sta-
bility.

Spark Streaming 19

DyBBS 16
Data are grouped in blocks to
be grouped in micro-batches,
which are defined by the time
intervals.

No
Adaptive algorithm to minimize the end-
to-end latency by batch and block siz-
ing while ensuring system stability in the
Spark Streaming system.

Spark Streaming 19

G-Storm 22 Micro-batch size is defined by
the number of tuples. Yes GPU support for Apache Storm. Apache Storm and JCUDA 23

Saber 17 Window-based streaming SQL
queries. Yes A hybrid streamprocessing engine for het-

erogeneous architectures. Java

GStream 21

Micro-batch sizes are defined
by the speed of the previous
pipeline stage and bounded by
user-defined parameters.

Yes Provide high-level abstractions for stream
processing on GPUs C++ templates and CUDA

GASSER 15 Sliding-window operators. Yes
Adaptive algorithm to find the best con-
currency level andbatch size for improving
throughput (windows processed per sec-
ond) andminimizing latency.

FastFlow 20 and CUDA

This work Micro-batch sizes are defined
by the data length. Yes

Adaptive algorithms that meet a target
latency expressed by the application pro-
grammer.

SPar 24,25 and CUDA

When developing parallel stream processing applications with a high-level framework like SPar, which aims at simplifying parallel programming,
it is of foremost importance that these factors are considered to comply with user requirements in terms of latency or throughput. Due to that,
we represent the user requirements with a high-level concept called SLO 2. By using SLO annotations, the SPar application programmer specifies
a performance goal in a stream parallelism region (i.e. a SPar’s ToStream). The syntax and semantics of the SPar language were already extended
for adding the possibility to express SLOs with standard C++ attributes in the sequential source code 2. Therefore, we just reuse this definition to
focus on the algorithm design for adapting the batch size at run-time. Listing 1 provides an example of our idea and how the user interacts with the
underlying adaptive run-time system, which was developed using a control loop strategy driven by reactive algorithms that elastically adapt the
micro-batch size. The user needs only to specify the target latency value (set-point) as shown in the first line, using the slo::Latency attribute.
The proposed algorithms in this paper are not exposed to end-users since the SPar will generate them at compile time. Furthermore, if the user
expresses an unreachable latency set-point, our algorithms apply a best-effort approach by default. The code example in Listing 1 is just a high-level
representation of the use-case application that will be further explained in Section 3.1.
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1 [[ spar::ToStream , s l o : : L a t e n c y (500)]]
2 while (! EndOfStream){
3 batch[size];
4 batch = Read(stream);
5 [[ spar::Stage , spar::Input(batch), spar::Output(batch)]] {
6 batch = FindMatch(batch);
7 }
8 [[ spar::Stage , spar::Input(batch)]] {
9 Write(Filter(batch));

10 }
11 }

Listing 1: SPar example of a latency-aware SLO fixed to 500ms.

3.1 Use case: the Lempel-Ziv-Storer-Szymanski (LZSS) application
Lempel-Ziv-Storer-Szymanski (LZSS) 26 is a compression algorithm belonging to the Lempel-Ziv family, which has been used in many compression
applications like RAR and PkZip 27. In this paper, we use the parallel implementation on GPU presented in Stein et al. 8. This LZSS version exploits
GPUparallelismbyusingCUDA, and leverages SPar to targetCPUcores and to coordinate the different parts of the algorithm. The LZSS application
is a valuable candidate because it represents a notable streamprocessing application. It has important characteristics such as pipeline parallelismon
CPU, data parallelism onGPU, data streaming, and unpredictableworkload variations. Our strategies and algorithms can be applied in other stream
processing applications that present the same pipeline computation/workflow characteristics, such as Dedup and Bzip2 compression algorithms.
However, in this paper we focus on this important use case in detail.
The compression phase uses previous elaborated data as a dictionary to find similar data occurrences. For each byte, the algorithm searches

in the previous bytes the longest occurrences available and writes in the resulting file the references to these occurrences instead of the bytes
themselves, thus reducing the total size of the file. The LZSS algorithm limits the size of the bytes that it will search by using a specific window size.
In our case thewindow size is 4096 bytes. The higher thewindow size the higher the space towrite compressed data.We choose this value because
it is a balance between different workloads, which can be more or less compressed. With this size we also are able to save the compression index
using only 12 bits in order to optimize the storage space. Furthermore, to preserve data consistency, the last window of the previousmicro-batch is
always concatenated to the next micro-batch, because it will be used by the first bytes in the next micro-batch for the match operation. In the GPU
LZSS version, although the micro-batch size of the data items can vary, the result will be always consistent with the original serial version. In both
Figure 1 and Listing 1,we sketch the high-levelworkflowof the LZSS algorithm. It is a three-stagedpipelinewhose stages canbedescribed as follow:
• Read: it reads the input file and creates micro-batches. Each micro-batch consists of the last 4096 bytes from the last batch and the next
bytes to be processed (of a variable size to be properly tuned and adapted);

• FindMatch: in this stage the micro-batch is transferred to the GPU and the operations to find the longest match within the window is per-
formed for each byte. Each GPU thread runs the operation for one byte. The results are then transferred back to CPU and sent to the next
stage;

• Filtering +Write: the last stage takes the results produced by the previous stage for each byte and then creates the resulting file.

FIGURE 1 The LZSS parallel implementation with the feed-back loop control strategy.

The FindMatch stage is themost expensive andmay have different execution times depending on the characteristics of the input data. Each byte
has to be searched in a specific block of data. Themore the data can be compressed, themore time the GPUwill take to process the whole batch.
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3.2 Closed-loop Control Strategies
Stream parallel applications are largely implemented employing the pipeline pattern. The closed-loop (also referred as feedback) control strategy 28
adopted by SPar to adapt the internal configuration, acts according to the MAPE loop (Monitor, Analyze, Plan and Execute) illustrated in Figure 1.
Such closed-loop strategy has been introduced in the SPar DSL by Griebler et al. 2. The last stage of the pipeline monitors specific metrics of the
processed streaming items (e.g., elasped latency) and sends them back to the first stage, which is in charge of analyzing the actual measurements to
make the correct decisions, i.e. by properly adapting themicro-batch size to keep track with external variations.
GPU-based stream processing applications usually need to leverage dynamic micro-batch sizes to process a continuous flow of data. As already

hinted before, the size has a direct correlation with the latency of output results. As we will see in Section 4, increasing the micro-batch size also
increases the latency. Therefore, the closed-loop control strategy implemented has tomonitor the current latency obtained by using a givenmicro-
batch size. If the latency requirement provided by the user is not respected, the size is changed according to the planning algorithm. The execution
phase is in chargeof changing thebatch size configuration for thenext batchof items that have tobe computed. This is usually donewithout blocking
the stream to avoid downtimes in the processing. The closed-loop strategy is executed for each new item entering the pipeline to take corrective
actions promptly without delays.
We developed four different planning algorithms tomake the decision in the control loop named as: Fixed Adaptation Factor (FAF), Percentage-

Base Adaptation Factor (PBAF), PBAF without Threshold (No Threshold), and Multiplier-Based Adaptation Factor (MBAF). These algorithms are
presented in the following subsections. The user always defines the target latency to be obtained, and all the proposed algorithms consider the
following two parameters: (a) a threshold, which represents an acceptable percentage of variation in the target latency (this threshold aims to
reduce the number of corrections on themicro-batch size when themeasured latency values are within an acceptable range); and (b) an adaptation
factor, which defines the granularity of the adapting operations of each Plan phase. All designed algorithms compare the current latency with the
user target latency set-point plus the acceptable threshold parameter in order to either increase or decrease the micro-batch size accordingly.
A decrease happens when the latency crosses the upper-bound threshold and and an increase when the latency value becomes smaller than the
lower-bound threshold. In Section 4, we evaluate the performance for different combinations of these parameters so that we can find the best
configurations for our use case.

3.2.1 Fixed Adaptation Factor (FAF)
TheFixedAdaptation Factor (FAF) tries to reach the target latency by simply changing themicro-batch size infixed steps until themeasured latency
crosses the acceptable threshold bounds.When the latency reaches a value higher or lower than the SLO threshold, we use a fixed parameter called
adaptation factor to increase or decrease the batch size. The Algorithm 1 shows the pseudo-code of the FAF planning algorithm. The input for the
function is the LastLatency, which represents the last latency collected by the monitoring phase. Based on this measured latency, we choose to
increase or decrease the batch size observing the thresholds (lines 3 and 6). Themicro-batch adaptation is applied using fixed stepswith a fixed size
of the adaptation factor (line 4 and 7).

Algorithm 1 Fixed Adaptation Factor (FAF)
1: UpperLim← Target ∗ (1+ Threshold), LowerLim← Target ∗ (1− Threshold)

2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)
3: if LastLatency > UpperLim then
4: returnMicroBatchSize− AdaptationFactor

5: end if
6: if LastLatency < LowerLim then
7: returnMicroBatchSize+ AdaptationFactor

8: end if
9: returnMicroBatchSize

10: end procedure

While the latency is a user-defined parameter, which is directly related to the application and the user requirements, the AdaptationFactor

parameter defines the granularity of the operations. A higher AdaptationFactor provides better results when the measured latency is far from the
desired range. However, it is hard to make fine-grained modifications. On the other hand, a smaller AdaptationFactor applies a fine tuning of the
latency but at the expense of a longer time to respond to big workload spikes (settling time in the control theory jargon).
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3.2.2 Percentage-Based Adaptation Factor (PBAF)
Since the FAF algorithm (Section 3.2.1) works with a fixed adaptation factor, it may not respond so fast to high workload variations. Therefore,
we conceived the Percentage-Based Adaptation Factor (PBAF) algorithm, which uses a percentage of the adaptation factor based on how far the
measured latency is from the target.
In this algorithm, the adaptation factor parameter represents themaximumpossible adaptation factor. The solutionwill use thewhole adaptation

factor when the variation is higher than 60% of the target (MaxGrowBoundary variable) and reduce the adaptation factor as the latency reaches
a value close to the target. This means that when the measured latency is far from the target, the algorithm behaves just like FAF, but when small
adjustments are necessary it uses just a fraction of the adaptation factor to be more precise. Therefore, we expect that the PBAF algorithm will
behave better with bigger adaptation factors, which is the worst-case scenario for the FAF algorithm.
The pseudo-code of PBAF is reported in Algorithm 2.We divide themeasured latency by the target in line 3 to calculate how far we are from the

desired set-point. Based on this number, the algorithm calculates an adaptationPercentage in line 5 (for latency bigger than the threshold) and line
9 (for latency smaller than the threshold), limited to 100% of the adaptation factor.

Algorithm 2 Percentage-Base Adaptation Factor (PBAF)
1: UpperLim← Target ∗ (1+ Threshold), LowerLim← Target ∗ (1− Threshold),MaxGrowBoundary← 0.6

2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)
3: Perc← LastLatency/Target

4: if LastLatency > UpperLim then
5: AdaptationPercentage← min((Perc− 1)/MaxGrowBoundary, 1)

6: returnMicroBatchSize− AdaptationFactor ∗ AdaptationPercentage
7: end if
8: if LastLatency < LowerLim then
9: AdaptationPercentage← min((1−MaxGrowBoundary)/Perc, 1)

10: returnMicroBatchSize+ AdaptationFactor ∗ AdaptationPercentage
11: end if
12: returnMicroBatchSize

13: end procedure

3.2.3 PBAFWithout Threshold (No Threshold)
The FAF and PBAF algorithms do not change the micro-batch size unless the latency is outside the threshold bounds. This means that the latency
tends to stay near the higher or lower bounds of the threshold for both the strategies. Since the algorithm for changing the batch size is not partic-
ularly expensive, another possible approaches could try to track the target latency value more precisely, even when the latency measurements are
within the desired thresholds. This algorithm,which actually ignores the threshold values, is presented inAlgorithm3.Differently from the twopre-
vious approaches, this strategy aims to react better to small unbalances in the workload, changing the micro-batch size before the SLO is violated
(so actingmore proactively in this sense).
Instead of testing the measured latency against the upper and lower bounds, in lines 4 and 8 of Algorithm 3 we compare it directly to the target

latency. The rest of the algorithm is the same as in the PBAF one.
This algorithm keeps trying to improve the latency even if it is already inside the threshold (SLO hit). This can cause fluctuations in themeasured

latency, which can be seen as a drawback. This might happen because the micro-batch size is continuously adjusted to try to match the target. To
avoid this behavior, we used a percentage-based adaptation factor.

3.2.4 Multiplier-Based Adaptation Factor (MBAF)
Finding the right adaptation factor for adjusting the batch size dynamically and reactively is challenging in general. In all the previous algorithms, a
small adaptation factor limits the capability of the algorithm to adapt to sudden changes in theworkload. Aiming at accelerating the convergence of
themicro-batch size tomatch the target latency, we propose theMultiplier-Based Adaptation Factor (MBAF) planning algorithm.
In this algorithm, the goal is to converge to the desired latency as fast as possible. To this end, when the value is higher than the upper bound,

we use the formulaTarget/LastLatency ∗ AdaptationFactor. When it is lower, we change the formula to (Target + Target − LastLatency)/Target.
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Algorithm 3 PBAFWithout Threshold (No Threshold)
1: MaxGrowBoundary← 0.6

2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)
3: Perc← LastLatency/Target

4: if LastLatency > Target then
5: AdaptationPercentage← min((Perc− 1)/MaxGrowBoundary, 1)

6: returnMicroBatchSize− AdaptationFactor ∗ AdaptationPercentage
7: end if
8: if LastLatency < Target then
9: AdaptationPercentage← min((1−MaxGrowBoundary)/Perc, 1)

10: returnMicroBatchSize+ AdaptationFactor ∗ AdaptationPercentage
11: end if
12: returnMicroBatchSize

13: end procedure

The LastLatency is the last latency collected andTarget is the target latency expressed by the application programmer by using the slo::Latency
attribute. By using these formulas, we can converge to the target latency faster because when the latency is far from the target, this algorithm
produces a larger adaptation factor.
In Algorithm 4 is reported the pseudo-code for MBAF, where lines 4 and 8 represents the formula to generate a multiplier for the adaptation

factor. In lines 5 and 9, the adaptationMultiplier generated by the formula is multiplied by the adaptation factor.

Algorithm 4Multiplier-Based Adaptation Factor (MBAF)
1: UpperLim← Target ∗ (1+ Threshold), LowerLim← Target ∗ (1− Threshold)

2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)
3: if LastLatency > UpperLim then
4: AdaptationMultiplier← Target/LastLatency

5: returnMicroBatchSize− AdaptationFactor ∗ AdaptationMultiplier

6: end if
7: if LastLatency < LowerLim then
8: AdaptationMultiplier← (Target+ Target− LastLatency)/Target

9: returnMicroBatchSize+ AdaptationFactor ∗ AdaptationMultiplier

10: end if
11: returnMicroBatchSize

12: end procedure

4 EXPERIMENTS
We executed the experiments with all the algorithms described in Section 3 by using the LZSS compression application and its GPU parallelization
already proposed in Stein et al. 8. All the experiments were carried out on a single machine with a CPU Intel(R) Core(TM) I9-7900X @ 3.3 GHz (10
cores and 20 threads), 32 GB of RAMmemory and a Titan XP GPU with compute capability 6.1 and 12 GB 2400MHz of memory. The system was
running on Ubuntu OS (kernel 4.15.0-43-generic). All programs have been compiled using -O3 compiler flags. The software we used were G++ 7.3
andNVCC 10.0.130 compiler and SPar.

4.1 Workloads
We tested the algorithmswith four datasets as input to the processing pipeline:
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• Enwikib: it is a dump of theWikipedia website in English having a size of about 14 GB;
• Custom: it is a custom dataset that we created to have a specific behavior with spikes, having a size of about 1.6 GB. This was designed
by generating random alphabetic characters with repeated file sections that combine 1 to 9 identical data slots. The goal was to simulate
workload peaks in the application since LZSS requires more computational work when there are identical data slots (compressible data);

• Linuxc: it is a tar image of the Linux source code having a size of about 816MB. To have a longer processing time, we repeated this dataset
eleven times;

• Silesiad: it is a corpus of data that represents real-world files (XML, DLLs, andmany others) having a size of about 202MB.We repeated this
dataset eleven times to increase the load.

We first ran the applicationwith static batch sizes to analyze the latency variations for eachworkload. Figure 2 shows the latency results of each
workload over the time by using static micro-batch sizes of four, eight, and twelveMB.We noticed that both the EnWiki and Custom datasets have
a regular behavior, with some spikes of relative small duration. The Linux dataset takes about 30 seconds to be processed (in this experiment, the
original dataset is repeated11 times). It has two consecutive big spikes at aroundone-third of the processing time, both lasting about three seconds.
Finally, Silesia represents a challenging dataset to deal with dynamically adaptation on the batch size to optimize latency. It takes only ten seconds
to be processed, it has amedium and a big spike both lasting about 2.5 seconds.
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FIGURE 2 Latency variation over timewith static micro-batch sizes.

bAvailable in https://dumps.wikimedia.org/enwiki/20190701/enwiki-20190701-pages-meta-history1.xml-p30017p30303.bz2cAvailable in https://www.kernel.org/
dAvailable in http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia
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4.2 Behavior of the Algorithms
This section aims at presenting the differences in the algorithm behavior with the same configuration parameters. In addition to the target latency
expressed by the application programmer and the threshold values, the algorithms also have the adaptation factor parameter. However, each
algorithmperforms differently under different adaptation factors. Some of themperformbetterwith small valueswhile others performbetterwith
big values of the parameters.
To understand the behavior of each algorithm, we chose EnWiki as it is a real dataset while the other three have been somehow customized (i.e.,

by repeating theoriginal dataset). Figure3 shows the results obtainedwithEnWiki for one second latencySLOand5%thresholdusing anadaptation
factor of 128 kB. The latency measured during the experiments is plotted as a solid blue line. The target latency is plotted as a solid black line and
the upper and lower bounds of the latency are plotted as dashed orange lines. The evolution of the batch size in MegaBytes (MB) is reported as a
dotted green line and it is related to the right Y-axis.
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FIGURE 3 Algorithms behavior in EnWiki with target one second, threshold 5% and adaptation factor 128 KB.

The FAF algorithm, discussed in Section 3.2.1, remains mostly stable during the execution. However, it has some SLO violations after having
converged to the target latency. This is mainly due to the fixed adaptation factor, which forces the algorithm to apply large variations of the micro-
batch size. The first plot from the right hand side presents the results of the PBAF algorithm, which we discussed in Section 3.2.2. As expected, the
initial convergence phase is equal to the previous algorithm, as it uses 100% of the adaptation factor until it converges to the target latency. The
SLO violations are avoided until the latency decline right after the 40th second of execution. After that point, the algorithm takes a long time doing
small variations of the batch size to stabilize again within the boundaries. The algorithmwould need a bigger adaptation factor to converge faster.
The PBAF without threshold is represented by the second plot from the left hand side, which shows a behavior similar to the PBAF: the conver-

gence is in general faster when the latency is below the target but takes some time to adapt when the latency is higher than the target. There is also
an SLO violation at the 70th second of the execution when the algorithm had just increased the micro-batch size to try to reach the target latency
because of a workload variation, violating the upper bound threshold. The last plot of Figure 3 shows the behavior of the MBAF algorithm, which
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represents our best result for the given target latency and threshold. The initial convergence is faster as this algorithm multiplies the adaptation
factor according to the distance to the target latency. The latency remains stable except for the decline and the peak halfway of the execution, for
which the algorithm presents a quick reaction.

4.3 Performance of the Proposed Algorithms
This section aims at presenting a comprehensive overview of the results with the LZSS data compression application. Our goal is to understand
how the algorithms work with different configurations and SLOs.We performed experiments using three latency targets (0.5 s, 1 s, and 1.5 s), four
different thresholds (5%, 10%, 15%, and 20%), and four adaptation factors (64 kB, 128 kB, 256 kB, and 512 kB) to evaluate the impact of these
parameters.
In order to summarize the experimental resultse, we calculated the average SLO hit considering all datasets, proposed algorithms, target latency

values, thresholds, and adaptation factors. We define the SLO hit as the percentage of processed micro-batches that fall within the threshold
bounds. A summary of the best SLO hit we achieved is also presented in Table 2 as well as the best performing adaptation factor for each algorithm
in Table 3. Figures 4, 5, and 6 present the SLO hit for each algorithm with targets 0.5 s, 1 s, and 1.5 s, respectively. The 3D plots present the impact
of the different adaptation factors and thresholds on each target latency and algorithm. As expected, the higher the thresholds the higher the SLO
hit rates.
For the target 0.5 s, presented in Figure 4, the algorithms obtained better results with smaller adaptation factors. This is due to the fastest

convergence at the beginning of the execution, thus requiring only small changes in the batch size to keep the latency within the SLO boundaries.
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FIGURE 4 Average SLO hit among all workloads targeting 0.5 s latency.

eWeevaluated all the combinations of the parameters, which generated 768 experiments in the total.
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MBAFwas the best algorithm for the thresholds 5% and 10% (with 62.52%and 74.37%SLOhit, respectively), however, theNoThreshold algorithm
performed better with thresholds 15% and 20% (with 80.74% and 84.01% SLO hit, respectively). All these results have been obtained using an
adaptation factor of 64 kB.
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FIGURE 5 Average SLO hit among all workloads targeting 1 s latency.

In Figure 5 we present the results of the experiments targeting 1 s latency. The MBAF algorithm outperforms all other ones for 5% and 10%
thresholds (with 57.53% and 68.72% SLO hit, respectively). The No Threshold and PBAF algorithms show the best results for 15% threshold (with
74.79% SLO hit using an adaptation factor of 128 kB and 74.78% SLO hit using an adaptation factor of 256 KB, respectively). The No Threshold
algorithm also presents the best result for the 20% threshold (with 80.36% SLO hit using an adaptation factor of 256 kB).
The last target latency tested was 1.5 s, whose results are presented in Figure 6. All algorithms have to spend a significant amount of time in the

initial convergence phase to reach the target latency expressed by the application programmer. Therefore, bigger adaptation factors provide better
overall results. Notable exceptions are MBAF and FAF with 5% threshold and an adaptation factor of 512 kB, which present a low SLO hit. This
occurs becausewith such a narrow target and big adaptation factor these algorithms are unable to perform the small micro-batch size adjustments
required to stay within the threshold bounds. Nevertheless, MBAF was still the best algorithm for the 5% threshold, with 51.92% SLO hit using
128kBadaptation factor. For10%threshold, PBAFandFAFprovided thebest results bothusing anadaptation factor of 512kB (68.76%and68.75%
SLO hit, respectively). MBAF provided the best results for 15% and 20% threshold and an adaptation factor of 512 kB (with 77.13% and 82.65%
SLO hit, respectively).
In theCustomworkload (described in Section 4.1) the FAF, PBAF, andMBAF algorithms had very similar results. However, FAF had better overall

results, mostly in 0.5 s target because of the smaller initial time to converge. TheMBAF algorithm is dominating in the EnWiki workload. Only three
exceptions were found, where FAF algorithm was better in two cases and the PBAF algorithm was better in one, but with very narrow margins. In
the Linuxworkload, the No Threshold algorithm provides better results for bigger targets and thresholds, while FAF provides better results for the
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FIGURE 6 Average SLO hit among all workloads targeting 1.5 s latency.

0.5 s target. PBAF presented the best results for the 5% threshold experiments for both 0.5 s and 1.0 s targets, with very small differences with
MBAF in the 1.5 s target. Finally, theNoThreshold algorithmprovides the best overall results for the Silesiaworkload, which is themost challenging
one. In fact, only half of themicro-batches proposed by the algorithm reached the SLO.
In summary, we can highlight thatMBAF is the best algorithm for the closed-loop control strategywhen the input datasets feature lowworkload

fluctuations at run-time. The algorithm can quickly converge to the target SLO and it is also able to adapt the micro-batch size when small changes
in the workload occur. For workloads with higher fluctuations, the No Threshold algorithm provided, on average, the best results among all the
proposed algorithms.

4.4 Impact of theWorkloads
In the previous Section we analyzed the average SLO hit among all the workloads for each target latency. In this section instead, we will analyze
the impact of the workloads in the SLO hit to understand how the algorithms perform with different workloads. Figures 7, 8, 9, and 10 present the
average SLO hit among all the targets for each algorithm with threshold 5%, 10%, 15%, and 20%, respectively. The 3D plots present the impact of
the different adaptation factors andworkloads on each threshold configuration and algorithm.
Figure7presents the results obtainedusing a threshold of 5%. Smaller adaptation factors obtain better SLOhit in general,which canbeexplained

by the small tweaks that are necessary to keep the latencywithin the tighter bounds. For the Customworkload, the FAF andMBAF algorithmswith
an adaptation factor of 64 kBobtain the best results (78.58%and78.01%, respectively). TheMBAFwith an adaptation factor of 128 kBhas the best
SLOhit (70.25%) for the EnWikiworkload. For the Linuxworkload, the PBAF algorithmobtains the best SLOhit (62.36%) using an adaptation factor
of 128 kB. The best SLO hit (14.33%) for the Silesia workload with 5% threshold is obtained by the No Threshold algorithm using an adaptation
factor of 512 kB.
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FIGURE 7 Average SLO hit among all targets with 5% threshold.

Figure 8 shows the SLO hit rates obtained using 10% threshold. The MBAF algorithm has the best SLO hit rates for the Custom (94.08% using
an adaptation factor of 128 kB) and EnWiki (84.02% using an adaptation factor of 256 kB) workloads. However, for the Linux workload the PBAF
algorithm performs better (74.42% of SLO hit) with an adaptation factor of 256 kB. For the Silesia workload, the best SLO hit (25.7%) is obtained by
the No Threshold algorithmwith an adaptation factor of 256 kB.
For the 15% threshold experiment, which is presented in Figure 9, the MBAF algorithm achieves the best SLO hit rate (96.62%) in the Cus-

tom workload, using an adaptation factor of 256 kB. For the EnWiki and Linux workloads, PBAF obtains better results (89.82% and 79.79%,
respectively), using 512 kB and 256 kB, respectively. For the Silesia workload, the No Threshold algorithm has the best SLO hit (42.05%) using an
adaptation factor of 128 kB.
Figure 10 presents the results of the experiments using a threshold of 20%. TheMBAFalgorithmhas the best SLOhit for theCustom (97.3%with

an adaptation factor of 256 kB) and Linux (85.03%with an adaptation factor of 128 kB) workloads. For the EnWiki workload, the PBAF andMBAF
algorithms have the best SLO hit (92.26% and 92%, respectively), both with an adaptation factor of 512 kB. Lastly, for the Silesia workload, the No
Threshold algorithm again obtains the best SLO hit (52.62%), with an adaptation factor of 256 kB.
In general, the plots show that higher thresholds seem to favor higher adaptation factors. This is partly explained due to the lower probability of

an overreaction of the algorithm, given that even if the reaction exceeds the target latency the measured latency is still inside the threshold. It is
alsoworth noting that Silesia is themost challenging dataset, as previously discussed, which can be perceived by the lower SLO hit in Figures 7, 8, 9,
and 10. Nevertheless, the No Threshold algorithm obtains the best SLO hit for this workload with all the threshold values. This can be explained by
the highly unstable nature of the workload, combinedwith the highly active nature of the algorithm.
As already pointed out, each algorithm behaves differently with respect to the adaptation factor. However, the best adaptation factor also

depends on the target latency (provided by the user) and the acceptable threshold percentage. Therefore, in Table 2, we classified the experimental
results according to the workload, target latency, and threshold. The table presents the best SLO hit for each algorithm, using the best adaptation



Stein, C. M., Rockenbach, D. A., Griebler, D. ET AL 15

Adaptation Factor (kB)

64
128

256
512

Worklo
ad

Silesia

Linux

EnWiki

Custom

SL
O 

Hi
t (

%
)

0

20

40

60

80

100

18.82
17.25

17.36
18.58

65.34 70.85
66.21

47.98

67.03 76.92
72.04

59.74

88.76 93.4

68.68

43.4

FAF

Adaptation Factor (kB)

64
128

256
512

Worklo
ad

Silesia

Linux

EnWiki

Custom

SL
O 

Hi
t (

%
)

0

20

40

60

80

100

23.34
25.68

25.7
23.86

70.74
69.53

62.92

40.26

64.02 72.29

64.62

45.72

82.58
79.77

64.04

40.4

No Threshold

Adaptation Factor (kB)

64
128

256
512

Worklo
ad

Silesia

Linux

EnWiki

Custom

SL
O 

Hi
t (

%
)

0

20

40

60

80

100

21.44
21.16

19.66
20.49

70.74 73.81
74.42

65.44

66.66 75.25 82.11
83.85

87.78 92.44
93.32

66.54

PBAF

Adaptation Factor (kB)

64
128

256
512

Worklo
ad

Silesia

Linux

EnWiki

Custom

SL
O 

Hi
t (

%
)

0

20

40

60

80

100

23.1
23.64

23.35
23.28

71.2
72.3

70.7

50.63

72.09 81.4
84.02

61.96

90.81 94.08

70.61

41.76

MBAF

FIGURE 8 Average SLO hit among all targets with 10% threshold.

factor for that SLO. The best algorithm for theworkload and the SLO is shown in boldface andmarkedwith an asterisk. Finally, we present the adap-
tation factor used in all these versions in Table 3. In summary, FAFwas the best algorithm in 11 cases (most of it in Customworkload), PBAFwas the
best algorithm in 6 cases, No Threshold was the best algorithm in 14 cases (most of it in Silesia workload), andMBAF was the best algorithm in 17
cases (most of it in EnWiki workload).

5 CONCLUSION
This paper proposed four novel algorithms for a closed-loop control strategy that tries to meet a given target latency through the dynamic adapta-
tion of micro-batches offloaded to GPUs. Our solution is integrated into a high-level parallel programming abstraction for stream parallelism called
SPar, where the user can easily express in the source code a target latency using standard C++ attributes. The experiments were carried out with
a real-world and representative streamed data compression application (LZSS). The main advantage of our solution is that it tries to use only the
necessary computing resources to meet a target latency by adapting the size of the micro-batches. Furthermore, to the best of our knowledge,
our solution is the only one able to adapt elastically and reactively at run-time so that it can respond to unpredictable workload fluctuations. We
observed a trend that algorithms with elastic adaptation factor respond better for more stable workloads, while algorithms with narrower targets
respond better for highly unbalancedworkloads.
Althoughwe tested the algorithm on experiments using a real-world streamed data compression application, our performance results cannot be

generalized to all stream processing applications. These experiments also depend on the CPU and GPU architectures as well as on the Operating
System. As futurework, it is possible to evaluate our strategy and algorithms on other stream processing applications, as well as testing using other
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FIGURE 9 Average SLO hit among all targets with 15% threshold.

frameworks like OpenCL. Our strategy and algorithms could also be implemented and tested for amulti-GPU environment. Finally, we believe that
there is space for improving the current strategy and algorithms by creating new strategies and also triggering different adaptation techniques
based on specific behavior of the application.
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TABLE 2 Best algorithm according to SLO hit (%).
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TABLE 3 Adaptation factor on best algorithm versions (kB).
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