
Parallelizing High-Frequency Trading Applications
by using C++11 Attributes

Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli and Massimo Torquati
Department of Computer Science, University of Pisa

Largo B. Pontecorvo, 3, I-56127, Pisa, Italy
Email: {marcod, dematteis, mencagli, torquati}@di.unipi.it

Abstract—With the wide diffusion of parallel architectures
parallelism has become an indispensable factor in the application
design. However, the cost of the parallelization process of existing
applications is still too high in terms of time-to-development, and
often requires a large effort and expertise by the programmer.
The REPARA methodology consists in a systematic way to express
parallel patterns by annotating the source code using C++11 at-
tributes transformed automatically in a target parallel code based
on parallel programming libraries (e.g. FastFlow, Intel TBB). In
this paper we apply this approach in the parallelization of a
real high-frequency trading application. The description shows
the effectiveness of the approach in easily prototyping several
parallel variants of the same code. We also propose an extension
of a REPARA attribute to express a user-defined scheduling
strategy, which makes it possible to design a high-throughput
and low-latency parallelization of our code outperforming the
other parallel variants in most of the considered test-cases.

Keywords—High-Frequency Trading, Parallel Patterns, C++11
Attributes, REPARA, Data Stream Processing, FastFlow.

I. INTRODUCTION

Nowadays, with the increasing pervasivity of parallel ar-
chitectures like multi-/many-core CPUs and GPUs, parallel
programming has become not an alternative but rather a need
for increasing the software performance. Programmers are
forced to exploit parallelism to accelerate the execution of
their applications. The approach of rewriting applications from
scratch using parallel programming frameworks and libraries
(e.g. TBB [1], FastFlow [2], TPL [3]) is too costly in terms of
development time and time-to-solution. For this reason, a great
effort has been made by the parallel computing research com-
munity in studying high-level programming interfaces to easily
introduce parallelism in existing sequential (often legacy)
codes. Examples are the pragma-based OpenMP model [4] and
language extensions like Cilk [5].

The approach developed in the REPARA project [6] rep-
resents a novel and more programmer friendly high-level
parallel programming interface. It is based on the C++11
program annotation features. The new C++11 standard offers
the attribute mechanism [7], [8] to attach annotations to regions
of a program by integrating such annotations directly into
the abstract syntax tree. REPARA attributes have a rigorous
syntax and clear semantics, and provide enough information
for the transformation process needed to succeed in generating
efficient run-time code (e.g. based on existing parallel pro-
gramming libraries such as TBB and FastFlow). The program-
mer, usually an application domain expert but not a parallel
programming expert, is involved in two phases: i) reshaping

its sequential code in order to be compliant to the standard
REPARA C++ [9]; ii) identifying the regions of code that
need to be accelerated by using proper attributes to express the
desired parallelism pattern. The advantages of this approach
are that C++11 attributes are portable, fully integrated in the
same language used to define the sequential code, and finally,
they allows to express parallel patterns having a well-know
parallel semantic relieving the programmer from the burden of
dealing with the traditional parallel programming issues (e.g.
low-level optimizations, synchronizations, mapping).

In this paper we show how the REPARA methodology can
be effectively used in the domain of Data Stream Process-
ing [10] (briefly, DaSP) to easily prototype various parallel
implementations of the same code, reaching good performance
with a reduced development cost. In the DaSP paradigm data
from the streams are not stored persistently and then computed,
but are rather processed on-the-fly by continuous queries that
run constantly over the time by producing output results in a
continuous way. The goal is to extract greater knowledge from
the data, by maintaining a feasible history of the stream in the
form of limited windows, detect patterns and generate complex
events in realtime. A notable instance of these concepts can
be found in the high-frequency trading domain. Financial
applications recognize chart patterns within stock prices in
order to predict their future development. In this paper we
study a real trading application and we parallelize it using the
REPARA approach. The contribution of this work is twofold:

• we evaluate the REPARA methodology step-by-step in
a novel use-case, different from the project use-cases.
We show how different parallel implementations can
be easily defined by using proper REPARA attributes;

• we extend the set of attributes to accept a user-defined
hash function for the scheduling of tasks in the farm
pattern. The proposed solution is a general result, not
limited to the financial application domain studied in
this work.

The paper is organized as follows. Sect. II describes the
related works. Sect. III provides a brief introduction about
DaSP and the REPARA approach. Sect. IV shows the details of
the studied high-frequency trading application. Sects. V and VI
present the parallel implementations and their experimental
evaluation on an off-the-shelf multi-core platform.

II. RELATED WORK

The REPARA approach introduces parallelism by using
C++11 attribute annotations. Compared to OpenMP [4], which

is pragma based, REPARA attributes provide additional flex-
ibility as they can be attached to syntactic program elements
while pragmas need to appear in separate source code lines.
Moreover, complex patterns, as pipeline of parallel stages, are
not suitable to be easily expressed with OpenMP directives.
Frameworks and libraries like TPL [3], TBB [1] and Fast-
Flow [2] generally require substantial changes in the source
code to introduce parallelism, and sequential equivalence may
not be easily preserved. Cilk [5] is a language extension of
C/C++ for multithreaded parallel computing targeting recursive
algorithms. It provides constructs for parallel loops and the
fork–join idioms. However, it is an extension of the language
and it is not directly supported by the C/C++ standard.

A common approach for multicores is to introduce par-
allelism by using patterns having well-known parallel se-
mantics [11], [12]. Unfortunately, this requires a significant
effort by the programmer not only limited to identify possible
sources of parallelism, but also to select the most suitable
pattern among those available. Moreover, this way to express
parallelism is generally perceived as tedious because it requires
changing/moving lines of code while introducing patterns. The
REPARA approach is aimed at being a departure from this
vision, by expressing parallel patterns through attributes of the
same language used to express the sequential code. It uses the
standard annotation mechanism of C++11 which requires low
development effort for the programmer compared with using
directly parallel programming frameworks and libraries.

This paper describes the application of the REPARA
approach in the domain of Data Stream Processing [10].
Particular attention in the literature has been given to the
parallelization of stateful operators in which the stream history
is maintained by using succinct data structures (synopses,
sketches, wavlets) or, more often, windows of the most recent
data [13]. Common parallelizations [14], [15] consist in having
replicas of the same operator that receive input elements be-
longing to the same substream identified by a partitioning key
attribute. Examples of such operators are sorting, aggregation
and one-way joins. Parallel implementations discussed in the
literature are usually hand-coded using standard streaming
frameworks like IBM InfoSphere [16], Spark Streaming [17]
and Storm [18]. These frameworks do not offer to the program-
mer any adequate high-level abstractions for parallel program-
ming (bolts and spouts of Storm are not sufficient to express
high-level parallel programming), which is a distinguishable
difference with the approach described in this paper.

III. DATA STREAM PROCESSING AND THE REPARA
APPROACH

This section provides the background about Data Stream
Processing and the REPARA parallelization methodology.

A. Data Stream Processing

Data Stream Processing [10], [19] is a computing paradigm
enabling the support to real-time processing of continuous
data streams (e.g. financial data analysis, social media, net-
working and anomaly detection). DaSP applications can be
modeled as flow graphs [13] where vertices are operators
and arcs represent streams. The internal processing logic of
each operator is responsible for consuming input elements

(tuples) and applying proper transformations on them. The
first DaSP frameworks (Data Stream Management Systems)
provide relation algebra operators such as map, filters, ag-
gregates (sum, count, max), sort, joins, skyline and many
others. More recent frameworks like Apache Storm [18], IBM
InfoSphere [16] and Apache Spark Streaming [17] include the
possibility to explicitly program operators by using an impera-
tive programming style. DaSP operators can be classified into
two classes [19], [20]: i) stateless operators (e.g. selection,
filtering) work on a item-by-item basis without maintaining
data structures created as a result of the computation on earlier
data; ii) stateful operators maintain and update a set of internal
data structures while processing input data. The result of the
internal processing logic is affected by the current value of the
internal state.

A special case is represented by partitioned-stateful oper-
ators [19], in which the data structures supporting the internal
state can be divided into partitions corresponding to distinct
segments of the input data, e.g. the partition to update depends
on the value of a specific attribute (key) of the input tuples.

In most of the applications the internal state is used to
maintain the history of the stream, e.g. to apply statistics
or commonly in the financial domain to detect the presence
of specific chart patterns (e.g. head-and-shoulders, double-
bottoms). However, due to the potential unlimited length of the
stream it is infeasible to maintain the stream history as a whole.
There are two possible solutions to this problem [19]: i) the
state can be implemented by succinct data structures such as
synopses, sketches, histograms and wavelets especially useful
to maintain aggregate statistics of the tuples received so far; ii)
the internal processing logic could inspect all the attributes of
the tuples that need to be maintained as a whole in the internal
state. Fortunately, in realistic applications the significance of
each tuple is time-decaying, and it is often possible to buffer
only the most recent tuples in a temporary window buffer.

Windows are the predominant abstraction to implement the
internal state of operators. The window semantics is expressed
by two parameters: i) the window size |W| in time units
(seconds, minutes, hours) for time-based windows or in number
of tuples for count-based windows; ii) the sliding factor δ (in
tuples or time units) expresses how the window moves and
its content gets processed by operator’s algorithm. Different
windowing models can be identified: sliding windows with
overlapping regions (δ < |W|), tumbling (disjoint) windows
(δ < |W|) and hopping windows (δ > |W|).

B. The REPARA parallelization methodology

The REPARA project [6] is aimed at providing a method-
ology to parallelize a program starting from a sequential code
(in some cases reshaped if necessary) by using a set of C++
attributes to define parallel regions of code named kernels. In
this subsection we provide a brief description of this approach.

The methodology is structured into steps, each one taking
into account different aspects of the parallelization of the
code and implementing a clear separation of concerns. A
code annotation phase, currently performed directly by the
programmer, identifies the “kernels” subject to parallelization.

Then a source-to-source transformation phase1 deals with the
refactoring of the identified parallel kernels into suitable run-
time calls, according to the Hardware&Software architecture(s)
targeted (i.e. multi-cores equipped with GP-GPUs, FPGAs
and DSPs). Eventually, a target-specific compilation phase
generates the actual “object” (executable) code. The entire
methodology steps are sketched in Fig. 1a.

(a) REPARA attributes compilation steps.

(b) Source-to-source transformation workflow.

Fig. 1: Overview of the REPARA methodology.

The steps of the methodology are described in more detail
in the following:

1) The first phase starts with a sequential program in
which the user detects those parts of the code which
can be annotated using C++ attributes. Tab. I shows a
subset of the REPARA attributes, excluded the ones
for the offloading on GPUs and FPGAs that are out
of the scope of this paper.

2) In the second phase the annotated code is passed to
the Source-to-Source Transformation Engine whose
internal workflow is sketched in Fig. 1b. From the
annotated source code, an Abstract Intermediate Rep-
resentation (AIR) is generated. Then, the engine uses
the AIR and a set of rules, specific for each parallel
programming model, for determining whether the
corresponding code can be transformed into a Par-
allel Programming Model Specific Code (PPMSC)2.
The PPMSC is the parallel generated code that is
functionally equivalent to the original sequential code
extended with parallel kernels execution accordingly
to the attribute parameters and to the selected pro-
gramming model (e.g. Intel TBB and FastFlow).

3) The third phase includes the target compilation phase
using a standard C++ compiler and all low-level de-
pendencies needed to run the code. The runtime used
should provide coordination and all the mechanisms

1The tool is not fully implemented at present. For the experiments developed
in this paper this phase is currently a manual step.

2REPARA imposes some restrictions on the parallelizable source code when
targeting specific hardware.

needed to support the deployment, scheduling and
synchronization of kernels on the target platform(s).

REPARA C++ attr. Description
rpr::kernel Determines parallel region in a source code.

rpr::target
Specifies the target devices:
CPU,FPGA,GPU,DSP,ANY.

rpr::pipeline Defines pipeline pattern in a source code.
rpr::farm Specifies the task-farm pattern as execution model.
rpr::in Defines kernel input parameters.
rpr::out Defines kernel output parameters.

TABLE I: Subset of the used REPARA C++ attributes.

In rest of this paper we will describe a financial trading
application that uses the concepts of Data Stream Processing
exposed in Sect. III-A. Then, we will apply the REPARA
approach to parallelize it on a multi-core architecture by
generating FastFlow code [21].

IV. FINANCIAL TRADING APPLICATION

High-Frequency Trading (HFT) is a representative applica-
tive domain of Data Stream Processing characterized by tight
high-throughput and low-latency constraints. The goal is to
discover fresh trading opportunities before the competitors,
by analyzing market feeds in near real-time. Many HFT
applications can be described according to the so-called split/-
compute/join computational pattern [22] shown in Fig. 2.

SPLIT
TaQ

(Trades and Quotes)

Pricing Model
(moving average for each symbol

with sliding windows)

Quote Forecasting
(regression, neural network
models applied on sliding
windows for each symbol)

trades

quotes

./
Join

quote
updates

fair
prices

forecasts

visualization
consolidate
data on a DB

Fig. 2: High-Frequency Trading application: example of the split-
compute-join pattern. Forecasting from existing quote data and cor-
relation with the fair price for each stock symbol.

As sketched in the figure, the application is fed by a stream
of elementary elements from the market. Input elements can be
of two types: trades represent closed transactions (sell or buy
market orders) characterized by a price, a stock symbol and
number of stocks (volume); quotes are buy or sell proposals
(bid and ask) featuring a proposed price, a stock symbol and
a volume. The raw input stream (TaQ) is typically split into
two substreams - a trade stream and a quote stream processed
independently by different processing chains.

Trades, grouped by the stock symbol attribute, are pro-
cessed by a Pricing Model in order to estimate the fair price
per group based on the most recent trades received from the
market. The model usually employs simple moving average
approaches [22] (e.g. Volume-Weighted Average Price) by
maintaining a sliding window for each group. The Quote
Forecasting chain processes bid and ask proposals grouped

by the stock symbol. It represents the most compute-intensive
part of the application for two main reasons: i) quotes are
around ten times more common than trades [22], thus the
quote stream pressure is more intensive than the trade stream;
ii) prediction models (e.g. neural networks, regressions) are
aimed at estimating the future volume and prices of bids and
asks based on historical data, and are more computationally
demanding than the moving averages computed by the trade
chain. Also in this case we need to maintain a sliding window
of the most recent quotes per group. Quote forecasts and
current fair prices are finally correlated (join) based on the
stock symbol and the results processed by further decision-
making phases, e.g. to update the quotes owned by the user (a
market trader) by changing their volume and price attributes
based on the results of the earlier computation.

The results of the forecasting chain are visualized off-line
by the human user to have a graphical feedback. Typically,
candlestick charts are plotted by the visualization process
as exemplified in Fig. 3 for a single stock symbol. Each

 22

 23

 24

 25

 26

 27

 28

 1.21 1.215 1.22 1.225 1.23 1.235 1.24

Pr
ic

e
($

 p
er

 s
ha

re
)

Elapsed execution time (min)

Candlestick chart (example)

close

open

open

close

upper
wick

lower
wick

Fig. 3: Candlesticks for a stock symbol (bid quotes). The fitting line
is a polynomial.

candlestick consists of a body (thickest part) and a upper
and a lower wick (thinest parts). The body is delimited by
the opening and closing price of the stock symbol in a given
period of time. The wicks are delimited by the maximum and
the minimum price in the same timeslot. Fig. 3 shows the
candlesticks, one for each slide of δ = 100 quotes composing
the current window. In this example a window consists of 10δ
quotes. Each time the computation is triggered (a new burst of
δ tuples is received), the oldest candlestick is removed and the
new one added to the chart and the forecasting model updated.
The figure shows the results with a regression curve that fits
the data.

A. Sequential implementation

In this paper we focus on the Quote Forecasting processing
chain. Our goal is to apply the REPARA methodology to
speedup the execution of this phase with a reduced developing
effort by the programmer, which is only involved in adding
proper REPARA attributes to a sequential code (shown in
Listing 1) respecting the REPARA C++ directives [9].

The main consists of a while loop until the end of the
stream. Each quote is filtered by a function filterQuotes(),

Listing 1: Quote Forecasting REPARA C++ code.
1 i n t main () {
2 l ong w size , w s l i d e ;
3 q u o t e t q u o t e I n , q F i l t e r e d ;
4 HReturn type r e s u l t ;
5 WinTask w task ;
6 R e c e i v e r r c v (p o r t) ;
7 s t d : : map<i n t , CBWindow∗> map ;
8 . . .
9 w h i l e (r c v . r e c e i v e (q u o t e I n , s i z e o f (q u o t e t))){

10 f i l t e r Q u o t e s (q u o t e I n , q F i l t e r e d) ;
11 winManager (map , w size , w s l ide , q F i l t e r e d , w task) ;
12 computeWindow (w task , r e s u l t) ;
13 sendAndWri te (r e s u l t) ;
14 }
15 }
16 vo id winManager (s t d : : map<i n t , CBWindow∗> &map , . . . ,
17 c o n s t q u o t e t "e , WinTask &w task) {
18 CBWindow ∗win=map [q u o t e . s t o c k s y m b o l] ;
19 i f (win== n u l l p t r) {
20 win=new CBWindow (w size , w s l i d e) ;
21 map [q u o t e . s t o c k s y m b o l]= win ;
22 }
23 boo l i s T r i g g e r e d =win−>i n s e r t (q u o t e) ;
24 i f (i s T r i g g e r e d) w task . s e t (win , SUCCESS) ;
25 e l s e w task . s e t (n u l l p t r ,EMPTY) ;
26 }
27 vo id computeWindow (c o n s t WinTask &w task ,
28 HReturn type &r e s) {
29 i f (w task . s t a t u s ==EMPTY) r e s . s t a t u s =EMPTY;
30 e l s e w task . compute (r e s) ;
31 }

which deletes unused fields, updates statistics of the last
received quotes and removes outliers, i.e. quotes that do not fit
with the current trend of the last received quotes. This function
is very fine grained, thus it is not central for the parallelization
and its implementation details are omitted for brevity. The core
part of the code are the winManager() and computeWindow()
functions. The first one receives a filtered quote and gets the
corresponding window from a hash table based on the stock
symbol attribute. If the window does not exist it is created.
The quote is added to the window and a WinTask object
is prepared with a reference to the window and a status
attribute with two possible values: SUCCESS or EMPTY. The first
identifies a non-empty task and is generated if and only if the
reception of the new quote triggers the window activation (new
w slide quotes of the same symbol have been received and
the window slides forward). This is indicated by the boolean
result of the win:insert() method. Otherwise, the function
returns an empty WinTask. The computeWindow() function
receives a WinTask and, based on the status value, executes
the forecasting model if it is SUCCESS, or produces an empty
result otherwise. Results are then stored in a local database
and sent to the next stage of the application workflow by the
function sendAndWrite().

It is worth noting that the code described in Listing 1 is not
the original one, but rather a reshaped version that adheres to
the REPARA C++ constraints [9], [23]. In particular, the body
of the while loop should contain only plain function calls and
statements but not conditional or jump statements (if, switch,
break, etc.). Each iteration of the while loop corresponds to
the execution of a stream element, and should consists in a
sequence of statements that can be eventually parallelized as
it will be shown in Sect. V. In other words, the REPARA
approach does not support control parallelism at present.
In our application the function filterQuotes() is always

executed for each stream element, while the winManager()
and computeWindow() functions need to discriminate if a
window has been triggered or not. This condition must be
tested inside the body of the two functions. The consequence
is that the output of the winManager() function can be a
significant task (if the window has been triggered by the last
tuple reception) or an empty task which is simply discarded
by computeWindow() which in turn produces an empty result.
As it will be discussed in Sect. V, the presence of empty tasks
and results may have impact on the performance, but it is
an inevitable choice to produce parallel versions by simply
annotating the sequential code with the REPARA attributes.

V. PARALLEL IMPLEMENTATIONS

In this section we consider the REPARA parallelization of
the sequential pseudo-code sketched in Listing 1. Since the
application is a stream-based computation, we decided to use
the REPARA pipeline pattern as a basic parallelization pattern.

The pipeline pattern combines multiple stages executed in
a particular order. Data flows through these stages producing
a stream of elements. Each stage consumes tasks present
on the input stream and provides the output to the next
stage (if present). The rpr::pipeline attribute identifies
a block of code with several stages (functions) as a pipeline
pattern. Stages are annotated with rpr::kernel attribute
and the data flowing through the stages by the rpr::stream
attribute. Usually, the data stream is created at the beginning
of the first stage of the pipeline (i.e. by reading from a file or
from a network socket). Produced data are defined as output
parameter in the first kernel of the pipeline, and the data stream
will be deleted at the end of the last stage of the pipeline. The
semantics of streaming input and output attributes ensures that
inputs are buffered until the next activation of the producer
kernel, and outputs are buffered until the next activation of
the consumer kernel. The REPARA pipeline requires a loop
statement as a block of code, and uses the loop termination
condition to determine the end of the stream. In case of
nested loops, the pipeline will use the combination of the loop
conditions defined below the pipeline attribute definition.

The REPARA attribute rpr::farm represents the execu-
tion of different stream elements (tasks) by the same kernel,
which is replicated a number of times (each replicas called
Worker) executed in parallel. The parallel execution of the
same kernel may introduce tasks ordering problems due to their
relative running times. The farm attribute makes it possible
to specify whether the tasks must be produced in output by
the kernel with the same order of input or not (i.e. ordered,
unordered attributes). Ordering tasks when it is not necessary
may produce lower overall performance because of higher
main memory pressure and not optimal task load-balancing,
therefore the default REPARA attribute is unordered. The
attribute rpr::farm may be used in a pipeline kernel.

Pipeline (Pipe): Listing 2 shows the portion of the se-
quential code (lines 10–15 in Listing 1) that has been annotated
using the REPARA attributes to implement a 3-stages pipeline.
Annotations are highlighted in red in the code.

The while loop block defines three pipeline stages, whereas
the loop condition defines the termination condition of the
pipeline (end-of-stream). The first kernel is identified by the

Listing 2: Using rpr::pipeline pattern.
1 [[r p r : : p i p e l i n e , r p r : : s t r e a m (w task , r e s u l t)]]
2 w h i l e (r c v . r e c e i v e (& q u o t e I n , s i z e o f (q u o t e t))){
3 [[r p r : : k e r n e l , r p r : : o u t (w task) , r p r : : t a r g e t (CPU)]] {
4 f i l t e r Q u o t e s (q u o t e I n , q F i l t e r e d) ;
5 winManager (map , w size , w s l ide , q F i l t e r e d , w task) ;
6 }
7

8 [[r p r : : k e r n e l , r p r : : i n (w task) , r p r : : o u t (r e s u l t)
9 r p r : : t a r g e t (CPU)]]

10 computeWindow (w task , r e s u l t) ;
11

12 [[r p r : : k e r n e l , r p r : : i n (r e s u l t) , r p r : : t a r g e t (CPU)]]
13 sendAndWri te (r e s u l t) ;
14 }

block statement containing the while loop and the two function
calls filterQuotes() and winManager(). For each quote
received from the network, the output produced is either a
valid task containing a window of filtered quotes, all having
the same stock symbol attribute, or an empty w task if the
input task has not triggered the window activation. The second
stage executes the computeWindow() function on each valid
input tasks producing in output either a valid or an empty
result depending on the validity of the task received. Finally,
the third stage executes the kernel sendAndWrite() on each
valid (not empty) input results.

This parallelization is straightforward but has two major
issues: i) the computeWindow() kernel has a higher compu-
tational cost than the other two kernels, thus representing a
stream bottleneck in the pipeline; ii) there are many empty
tasks flowing through the entire pipeline structure that cannot
be discarded in the intermediate stages due to the REPARA
C++ constraints. The management of such empty tasks will
hamper the performance of this parallel implementation, as it
will be proved experimentally in Sect. VI.

Pipeline and Farm (Pipe&Farm): to overcome the
shortcomings of the pure pipeline implementation, the
REPARA rpr::farm attribute can be used to annotate the
computeWindow() kernel. Listing 3 shows the version that
uses the farm pattern to execute in parallel nw replicas3 of
the computeWindow() kernel on different windows in order
to (ideally) decrease the service time of that stage by a factor
of nw. We use the attribute ordered, thus enforcing a strict
ordering of tasks between farm’s input and output channels
(total task ordering). Such strong condition in not really
required by the application considered, which instead requires
that output tasks are ordered by stock symbol attributes only
(i.e. partial task ordering). To comply with this partial ordering
condition, we have to enforce a stronger condition that may
result a limiting performance factor. A different possibility, not
conforming to the REPARA approach guidelines, would have
been to not use the ordered attribute and to add some extra user
code in the last kernel of the pipeline in order to enforce proper
ordering “by hand”. Since this approach modifies the original
sequential code, we decide to not consider this possibility in
our implementations space.

3nw is the number of farm’s Workers. It is an application argument.

Listing 3: Using rpr::pipeline and rpr::farm patterns.
1 [[r p r : : p i p e l i n e , r p r : : s t r e a m (w task , r e s u l t)]]
2 w h i l e (r c v . r e c e i v e (& q u o t e I n , s i z e o f (q u o t e t))){
3 [[r p r : : k e r n e l , r p r : : o u t (w task) , r p r : : t a r g e t (CPU)]] {
4 f i l t e r Q u o t e s (q u o t e I n , q F i l t e r e d) ;
5 winManager (map , w size , w s l ide , q F i l t e r e d , w task) ;
6 }
7

8 [[r p r : : k e r n e l , rpr: : farm (nw , ordered) ,
9 r p r : : i n (w task) , r p r : : o u t (r e s u l t) ,

10 r p r : : t a r g e t (CPU)]]
11 computeWindow (w task , r e s u l t) ;
12

13 [[r p r : : k e r n e l , r p r : : i n (r e s u l t) , r p r : : t a r g e t (CPU)]]
14 sendAndWri te (r e s u l t) ;
15 }

With respect to the number of empty tasks, the pure
pipeline implementation and the farm implementation have the
same number of empty tasks flowing through.

Pipeline and Farm with hashing (Pipe&Farm-wH): a dif-
ferent parallel version can be designed by enforcing the nature
of the computation which is, according to the description of
Sect. III-A, a partitioned-stateful operator. A different window
buffer is maintained for each stock symbol. Correctness of the
computation is preserved if workers simultaneously update and
compute windows corresponding to different stock symbols,
i.e. if stock symbols are partitioned among workers. To do
that, each incoming quote must be routed to a proper replica
according to the result of a hashing function, i.e. all the
tuples with the same stock symbol are always distributed to
the same replica, which is in charge of executing both the
winManager() and the computeWindow() functions such that
each replica keeps a disjoint partition of the window hash-table
(std::map<int,CBWindow*> map).

This parallel version cannot be directly implemented using
the current REPARA attributes. Basically, it requires to define
a tasks scheduling policy based on some hashing function. For
this reason, we propose to extend the rpr::farm attribute by
adding an extra optional parameter (other than the number of
replicas and the ordering behavior) that is the name of a user-
defined function that will be used by the runtime to determine
to which farm’s Workers the task has to be sent. The proposed
extension is formalized as follow:

s t d : : v e c t o r<s i z e t>
Func (c o n s t s i z e t N,

c o n s t Tin1 &t a s k 1 , . . . , c o n s t TinK &taskK) { . . . }

[[r p r : : k e r n e l , rpr: : farm (nw , order ing , Func) ,
r p r : : i n (t a s k 1 , . . . t askK) , . . .]] k e r n e l−r e g i o n

the user function Func gets in input the current number of
active farm’s replicas N ∈ [0, nw[and the input tasks just
received by the farm, whose types are defined by the user
as Tini ∀i ∈ [1,K[. It returns a vector of indexes each one
in the range [0, N [. The semantics is that the runtime will
schedule the input tasks to all workers whose index is stored
in the vector returned by Func. Listing 4 shows this parallel

version that uses the proposed extension for task scheduling.
It is worth noting that the extension proposed does not impair
the sequential equivalence of the REPARA code.

Listing 4: Using rpr::pipeline and rpr::farm with hashing.
1 s t d : : v e c t o r<s i z e t>
2 SchedByKey (c o n s t s i z e t a c t i v e W o r k e r s ,
3 c o n s t q F i l t e r e d &q u o t e) {
4 s t d : : v e c t o r<s i z e t> V(1) ;
5 V[0] = (q u o t e . s t o c k s y m b o l % a c t i v e W o r k e r s) ;
6 r e t u r n V;
7 }
8

9 [[r p r : : p i p e l i n e , r p r : : s t r e a m (q F i l t e r e d , r e s u l t)]]
10 w h i l e (r c v . r e c e i v e (& q u o t e I n , s i z e o f (q u o t e t))){
11 [[r p r : : k e r n e l , r p r : : o u t (w task) , r p r : : t a r g e t (CPU)]]
12 f i l t e r Q u o t e s (q u o t e I n , q F i l t e r e d) ;
13

14 [[r p r : : k e r n e l , rpr: : farm (nw , un ordered , SchedByKey) ,
15 r p r : : i n (q F i l t e r e d) , r p r : : o u t (r e s u l t) ,
16 r p r : : t a r g e t (CPU)]] {
17 winManager (map , w size , w s l ide , q F i l t e r e d , w task) ;
18 computeWindow (w task , r e s u l t) ;
19 }
20

21 [[r p r : : k e r n e l , r p r : : i n (r e s u l t) , r p r : : t a r g e t (CPU)]]
22 sendAndWri te (r e s u l t) ;
23 }

In this version, we use as hashing key the stock symbol
field of the quote received in input from the first pipeline stage.
The function SchedByKey() returns the same replicas index for
all quotes having the same symbol. The runtime guarantees to
route each input task to the correct replicas.

As a result of this approach the number of empty tasks is
reduced since they can be produced only between the second
and the third stage. On the other hand, this version may suffer
of possible load-balancing problems. When a small subset
of all quote symbols have much higher probability than all
the others, it may happen that a subset of Workers will have
assigned much more tasks than the others. If we can predict
the distribution of the quote symbol arrivals, this issue could
be mitigated by using a smarter hashing function. Furthermore,
since all the results with the same stock symbol are produced
in output by the same replica, the attribute ordered in the
rpr::farm annotation can be removed, thus enforcing the
partial ordering of results without additional overhead.

VI. EXPERIMENTS

In this section we evaluate and compare the parallel
versions described before. We point out that we are not
interested in the absolute performance. Rather, our goal is
to show that our parallel implementations, easily developed
using REPARA attributes on the sequential code, represent a
good tradeoff between ease-of-development and performance.
The target code produced by the source-to-source compilation
phase (Sect. III-B) uses the FastFlow [21] runtime. The target
architecture for the experiments is a dual-socket NUMA Intel
multi-core Xeon E5-2695 Ivy Bridge running at 2.40GHz

featuring 24 cores (12+12) each with 2-way Hyperthreading.
Each core has 32KB private L1, 256KB private L2 and 30MB
shared L3. The operating system is Linux 2.6.32 x86 64
shipped with CentOS 6.5. We compiled our tests using GNU
gcc 4.8.2 with optimization flag –O3.

We distinguish two types of experiments: stress tests with
fast streams and fixed probability distributions of the stock
symbols, and experiments using a real dataset.

Results of the stress tests: the results are depicted in
Figs. 4a and 4b. The plots show for each implementation (Seq,
Pipe, Pipe&Farm and Pipe&Farm-wH) the maximum rate of
the input stream (throughput) that the parallel implementations
are able to sustain without being bottleneck over the entire
execution. Fig. 4a shows the results with count-based windows
(per stock symbol) of |W| = 1000 quotes with slide of δ = 25
quotes. We can observe that our code can be also adapted to
time-based windows. Fig. 4b shows the results of the same
experiment by doubling the window size (|W| = 2000 quotes)
with the same slide parameter. This second case represents a
more coarse grained execution: windows move with the same
frequency but are larger than in the first case. The results
are presented for three possible probability distributions of the
stock symbols: 1) real represents a real distribution obtained
during a trading day (daily TaQ of 30 Oct 2014) from the
NASDAQ market with 2, 836 traded symbols4; 2) uniform
represents the uniform probability distribution among the stock
symbols; 3) skewed represents a pessimistic scenario in which
the more frequently traded stock symbol has probability 0.20.

The results show that the Pipe implementation provides re-
sults comparable (or slightly lower) than the original sequential
code (Seq). The reason for the slightly lower results in some
tests is due to the large number of empty tasks and results
generated in the pipeline, and because the computeWindow()
kernel, executed serially by the second stage, represents about
95% of the overall running time of the code. Better through-
put is achieved by Pipe&Farm and Pipe&Farm-wH. In the
uniform and real cases the version with hashing scheduling
outperforms Pipe&Farm. This is due to two main reasons.
Firstly, the farm version requires to buffer entire windows
and distribute them to the workers, whereas the Pipe&Farm-
wH version distributes single tuples on-the-fly to the replicas
according to their symbol as soon as they are received from
the stream. Secondly, the farm version produces extra empty
tasks that are not present in the Pipe&Farm-wH version.

The skewed scenario shows a different behavior. In this
case the Pipe&Farm version is the best one. The reason
is that the version with the hashing scheduling is hampered
by serious load balancing issues, as the scheduling policy
distributes all the tuples with the same stock symbol to the
same worker. Since in this case the most frequent symbol has a
very high probability, the assigned worker receives more tasks
than the others, preventing to balance the workload properly.
The speedup results (ratio between the highest sustainable
throughput of the parallel implementation and the one of the
sequential code) are summarized in Tab. II showing also the
corresponding number of workers between parenthesis.

A similar trend is depicted in Fig. 4b with larger windows
of 2, 000 tuples. As obvious, in terms of absolute values the

4The used dataset is freely available at the website: http://www.nyxdata.com.

Pipe&Farm Pipe&Farm-wH

|W| = 1000 |W| = 2000 |W| = 1000 |W| = 2000

Real 8.12(12) 9.87(14) 12.47(19) 11.57(19)
Uniform 8.00(10) 11.10(12) 16.65(20) 18.53(20)
Skewed 8.66(16) 9.24(16) 4.46(20) 4.46(20)

TABLE II: Speedup of the best parallel implementations in different
scenarios: speedup(parDegree).

parallel implementations are capable of sustaining lower input
rates, since the computation is more coarse grained.

Results with the real dataset: we consider a real dataset of
quotes generated in the NASDAQ market during one trading
day. The peak rate observed in our dataset is near to 60, 000
quotes per second, with an average rate well below this figure.
Recent estimates for market data rates [22] are near to 1 million
of transactions per seconds (especially if we consider options
data and not stocks quotes), highlighting the need of high-
performance implementations of trading strategies on today’s
parallel machines. To adhere to this trend, we study three
cases in which we accelerate our dataset in order to reproduce
throttled input rates with a realistic distribution of quotes. We
consider three scenarios of 50×, 100× and 200× throttled
input rates. Fig. 5a shows for the three scenarios the minimum
number of cores needed by the parallel implementations to
sustain the throttled input rate in the three scenarios. As
expected, with very fast rates (200×) only the Pipe&Farm-
wH implementation is capable of sustaining the peak rate,
since it exhibits better speedup than the Pipe&Farm version.
Fig. 5b concludes the experimental section by showing the
latency throughout the execution. We refer to latency as the
average time between the reception a tuple triggering the
window activation, and the production of the corresponding
output. As we can observe, lower latency is achieved with the
parallelization exploiting the hashing distribution, since single
quotes are distributed on-the-fly to the workers without needing
to buffer entire windows and in the Pipe&Farm case.

VII. CONCLUSIONS

In this paper we apply the REPARA methodology to
the parallelization of a high-frequency trading application.
We show that various parallel implementations can be eas-
ily prototyped using this methodology, simply using proper
C++11 attributes in the needed regions of the sequential code.
We propose an extension of the REPARA attribute set to
express a user-defined distribution policy. The results show that
our parallel implementations are capable of achieving good
performance on synthetic benchmarks as well as on a real-
world experiment using a real dataset. In the future we plan
to compare the REPARA methodology with similar existing
approaches like the most recent OpenMP 4.0 standard and the
previous work developed in the ParaPhrase project [24].

ACKNOWLEDGMENT

This work has been partially supported by the EU FP7
project REPARA (ICT-609666).

40K
100K

200K

400K

600K

800K

1.0M

1.2M

real uniform skewed

q
u

o
te

s
/s

Max sustainable input rate (quotes/s) − window size 1000

Seq

Pipe

Pipe&Farm

Pipe&Farm−wH

(a) Sustained throughput, window size 1000.

40K
100K

200K

400K

600K

800K

1.0M

1.2M

real uniform skewed

q
u

o
te

s
/s

Max sustainable input rate (quotes/s) − window size 2000

Seq

Pipe

Pipe&Farm

Pipe&Farm−wH

(b) Sustained throughput, window size 2000.

Fig. 4: Stress tests: highest sustained throughput with different quotes probability distributions (real, uniform and skewed distributions).

 0

 2

 4

 6

 8

 10

 12

50x 100x 200x

n
.

w
o

rk
e

rs

Min. n. of worker needed to sustain the input rate − window size 1000

Pipe&Farm Pipe&Farm−wH

(a) Workers needed to sustain the input rate.

 0

 10

 20

 30

 40

 50

 60

L
a

te
n

c
y
 (

m
s
)

Elapsed time (s)

Latency over 100 minutes − window size 1000

Pipe&Farm Pipe&Farm−wH

(b) Average latency (ms). 100x throttled input rate.

Fig. 5: Results using a real dataset of TaQ. The real input dataset has been throttled by 50×, 100× and 200× factor.

REFERENCES

[1] Intel R© TBB website, 2015, http://threadingbuildingblocks.org.
[2] FastFlow website, 2015, http://mc-fastflow.sourceforge.net/.
[3] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a task parallel

library,” in Proceedings of the 24th ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’09. New York, NY, USA: ACM, 2009, pp. 227–242.

[4] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering
Computation). The MIT Press, 2007.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: an efficient multithreaded runtime system,”
SIGPLAN Not., vol. 30, no. 8, pp. 207–216, Aug. 1995.

[6] REPARA website, 2015, http://repara-project.eu/.
[7] J. Maurer and M. Wong, “Towards support for attributes in C++

(revision 6),” in JTC1/SC22/WG21 - The C++ Standards Committee,
2008, N2761=08-0271.

[8] ISO/IEC, “Information technology – Programming languages –
C++,” ISO/IEC, Geneva, Switzerland, International Standard ISO/IEC
14882:20111, Aug. 2011.

[9] REPARA Project Deliverable, ”D2.1: REPARA C++ Open Specification
document”, 2014, available at: http://repara-project.eu/.

[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp. 1–16.

[11] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel Pro-
gramming, 1st ed. Addison-Wesley Professional, 2004.

[12] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Design patterns percolating to parallel programming framework im-
plementation,” International Journal of Parallel Programming, vol. 42,
no. 6, pp. 1012–1031, 2014.

[13] G. Cugola and A. Margara, “Processing flows of information: From

data stream to complex event processing,” ACM Comput. Surv., vol. 44,
no. 3, pp. 15:1–15:62, Jun. 2012.

[14] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “Streamcloud: An elastic and scalable data streaming
system,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2351–
2365, Dec. 2012.

[15] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’13.
New York, NY, USA: ACM, 2013, pp. 725–736.

[16] “Ibm infosphere streams,” http://www-
03.ibm.com/software/products/en/infosphere-streams.

[17] “Apache spark streaming,” https://spark.apache.org/streaming.
[18] “Apache storm,” https://storm.apache.org.
[19] H. Andrade, B. Gedik, and D. Turaga, Fundamentals of Stream Pro-

cessing. Cambridge University Press, 2014, cambridge Books Online.
[20] D. Buono, T. De Matteis, and G. Mencagli, “A high-throughput and low-

latency parallelization of window-based stream joins on multicores,”
in Parallel and Distributed Processing with Applications (ISPA), 2014
IEEE International Symposium on, Aug 2014, pp. 117–126.

[21] M. Danelutto and M. Torquati, “Structured parallel programming with
”core” fastflow,” in Central European Functional Programming School,
ser. LNCS, V. Zsók, Z. Horváth, and L. Csató, Eds. Springer, 2015,
vol. 8606, pp. 29–75.

[22] H. Andrade, B. Gedik, K. L. Wu, and P. S. Yu, “Processing high data
rate streams in system s,” J. Parallel Distrib. Comput., vol. 71, no. 2,
pp. 145–156, Feb. 2011.

[23] REPARA Project Deliverable, ”D3.3: Static partitioning tool”, 2014.
[24] ParaPhrase website, 2015, http://http://www.paraphrase-ict.eu/.

