
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Keep Calm and React with Foresight: Strategies for Low-
Latency and Energy-Efficient Elastic Data Stream Processing

Tiziano De Matteis and Gabriele Mencagli
Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy

{dematteis,mencagli}@di.unipi.it

Abstract
This paper addresses the problem of designing scaling strategies
for elastic data stream processing. Elasticity allows applications to
rapidly change their configuration on-the-fly (e.g., the amount of
used resources) in response to dynamic workload fluctuations. In
this work we face this problem by adopting the Model Predictive
Control technique, a control-theoretic method aimed at finding the
optimal application configuration along a limited prediction hori-
zon in the future by solving an online optimization problem. Our
control strategies are designed to address latency constraints, using
Queueing Theory models, and energy consumption by changing the
number of used cores and the CPU frequency through the Dynamic
Voltage and Frequency Scaling (DVFS) support available in the
modern multicore CPUs. The proactive capabilities, in addition to
the latency- and energy-awareness, represent the novel features of
our approach. To validate our methodology, we develop a thorough
set of experiments on a high-frequency trading application. The re-
sults demonstrate the high-degree of flexibility and configurability
of our approach, and show the effectiveness of our elastic scaling
strategies compared with existing state-of-the-art techniques used
in similar scenarios.

Categories and Subject Descriptors [Information systems]: Data
streams

Keywords Data Stream Processing, Elasticity, Multicore Pro-
gramming, Model Predictive Control, DVFS.

1. Introduction
Data Stream Processing [9] (briefly, DaSP) is a computing paradigm
enabling the real-time processing of continuous data streams that
must be processed on-the-fly with stringent Quality of Service
(QoS) requirements. These applications are usually fed by poten-
tially irregular flows of data that must be timely processed to detect
anomalies, provide real-time incremental responses to the users,
and take immediate actions. Typical application domains of this
paradigm are high-frequency trading, network intrusion detection,
social media, and monitoring applications like in healthcare and
intelligent transportation systems.

Due to their long-running nature (24h/7d), DaSP applications
are affected by highly variable arrival rates and exhibit abrupt

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c⃝ 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851148

changes in their workload characteristics. Elasticity is a funda-
mental feature in this context; it allows applications to scale up-
/down the used resources to accommodate dynamic requirements
and workload [14, 15] by maintaining the desired QoS in a cost-
effective manner, i.e. without statically configuring the system to
sustain the peak load. However, elasticity is a challenging problem
in DaSP applications that maintain an internal state while process-
ing input data flows. The runtime system must be able to split and
migrate the data structures supporting the state while preserving
correctness and performance. This problem has been studied ex-
tensively in the last years, with works that propose efficient state
migration protocols and reconfiguration techniques [12, 15, 17].

Besides protocols and low-level mechanisms, the design of
clever scaling strategies has acquired an increasing strategic sig-
nificance owing to the high number of requirements that must be
synergically taken into account when the strategy selects a new
resource allocation (e.g., latency, throughput, resource and energy
consumption). Avoiding unnecessary or too frequent reconfigura-
tions by keeping the actual QoS close to user’s specifications is a
key point to deliver high-performance cost-effective solutions. In
this work we propose latency-aware and energy-efficient scaling
strategies with predictive capabilities. The main contributions of
our work are the following:

• most of the existing scaling strategies have a reactive na-
ture [12, 15, 17]. In contrast our approach is based on a control-
theoretic method known as Model Predictive Control [11]
(briefly, MPC), in which the strategies take into account the
behavior of the system along a limited future time horizon to
choose the reconfigurations to execute. As far as we know, this
is the first time that MPC-based strategies have been applied in
the DaSP domain;

• most of the existing strategies are mainly throughput ori-
ented [14, 15, 20], i.e. they adapt the number of resources to
sustain the actual input stream pressure. In many real-world
scenarios this is not sufficient as the application must provide
timely and fresh responses to the users. We tackle this problem
by focusing explicitly on application latency and we study how
to model and control it;

• we integrate our strategies with capabilities to deal with energy
consumption issues. To this end, we target multicores with
Dynamic Voltage and Frequency Scaling (DVFS) support.

We experiment our strategies in a high-frequency trading appli-
cation based on both synthetic and real dataset workload traces. To
provide a concise summary of the results and to easily compare dif-
ferent strategies, we analyze them in terms of the so-called SASO
properties [14, 18]: stability, accuracy, settling time and overshoot.
As a result, the configuration parameters of our strategies will ex-
hibit a clear impact on these properties by rendering the tuning

phase easier. Furthermore, we compare our predictive strategies
with some existing reactive ones proposed in the literature. At the
present this work covers single multicore systems, but we plan to
extend it to distributed environments in the future.

The outline of this paper is the following. Sect. 2 introduces
basic concepts about DaSP. Sect. 3 presents our MPC-based ap-
proach. Sect. 4 describes the runtime support. Sect. 5 provides a
comprehensive analysis of our strategies and a comparison with the
state-of-the-art. Finally, Sect. 6 reviews existing works and Sect. 7
concludes this work by highlighting our future research directions.

2. Data Stream Processing
In the last years several Stream Processing Engines (SPEs) have
been proposed for developing and executing DaSP applications.
Examples are IBM InfoSphere [2], Apache Storm [4] and Spark
Streaming [3]. In these frameworks the programmer expresses ap-
plications as data-flow graphs of operators [9] interconnected by
data streams, i.e. unbounded sequences of data items with a fixed
structure like a record of attributes (tuples).

Operators belong to two different classes [10]: stateless opera-
tors, characterized by each input data item that produces an output
independently of any previous input tuple, and stateful operators
that require to keep an internal state. Notably, partitioned-stateful
operators [9] ingest an input sequence of tuples belonging to differ-
ent groups identified by a partitioning attribute (partitioning key).
For these operators the internal state can be decomposed in par-
titions, each one assigned to a distinct group. Examples are user-
defined operators that process network traces partitioned by IP ad-
dress, or market feeds partitioned by stock symbol.

Due to the unlimited length of the stream, the semantics of state-
ful operators has been redefined with respect to their original coun-
terparts in classic databases. One of the main solutions proposed in
DaSP consists in using succinct data structures like synopses and
sketches to maintain a concise summary of the stream character-
istics (e.g., the statistical properties of the input elements). Alter-
natively, the operator processing logic can be applied on the most
recent tuples only, which are maintained in a window buffer. Ac-
cording to the window boundaries, windows can be time-based or
count-based and they usually have a sliding semantics.

As recognized by the literature, sliding windows are the pre-
dominant abstraction in DaSP [9]. Therefore, in the ensuing dis-
cussion we will focus on partitioned-stateful operators based on a
sliding window model that represent the target of the most recent
research [14].

2.1 Parallelism and Elasticity
To respect user QoS requirements, hotspot operators in data-flow
graphs must be identified and internally parallelized using multiple
functionally equivalent replicas that handle a subset of the input
tuples [9]. While for stateless operators this parallelization is trivial,
for stateful ones it is complex because the computation semantics
depends on the order in which input items are processed and the
data structures supporting the internal state updated. This implies
that simple parallel implementations that randomly distribute input
items to replicas that use independent locks to protect the state
partitions cannot be used because they might alter the computation
semantics. In fact, though locks allow the replicas to access and
modify the state partitions atomically, the order in which input
items within the same group are processed might be different with
respect to their order of appearance in the input stream. As an
example, this may happen if the processing time per tuple is highly
variable. In that case, the output sequence of the parallelization can
be different than the one of the original operator, thus violating the
sequential equivalence.

The typical solution used in the literature [14, 15, 17, 28] is to
make each state partition owned by a single replica. The distribu-
tion must guarantee that all the tuples with the same partitioning
key are routed to the same replica. In this way the state partitions
do not require to be protected by locks, and tuples within the same
group are processed in the same order of appearance in the input
stream∗. The idea of this parallelization is sketched in Fig. 1.

REPLICA 1

REPLICA n

input
stream

output
stream

X Y

partitioned-stateful
operator

results

hash-based
distribution

m : K ! [1, n]

results of the
same key are

already ordered

.

.

.

m(⌘(·)) = 1

State of the
replica

State of the
replica

SPLITTER MERGER

Figure 1: Functionalities of a parallel partitioned-stateful operator: the
tuples with the same key attribute are processed by the same replica.

The operator receives an input stream of tuples X and produces
an output stream of results Y . For each tuple xi ∈ X we denote
by η(xi) ∈ K its partitioning key, where K is the key domain. For
each key k ∈ K, pk ∈ [0, 1] denotes its relative frequency.

The replicas are interfaced with the input and the output streams
through two functionalities called splitter and merger. The first is
responsible for distributing each input tuple to the corresponding
replica by using a hash function called distribution function m :
K → [1, n], where n is the actual number of replicas. The merger
is in charge of collecting the results from the replicas.

Streaming applications are characterized by highly variable ex-
ecution scenarios. The dynamicity depends on three different fac-
tors: (D1) the variability of the arrival rate, (D2) the variability of
the key frequency distribution, and (D3) the variability of the pro-
cessing time per tuple. The applications must tolerate all these as-
pects by keeping the QoS optimized according to the user criteria.
In this paper we are interested in the latency (response time), i.e. the
time elapsed from the reception of a tuple that triggers the opera-
tor internal processing logic and the production of the correspond-
ing output. Latency requirements are usually expressed in terms of
threshold specifications, e.g., by keeping the average latency under
a user-defined threshold. Time periods in which these requirements
are not met are considered QoS violations.

A simple solution to achieve the desired QoS is to configure
the system to sustain the peak-load. This solution is usually too
expensive in terms of resource consumption, and it can even be in-
effective if a static distribution function is not unable to balance
the workload during the entire execution duration, e.g., if the key
frequencies exhibit wide variations at runtime. Instead, elastic op-
erators can be intrinsically able to deal with all the D1, D2, D3 fac-
tors [14, 23]. The scaling strategies that will be developed in this
work will be able to change the parallelism degree n (i.e. the actual
number of replicas), the distribution function m, and the operating
frequency f used by the CPUs.

The scaling strategy monitors the actual behavior of an operator,
detects if it is not currently able to meet the desired QoS, chooses
a better configuration, and applies it with minimal impact on the
computation performance. We will compare strategies according to
the well-known SASO properties [14, 18]:

• (P1) Stability: the strategy should not produce too frequent
modifications of the actual configuration;

∗This partial ordering of results is usually accepted in many DaSP
applications.

• (P2) Accuracy: the system should satisfy the QoS objectives by
minimizing the number of QoS violations;

• (P3) Settling time: the strategy should be able to find a stable
configuration quickly;

• (P4) Overshoot: the strategy should avoid overestimating the
configuration needed to meet the desired QoS.

It is not often possible to optimize all these properties together, but
we are interested in finding a strategy configuration that achieves
the best trade-off.

2.2 Assumptions
Our methodology will be presented and experimented by assuming
the following conditions:

1. (A1) homogeneous replicas: all the replicas of the same operator
will be executed on homogeneous cores of the same shared-
memory architecture based on multicore CPUs;

2. (A2) single node: in this paper will target homogeneous multi-
core CPUs. We will study the impact of our approach on shared-
nothing architectures like clusters in our future work.

3. Elastic Scaling based on MPC
MPC is a design principle for controllers widely adopted in the pro-
cess industries [11]. The basic idea is that the controller’s actions
are taken by solving an optimization problem that explicitly uses a
model to predict the future system behavior over a limited predic-
tion horizon. The logic of a MPC controller is composed of three
interconnected components sketched in Fig. 2.

CO
NT

RO
LL

ER

SYSTEM

Disturbance
Forecaster

disturbances decision variables
u(⌧)d(⌧ � 1)

System
Model

Optimizer

<<use>> <<use>>

d̃(⌧ + i) q̃(⌧ + i)

u(⌧ + i)

Forecasting
Tools

Optimization
Methods

Figure 2: Internal logical structure of a MPC controller: disturbance fore-
caster, system model and optimizer components.

Disturbance forecaster. The controller is able to observe the last
measurements d(τ − 1) of the exogenous uncontrollable events
affecting the system, the so-called measured disturbances, e.g.,
the arrival rate and the processing time per input tuple. These
monitored data are collected periodically once per control step τ

(a fixed time interval). Their future value d̃(τ) is estimated with
statistical forecasting tools based on a limited history of the past
samples [19].

System model. The MPC approach is model driven: a system
model is used to compare and evaluate alternative configurations.
The model captures the relationship between QoS variables (e.g.,
latency, energy) and the current system configuration expressed by
decision variables (e.g., parallelism degree, CPU frequency). The
general structure of the model is as follows:

q̃(τ) = Φ
(
u(τ), d̃(τ)

)
(1)

where q̃(τ) and d̃(τ) are the predicted vectors of QoS variables
and disturbances for step τ and u(τ) is the decision variable vector.

Optimizer. The optimization problem solved by the MPC con-
troller is defined as follows:

min
Uh(τ)

J =

h−1∑
i=0

L
(
q̃(τ + i),u(τ + i)

)
(2)

The result is an optimal reconfiguration trajectory Uh(τ) =
(u(τ),u(τ + 1), . . . ,u(τ + h − 1)) over a prediction horizon
of h ≥ 1 steps. The basic principle of MPC is that only the first
element u(τ) of the reconfiguration trajectory is used to steer the
system to the next control step. Then, the strategy is re-evaluated
at the beginning of the next control interval using the new dis-
turbance measurements to update the forecasts. In this way the
prediction horizon shifts forward by one step, from this the name
receding horizon. The approach has led to very good results in a
large number of applications over the last years [11], due to its
intrinsic capability to incorporate a feedback mechanism.

3.1 Predictive Strategies for Elastic Scaling
To apply the MPC methodology, our intra-operator parallelization
is enhanced with an additional functionality, i.e. the controller (see
Fig. 2).

3.1.1 Measured disturbances
The controller observes the operator execution and acquires period-
ically measurements from the computation. Tab. 1 shows the basic
measurements gathered by the controller. These metrics are relative
to a control step (omitted to simplify the notation), i.e. at the begin-
ning of a generic control step τ the updated measurements related
to the previous step τ − 1 are available.

Symbol Description
TA, σA Mean and standard deviation of the inter-arrival time per trigger-

ing tuple (with any key). The arrival rate is λ = T−1
A . These

measurements are collected by the splitter.

{pk}k∈K Frequency distribution of the keys. Measured by the splitter.

{ck}k∈K Arrays of sampled computation times per triggering tuple for each
key, measured in clock cycles. Each ck is an array of samples for
key k, collected by the replica that owned that key during the last
step.

Table 1: Basic monitored disturbance metrics gathered at the beginning of
each control step by the controller.

We use the term triggering tuple to denote a tuple that triggers
the internal processing logic of the operator. For window-based
stateful operators a triggering tuple is any tuple that triggers a new
window activation (according to the window triggering policy [9]).
Non-triggering tuples are simply inserted into the corresponding
window and it is reasonable to assume that they have a negligible
computation cost. Computation times are collected in clock cycles
to be independent from the used CPU frequency.

3.1.2 Derived metrics
The controller can derive various additional metrics from the basic
ones. From the arrays of measurements ck for each k ∈ K, the
controller measures the average number of clock cycles required to
process a triggering tuple with key k. We denote it by Ck, i.e. the
mean value of the samples in the last array ck gathered from the
replicas. The mean computation time per triggering tuple of key
k ∈ K is:

T̃k(τ) =
C̃k(τ)

f(τ)
(3)

Since the computation times are collected in clock cycles, they need
to be transformed in time by dividing for the used CPU frequency
f(τ). This model is a good approximation for CPU-bound compu-
tations [26]. For memory-bound computations it may be less accu-
rate. In the sequel we assume this model to be sufficiently accurate
and we will investigate proper extensions in the future.

We define the (ideal) service rate as the average number of trig-
gering tuples that the operator is able to serve per time unit provided
that there are always new tuples to ingest. We are interested in the
inverse of this quantity, i.e. the operator (ideal) service time TS .
We denote by wk(τ) the “weight” of the key k ∈ K, defined as
the product between the key frequency and the mean computation
time per triggering tuple of that key, i.e. wk(τ) = p̃k(τ)× T̃k(τ).
The mean computation time per triggering tuple of any key can be
calculated as follows:

T̃ (τ) =
∑
k∈K

wk(τ) (4)

Under the assumption that the load is evenly distributed among the
n(τ) replicas, the service time of the operator is roughly equal to:

T̃S(τ) ≈
∑

k∈K wk(τ)

n(τ)
=

T̃ (τ)

n(τ)
(5)

This model requires that, given the actual keys frequency distribu-
tion, there exists a distribution function mτ that allows the work-
load to be (quasi) evenly balanced among the replicas. As stated in
the recent literature [14], this assumption practically holds in many
real-world applications, where skewed distributions are common
but a well balanced distribution function can usually be found†.
This aspect will be analyzed in detail in Sect. 5.

3.1.3 Performance and energy models
The decision variables of the models are: the number of replicas
n(τ) and the CPU frequency (GHz) f(τ) used by the operator dur-
ing step τ . They are represented by vector u(τ) = [n(τ), f(τ)]T .
Since our goal is to deal with latency-sensitive applications, our
choice is to directly manage and configure the CPU frequency.
Leaving the DVFS control to the CPU frequency governor of a
commodity OS could not provide sufficient guarantees from a per-
formance viewpoint, and will not be considered.

The outputs of the models are the predicted values of the QoS
variables with a given configuration of the operator. For the step τ
we are are interested in the response time (latency) RQ(τ) and the
power used P(τ).

Latency model. Analogously to [23], we use a Queueing Theory
approach. The mean response time of the operator during a control
step τ can be modeled as the sum of two quantities:

RQ(τ) = WQ(τ) + T (τ) (6)

where WQ is the mean waiting time that a triggered tuple spent
from its arrival to the system to when the operator starts the execu-
tion on the corresponding triggered window.

To find the mean waiting time per triggering tuple, our idea is
to model the operator as a G/G/1 queueing system, i.e. a single-
server system with inter-arrival times and service times having gen-
eral statistical distributions. An approximation of the mean waiting
time for this system is given by Kingman’s formula [21]:

W̃K
Q (τ) ≈

(
ρ̃(τ)

1− ρ̃(τ)

)(
c̃2a(τ) + c̃2s(τ)

2

)
T̃S(τ) (7)

where the input parameters are the following:

†We highlight that we are not assuming that the workload is always
perfectly balanced, but that we are able to properly balance it among n
replicas by changing the distribution function when necessary.

• the utilization factor of the operator during step τ , defined as
the ratio between its service time and its inter-arrival time, i.e.
ρ̃(τ) = T̃S(τ)/T̃A(τ);

• the coefficient of variation of the inter-arrival time ca =
σA/TA and of the service time cs = σS/TS .

As most of the Queueing Theory results, Expr. 7 can be used for
stable queues only, i.e. such that ρ̃(τ) < 1. This implies that the
model can be used for evaluating the response time of configura-
tions in which the operator is not a bottleneck, i.e. we are implicitly
optimizing throughput in all of our strategies. Furthermore, a valu-
able property of Kingman’s formula is that it is independent from
the specific distributions of the inter-arrival time and service time.
This is an important property, as in real systems these distributions
are in general unknown and must be estimated from the actual ob-
servations in real-time. In our work we will make the following
assumptions:

• by using Expr. 7, we are assuming that the mean waiting time
of a parallel server with n(τ) replicas and overall service time
T̃S(τ) is roughly the same of the one of a sequential server with
the same service time;

• the mean inter-arrival time for the next step T̃A(τ) is forecasted
using statistical filters while the coefficient of variation is kept
equal to the last measured one, i.e. c̃a(τ) = ca(τ − 1);

• the coefficient of variation of the service time is estimated by
c̃s(τ) = cs(τ − 1). So doing, we suppose that cs is unaffected
by changes in the parallelism degree. However, we can note that
cs depends on the way in which the keys are partitioned among
the replicas. For the moment being we neglect this aspect that
will be investigated in our future work.

It is well known that the Kingman model provides good accu-
racy especially for systems close to saturation [21], which is a good
property since our goal is to avoid wasting resources and energy. In
our strategies this model will be used quantitatively. To increase
its precision we use the following feedback mechanism to fit King-
man’s approximation to the last measurements:

W̃Q(τ) = e(τ) · W̃K
Q (τ) =

WQ(τ − 1)

W̃K
Q (τ − 1)

· W̃K
Q (τ) (8)

The parameter e is the ratio between the mean waiting time during
the past step τ−1 collected by the splitter functionality and the last
prediction obtained by Kingman’s formula. The idea is to adjust the
next prediction according to the past error. A similar mechanism
has been applied with good results to the problem of estimating the
response time of a chain of operators in [23].

Power consumption model. The energy consumed is expressed
as the product between the power used and the execution time. Ow-
ing to the infinite nature of DaSP computations, the minimization
of the instant power (power capping) is the main solution to reduce
energy consumption and cutting down operating costs.

We need to estimate the actual utilized power on multicore
CPUs with DVFS support. We are not interested in knowing the
exact amount of power, but only a proportional estimation such that
we can compare different operator configurations. In particular, we
do not consider the static power dissipation of the CPU and the one
of the other remaining system components (e.g., RAM), but we will
focus on the dynamic power dissipation originated from logic-gate
activities in the CPU, which follows the underlying formula [5, 26]:

P̃(τ) ∼ Ceff · n(τ) · f(τ) · V2 (9)

The power required during step τ is proportional to the used num-
ber of cores, the CPU frequency and the square of the supply volt-
age V , which in turn depends on the frequency of the processor.

Ceff represents the effective capacitance, a technological constant
that depends on the hardware characteristics of the CPU.

It is worth noting that by monitoring the system utilization
factor ρ(τ) only, we are not able to choose the most power-efficient
configuration that meets the target response time requirements. In
fact, from Expr. 7 we can derive the utilization factor necessary
to guarantee a certain WQ. Several configurations can achieve
the same or a similar utilization factor, e.g., by using 5 replicas
with a frequency of 2GHz or 10 replicas at 1GHz. Therefore,
our strategies will need to be further able to estimate the power
consumed by different operator configurations expressed by all
the feasible combinations of the number of used cores and the
employed CPU frequency.

3.2 Optimization Problem
The MPC-based strategies solve at each step the optimization prob-
lem defined in Expr. 2. The cost function is the sum of the step-wise
cost L over a horizon of h ≥ 1 future steps. A general form of the
step-wise cost can be expressed as follows, with i = 0, . . . , h− 1:

L(q̃,u, i) = Qcost

(
q̃(τ + i)

)
+ QoS cost

+Rcost

(
u(τ + i)

)
+ Resource cost

+ Sw
cost

(
∆u(τ + i)

)
Switching cost (10)

The QoS cost models the user degree of satisfaction with the actual
QoS provided by the operator. The resource cost models a penalty
proportional to the amount of resources/energy consumed. The
switching cost is a function of the vector ∆u(τ) = u(τ) −
u(τ−1), which models the penalty incurred in changing the actual
configuration.

In the following, various MPC-based strategies will be designed
by using different formulations of the three cost terms.

QoS cost. We focus on latency-sensitive applications in which the
response time needs to be bounded to some thresholds. Exceeding
those requirements must be considered a failure, which may lead
to a system malfunction, a loss of revenue or to catastrophic events
depending on the type of system controlled. The general objective
is to minimize latency as much as possible. However, keeping the
latency under a maximum threshold (a critical value for the user
satisfaction) is often sufficient in many applications to provide fresh
results to the users [31]. We model this requirement with a cost
function defined as follows:

Qcost

(
q̃(τ + i)

)
= α exp

(
R̃Q(τ + i)

δ

)
(11)

where α > 0 is a positive cost factor. Such kind of cost heavily
penalizes configurations with a latency greater than a threshold
δ > 0, as the cost increases rapidly. Therefore, keeping the latency
under the threshold as long as possible is fundamental to minimize
this cost.

Resource cost. The resource cost is defined as a cost proportional
to the number of used replicas or to the power consumed, which in
turn depends both on the number of used cores and the employed
CPU frequency. We use two cost definitions:

Rcost

(
u(τ + i)

)
= β n(τ + i) per-core cost (12)

= β P̃(τ + i) power cost (13)

where β > 0 is a unitary price per unit of resources used (per-core
cost) or per watt (power cost).

Switching cost. The switching cost term penalizes frequent
and/or large modifications of the actual operator configuration. We

use the following definition:

Sw
cost

(
∆u(τ + i)

)
= γ

(
∥∆u(τ + i)∥2

)2
(14)

where γ > 0 is a unitary price factor. This cost includes the Eu-
clidean norm of the difference vector between the decision vec-
tors used at two consecutive control steps. Quadratic switching cost
functions are common in the Control Theory literature [11]. They
are used to reduce the number of reconfigurations by avoiding the
controller oscillating the configuration used and performing large
changes in the values of the decision variables.

4. Runtime Mechanisms
In this paper we describe a prototypal version of our elastic strate-
gies‡ developed in the FastFlow framework [1] for parallel stream
processing applications targeting shared-memory architectures.
According to the model adopted by this framework, the split-
ter, replicas, merger and the controller are implemented as sep-
arated threads that exchange messages through lock-free shared
queues [8]. Messages are memory pointers in order to avoid the
overhead of extra copies. The centralized controller is executed
by a dedicated control thread. This choice is in line with other
approaches proposed recently [23]. Distributed controllers will be
studied in the future. The splitter is interfaced with the network
through a standard TCP/IP POSIX socket used to receive an un-
bounded stream of input tuples.

The reconfiguration mechanisms are in charge of applying the
new configuration determined by the strategy for the current con-
trol step. They will be described in the rest of this section. Although
we target shared-memory machines, the runtime interface has been
designed in order to be easily implementable in distributed archi-
tectures in the near future.

4.1 Increase/Decrease the Number of Replicas
In the case of a change in the parallelism degree, the controller
transmits a message containing the new distribution function mτ

to the splitter. The controller is responsible for creating the threads
supporting the new replicas and for interconnecting them with the
splitter, merger and the controller by creating proper shared queues.
Furthermore, the splitter transmits migration messages to the repli-
cas in order to start the state migration protocol, see Sect. 4.3.
Only the replicas involved in the migration will be notified. Sim-
ilar actions are performed in the case some replicas are removed by
destroying the threads implementing the removed replicas and the
corresponding FastFlow queues.

4.2 Heuristics for Load Balancing
The controller decides a new distribution function in two different
cases: i) if a new parallelism degree must be used; ii) although
the parallelism degree is not modified, a new distribution function
may be needed to balance the workload among the actual number
of replicas. In both the cases finding the best key assignment in
terms of load balancing is a NP-hard problem equivalent to the
minimum makespan [30]. Therefore, approximate solutions must be
used. The pseudocode of the solution proposed in [30, Chapt. 10]
is shown in Alg. 1, in which the distribution function is represented
by a lookup table. The keys are ordered by their weight for the
next step, see Sect. 3.1.2. Starting from the heaviest key, each key
is assigned to the replica with the actual least amount of load.
Li(τ) =

∑
k|mτ (k)=i wk(τ) denotes the load of the i-th replica.

Other heuristics have been studied in the past. In [28] the au-
thors have tried to achieve good load balancing while minimizing

‡The code is available at: https://github.com/tizianodem/
elastic-hft

https://github.com/tizianodem/elastic-hft
https://github.com/tizianodem/elastic-hft

Algorithm 1: Computing the distribution table.
Input: list of keys, their weight and the number of replicas N .
Result: a new distribution table.

1 Order the list of keys by their weight;
2 foreach replica i ∈ [1, N] do
3 Li = 0;
4 end
5 foreach k ∈ K in the list do
6 Assign k to replica j s.t. Lj(τ) = minNi=1{Li(τ)};
7 Update the load of replica j, i.e. Lj(τ) = Lj(τ) + wk(τ);
8 end
9 return the new distribution table;

the amount of migrated keys. The idea is to pair very loaded repli-
cas with less loaded ones and exchange keys if the load difference
of each pair is higher than a threshold. In Sect. 5.2 we will ana-
lyze in detail the impact of the number of moved keys in multicore
architectures by comparing different heuristics.

4.3 State Migration
Each time the controller changes the distribution function, some of
the data structures supporting the internal state must be migrated.
This problem has been addressed in various works from which we
have taken inspiration. Our goal is to design a low-latency state
migration protocol. In particular, during the reconfiguration phase
the splitter should not delay the distribution of new input tuples to
the replicas not involved in the migration, i.e. they must always be
able to process the input tuples without interferences. Furthermore,
the replicas involved in the migration should be able to process all
the input tuples of the keys not involved in the migration without
interruptions.

Our migration protocol consists of several phases. In the first
step the splitter receives from the controller the new distribution
function mτ and recognizes the migrated keys. It transmits a se-
quence of migration messages belonging to two different classes:

• move out(k) is sent to the replica ri that held the data struc-
tures corresponding to the tuples with key k ∈ K before the
reconfiguration but will not hold them after the reconfiguration,
i.e. mτ−1(k) = i ∧mτ (k) ̸= i;

• move in(k) is sent to the replica rj that will hold the data
structures associated with key k after the reconfiguration (and
did not own them before), i.e. mτ−1(k) ̸= j ∧mτ (k) = j.

The splitter sends new tuples using the new distribution function
without blocking, while the state movements are carried out by the
replicas in parallel. In contrast, in [14, 17] the operator experiences
a downtime until the migration is complete by blocking some of the
replicas and/or the splitter. Like in [15, 28] the replicas not involved
in the migration maintain the same subset of keys and are able to
process the input tuples without interferences.

Fig. 3 depicts the reconfiguration actions in the case of the
migration of a key k ∈ K from replica ri to rj 1 . At the reception
of a move out(k) message by replica ri 2 , that replica knows
that it will not receive tuples with key k anymore. Therefore, it
can safely save the state of that key (denoted by sk) to a backing
store used to collect the state partitions of the migrated keys and to
synchronize the pairs of replicas involved in the migration.

The replica rj , which receives the move in(k) message 3 ,
may receive new incoming tuples with that key before the state has
been acquired from the backing store. Only when ri has properly
saved sk into the repository 4 the state can be acquired by rj 5 .
However, rj is not blocked during this time period but accepts new
tuples without interruptions. All the tuples with key k received in

SPLITTER

thread

REPLICA j

thread

thread

Controller

Backing Store
(repository)

Key k

. . .

. . .
ri Key k

. . .

. . .

m⌧m⌧�1

rj

Key 0 State 0
.

.

Flags

. . .

. . .
Key k State kFlags

reconfiguration: new
distribution function.

1

move_in(k)

move_out(k) migrate state of key k

acquire state of key k

REPLICA i

thread
queue

SOURCE

DEST.

2

3

4

5

pending
buffer tuples

Figure 3: Example of state migration between replica ri and replica rj .

the meanwhile are enqueued in a temporary pending buffer until sk
is available. When that state is ready to be fetched, it is acquired by
the replica and all the pending tuples of key k in the buffer are rolled
out and processed in the same order in which they were sent by the
splitter. This solution is similar to the one described in [28], except
that the pending buffers are maintained in the replicas involved
in the migration instead of having a centralized buffer kept in the
splitter. Therefore, the splitter is able to route tuples to the replicas
without delays introduced by the dequeuing of tuples from the
pending buffer.

In our case, since the replicas are executed on the same shared-
memory node (A1), the repository is a shared memory area in
which replicas exchange memory references to the data structures
by avoiding the copy overhead. Instead, in the case of a distributed
implementation the backing store can be implemented by back-end
databases or using socket-/MPI-based implementations [14].

4.4 Frequency Scaling and Energy Measurement
Our MPC-based strategies can change the current operating fre-
quency used by the CPUs. This does not affect the structure of the
parallelization and can be performed transparently. To this end, the
runtime uses the C++ Mammut library§ (MAchine Micro Manage-
ment UTilities) targeting off-the-shelf multicore CPUs. The con-
troller uses the library functions to collect energy statistics. On In-
tel Sandy-Bridge CPUs this is performed by reading the Running
Average Power Limit (RAPL) energy sensors that provide accurate
fine-grained energy measurements [16]. On the same way, voltage
values are read through specific model-specific registers (MSR).

5. Experiments
In this section we evaluate our control strategies on a DaSP applica-
tion operating in the high-frequency trading domain (briefly, HFT).
The code has been compiled with the gcc compiler (version 4.8.1)
with the −O3 optimization flag. The target architecture is a dual-
CPU Intel Sandy-Bridge multicore with 16 cores with 32GB or
RAM. Each core has a private L1d (32KB) and L2 (256KB) cache.
Each CPU is equipped with a shared L3 cache of 20MB. The ar-
chitecture supports DVFS with a frequency ranging from 1.2GHz
to 2GHz in steps of 0.1GHz. In the experiments the TurboBoost
feature of the CPU has been turned off. Each thread of the imple-
mentation has been pinned on a distinct physical core and hyper-
threading CPU facility is not exploited.

§The Mammut library is open source and freely available at https:
//github.com/DanieleDeSensi/Mammut

https://github.com/DanieleDeSensi/Mammut
https://github.com/DanieleDeSensi/Mammut

5.1 Application Description
High-frequency trading applications ingest huge volume of data at
a great velocity and process them with very stringent QoS require-
ments. Fig. 4 shows the kernel of the application that we use for the
experiments.

Source Consumer

Algotrader

.

.

.
S M

Controller

Replica

Replica

windows

window

visualization

Figure 4: Kernel of a high-frequency trading application.

The source generates a stream a financial quotes, i.e. buy and
sell proposals (bid and ask) represented by a record of attributes
such as the proposed price, volume and the stock symbol (64 bytes
in total). The algotrader operator processes quotes grouped by the
stock symbol. A count-based sliding window of size |W| = 1, 000
quotes is maintained for each group. After receiving a slide of
δ = 25 new tuples of the same stock symbol, the computation pro-
cesses all the tuples in the corresponding window. The operator ag-
gregates quotes with a millisecond resolution interval and applies a
prediction model aimed at estimating the future price of that stock
symbol. The aggregate quotes (one per resolution interval) in the
current window are used as input of the Levenberg-Marquardt re-
gression algorithm to produce a fitting polynomial. For the regres-
sion we use the C++ library lmfit [6]. The results are transmitted
to the consumer that consolidates them in a DB. The algotrader and
the consumer are executed on the same machine while the source
can be allocated on a different host, as it communicates with the al-
gotrader through a TCP socket. The user can choose the parameters
|W| and δ in order to achieve a desired level of results accuracy.
The values used in the experiments are typical examples. In our
evaluation we do not consider the consumer. We have dedicated
4 cores for the source, splitter, merger and the controller entities,
which leaves 12 cores for replicas.

This application has all the variability issues introduced in
Sect. 2.1. The source generates inputs with a time-varying ar-
rival rate and frequency distribution of the stock symbols (D1 and
D2). Furthermore, the aggregation phase can change the number of
quotes that are inputs of the regression. Therefore, also the compu-
tation time per window can vary during the execution (D3) anal-
ogously to the case in which time-based windows are used. We
refer to a synthetic workload (Fig. 5a) and a real dataset scenario
(Fig. 5b). In the latter, the quotes and their timestamps are the ones
of a trading day of the NASDAQ market (daily trades and quotes
of 30 Oct 2014¶) with 2, 836 traded stock symbols. This dataset
has a peak rate near to 60, 000 quotes per second, with an average
value well below this figure. To model future scenarios of millions
of quotes per second (as in the case of options instead of quotes),
we accelerate it 100 times to increase the need of parallelism in the
algotrader. Fig. 5b shows the accelerated real workload.

Fig. 5a shows the arrival rate per second in the synthetic bench-
mark. The rate follows a random walk model and the key frequency
distribution is fixed and equal to a random time instant of the real
NASDAQ dataset. The skewness factor, i.e. the ratio between the
most probable key and the less probable one, is equal to 9.5× 104.

¶The dataset can be downloaded at the following url: http://www.
nyxdata.com

0

1.1x105

2.2x105

3.3x105

4.4x105

5.5x105

 0 20 40 60 80 100 120 140 160 180A
rr

iv
al

 r
at

e
(q

uo
te

s/
se

c)

Time (sec)

Random walk workload.

Arrival rate.

(a) Random walk.

0

1.1x105

2.2x105

3.3x105

4.4x105

5.5x105

 0 30 60 90 120 150 180 210 235A
rr

iv
al

 r
at

e
(q

uo
te

s/
se

c)

Time (sec)

Real NASDAQ data-set workload.

Arrival rate.

(b) Real dataset.

Figure 5: Arrival rate in the synthetic and real workload scenarios.

The execution of the synthetic benchmark consists in 180 seconds,
while the one of the real dataset (Fig. 5b) is of 235 seconds equal
to about 6 hours and half in the original non-throttled dataset.

5.2 Implementation Evaluation
The first set of experiments is aimed at analyzing our parallel
implementation of the algotrader operator in order to assess the
efficiency and the effectiveness of our design choices.

Overhead of the elastic support. To evaluate the impact of our
elastic support we have measured the maximum input rate that the
algotrader is able to sustain with the highest CPU frequency and
the maximum number of replicas. We compare the implementation
with the elastic support, i.e. the controller functionality and all
the monitoring activities enabled (sampling interval of 1 second),
with the one in which the elastic support has been turned off. In
this experiment the algotrader is fed by a high-speed stream of
quotes belonging to 2, 836 keys all with the same frequency. The
results of this experiment show a modest overhead in the algotrader
ideal service time, bounded by 3 ÷ 4%. This demonstrates that
the monitoring activity and the asynchronous interaction with the
controller have a negligible effect on the computation performance.

Migration overhead. The MPC controller adopts the heuristic de-
scribed in Alg. 1 to find a new distribution function. This heuristic
(called balanced in the rest of the description) may move most of
the keys in order to balance the workload perfectly among the repli-
cas. We compare it with the heuristic studied in [28] (we call it
Flux), which minimizes the number of migrated keys by keeping
the unbalance under a threshold (we use 10%).

We analyze a scenario in which the workload is perfectly bal-
anced until timestamp 30. At that time instant we force the in-
put rate to suddenly change from 3 × 105 quotes/sec to 4 × 105

quotes/sec. The strategy detects the new rate and changes the num-
ber of replicas from 6 to 8 at timestamp 31. In this case the con-
troller does not modify the CPU frequency. The steady-state be-
havior of the new configuration is reached at timestamp 36. Fig. 6
shows the average latency measured each 250 milliseconds (1/4 of
the control step).

We identify three phases: a first phase in which the rate changes
and the controller detects it at the next control step. During this
phase both the heuristics produce very similar latency results that

http://www.nyxdata.com
http://www.nyxdata.com

0

48

96

144

192

220

2525
.5 2626

.5 2727
.5 2828

.5 2929
.5 3030

.5 3131
.5 3232

.5 3333
.5 3434

.5 3535
.5 3636

.5 3737
.5 3838

.5 3939
.5 40

La
te

nc
y

(m
s)

Monitoring intervals (250 ms)

Impact of the rebalancer strategy.
Balan. Flux.

3.8
3.9
4.0
4.1

36 36
.5 37 37

.5 38 38
.5 39 39

.5 40
phase 1

phase 2

phase 3

reconfig.
end

reconfig.
start

change in the
input rate

Figure 6: Impact of the rebalancing heuristics: latency measurements in
the time instants before, during and after a reconfiguration.

grows because the operator becomes a bottleneck. In the second
phase the controller triggers the reconfiguration and some keys are
migrated (2, 460 and 68 in the Balanced and the Flux heuristics).
The Flux heuristic produces lower latency results because pending
buffers are mostly empty during this phase. In the third phase (after
timestamp 33), the replicas process the tuples that were waiting in
the pending buffers. Owing to a better load balancing, the heuristic
of Alg. 1 approaches the steady state faster. During the third phase
the measured latency with the Flux heuristic is about double of
the latency with the balanced one. Furthermore, the steady-state
behavior after timestamp 36 shows a slight advantage (1 ÷ 2%)
compared with Flux (subplot in Fig. 6).

In conclusion, on multicores the balanced heuristic should be
preferred in latency-sensitive applications since the latency spikes
during the migration are modest and, notably, the new steady state
can be reached faster. Of course this consideration does not hold in
distributed-memory architectures, in which minimizing the number
of moved keys is important because the state partitions are copied
among replicas, and not transferred by reference.

On the optimization complexity. As an ancillary aspect, we note
that the MPC optimization requires to explore all the admissible re-

configuration trajectories, whose number is N h×|F|h. Therefore,
we have an exponential increase with an increasing number of re-
configuration options and longer prediction horizons. To complete
the optimization in a time negligible with respect to the control
step, we use a Branch & Bound procedure that reduces the number
of explored states of several orders of magnitude with respect to
the theoretical number of trajectories. Details will be provided in
future extensions of this paper.

5.3 Control Strategies Evaluation
In this section we study different MPC-based strategies based on
the different formulations of the optimization problem proposed in
Sect. 3.2. Tab. 2 summarizes them. The cost parameters α, β and
γ require to be tuned properly. We use β = 0.5 while we adopt
a different value of α according to the used workload trace. Each
strategy is evaluated without switching cost (γ = 0) or with the
switching cost (we use γ = 0.4) and different lengths h ≥ 1 of the
prediction horizon.

Name Resource cost alpha (rw) alpha (real)
Lat-Node per node (Expr. 12) 2 3
Lat-Power power cost (Expr. 13) 2 4

Table 2: Different MPC-based strategies studied in the experiments.

The arrival rate is predicted using a Holt Winters filter [13]
able to produce h-step ahead forecasts by taking into account trend
and cyclic nonstationarities in the underlying time-series; the fre-
quencies and the computation times per key are estimated us-
ing the last measured values, i.e. p̃k(τ + i) = pk(τ − 1) and
C̃k(τ + i) = Ck(τ − 1) for i = 0, . . . , h − 1. We use the bal-
anced heuristic to derive the new distribution function at each step.

All the experiments have been repeated 25 times by collecting
the average measurements. The variance of the results is very small:
in some cases we will show the error bars.

5.3.1 Reconfigurations and effect of the switching cost
Fig. 7 shows the number of replicas used by the algotrader operator
with the Lat-Node strategy without the switching cost (NoSw) and

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100 120 140 160 180

N
o.

 o
f r

ep
lic

as

Time (sec)

Reconfigurations (random walk).

Lat-Node (NoSw).
Lat-Node (Sw h=1).

(a) Lat-Node NoSw vs. Sw (h = 1).

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100 120 140 160 180

N
o.

 o
f r

ep
lic

as

Time (sec)

Reconfigurations (random walk).

Lat-Node (NoSw).
Lat-Node (Sw h=2).

(b) Lat-Node NoSw vs. Sw (h = 2).

 0
 2
 4
 6
 8

 10
 12
 14

 0 30 60 90 120 150 180 210 235

N
o.

 o
f r

ep
lic

as

Time (sec)

Reconfigurations (real dataset).

Lat-Node (NoSw).
Lat-Node (Sw h=1).

(c) Lat-Node NoSw vs. Sw (h = 1).

 0
 2
 4
 6
 8

 10
 12
 14

 0 30 60 90 120 150 180 210 235

N
o.

 o
f r

ep
lic

as

Time (sec)

Reconfigurations (real dataset).

Lat-Node (NoSw).
Lat-Node (Sw h=2).

(d) Lat-Node NoSw vs. Sw (h = 2).

Figure 7: Used replicas per control step (1 sec). Lat-Node strategy: comparison without switching cost and with the switching cost and h = 1, 2.

with the switching cost (Sw) and different horizon lengths h = 1, 2.
The reconfiguration sequence reflects the workload variability. The
strategy changes only the number of replicas (the CPU frequency is
fixed to 2 Ghz). Qualitatively similar results are achieved with the
Lat-Power strategy (we omit them for the sake of space).

The combined effect of the switching cost and the horizon
length is evident. The dashed line corresponds to the reconfigu-
rations without switching cost (γ = 0 and h = 1) in which the
cost function J is composed of the QoS cost and the resource
cost terms. The MPC controller selects the number of replicas that
minimizes this function by following the workload variability. It is
worth noting that a prediction horizon longer than one step is use-
less without the switching cost enabled.

The solid line corresponds to the strategy with the switching
cost enabled, which acts as a stabilizer by smoothing the reconfig-
uration sequence, i.e. it is a brake that slows the acquisition/release
of replicas. By increasing the foresight of the controller the recon-
figurations with the switching cost better approximate the sequence
without the switching cost. The reason is that our disturbance fore-
casts are able to capture future increasing/decreasing trends in the
arrival rate (Holt-Winters). During increasing trends, longer hori-
zons allow the controller to anticipate the acquisition of new repli-
cas. The opposite characterizes decreasing trends. Therefore, by in-
creasing the horizon length the effect of the stabilizer is less inten-
sive and a faster adaptation to the workload can be observed.

Fig. 8 summarizes the total number of reconfigurations. More
reconfigurations are performed with the real workload, because of
a higher variability of the arrival rate. Furthermore, more recon-
figurations are needed by the energy-aware strategy Lat-Power.
In fact, the space of possible reconfiguration options is larger, as
the controller can also change the CPU frequency. In the number
of reconfigurations we count any change in the number of replicas
and/or in the CPU frequency. We do not consider the changes that
affect only the distribution function.

 0

 30

 60

 90

 120

 150

Random Walk Real

N
o.

 r
ec

on
f.

Lat-Node strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

 0

 40

 80

 120

 160

 200

Random Walk Real

N
o.

 r
ec

on
f.

Lat-Power strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

Figure 8: Number of reconfigurations.

The Lat-Power strategy can vary the number of replicas, the
CPU frequency or both. Fig. 9 shows the types of reconfigurations
performed. In general, changes in the CPU frequency are more
frequent than reconfigurations of the number of replicas.

 0

 16

 32

 48

 64

 80

NoSw Sw(h=1) Sw(h=2) Sw(h=3)

N
o.

 r
ec

on
f.

Lat-Power strategy (random walk).

No. replicas.
CPU freq.

Both.

 0

 28

 56

 84

 112

 140

NoSw Sw(h=1) Sw(h=2) Sw(h=3)

N
o.

 r
ec

on
f.

Lat-Power strategy (real data-set).

No. replicas.
CPU freq.

Both.

Figure 9: Types of reconfigurations.

In conclusion we can state the following important property: the
switching cost term allows the strategy to reduce the number and

frequency of reconfigurations (P1). This effect is partially mitigated
by increasing the horizon length.

5.3.2 QoS violations
We detect a QoS violation each time the average latency measured
during a control step is higher than a user-defined threshold θ.
Figs. 10a, 10b and 10c show the latency violations achieved by the
Lat-Power strategy in the random walk scenario with θ = 1.5 ms.
The figure reports the average latency per second without switching
cost (h = 1) and with switching cost (h = 1, 2). We detect a
QoS violation each time the solid line crosses the dashed line. The
95% confidence intervals (red intervals in the figure) are very small,
demonstrating the small variance of the measurements.

Without switching cost we have more violations. In fact, the
strategy chooses each time the minimal (smaller) configuration
such that the latency threshold is respected. If the arrival rate pre-
dictions are underestimated we obtain over-threshold latencies. We
achieve fewer violations by using the switching cost and the mini-
mum horizon. This is an expected result, as this strategy overshoots
the configuration (P4). This is clear in Fig. 7a and 7c, where the
reconfiguration sequences with switching cost are mostly on top
the ones without it. This allows the strategy to be more capable of
dealing with workload underestimation. Longer horizons provide
intermediate results. Figs. 10d, 10e and 10f show the results with
the real workload in which we use a higher threshold of 7 ms. We
measure more violations because the input rate variability is higher
and predictions less accurate.

Fig. 11 summarizes the results. In conclusion, the switching cost
allows the strategy to reach better accuracy (P2). This positive
effect is partially offset by increasing the horizon length.

 0

 10

 20

 30

 40

 50

Random Walk Real

N
o.

 v
io

la
tio

ns
.

Lat-Node strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

 0

 12

 24

 36

 48

 60

Random Walk Real

N
o.

 v
io

la
tio

ns
.

Lat-Power strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

Figure 11: Number of QoS violations.

5.3.3 Resource and power consumption
We study the power consumption of the Lat-Node and the Lat-Power
strategies. We consider the power dissipated by the cores, while the
other components inside the chip (L3 cache) and off-chip (RAM)
represent a constant term in the overall power consumption∥.

We use the same frequency for the two chips of our multicore
(A1). Fig. 12 shows the watts without using the switching cost. We
compare the strategies in which the controller changes the number
of replicas configured at the highest frequency (Lat-Node) with the
strategy using frequency scaling (Lat-Power). Fig. 12a shows the
results in the random walk scenario. The watts with the energy-
aware strategy (green lines) always stay below the consumption
without frequency scaling, resulting in an average power saving
of 18.2%. A similar behavior can be observed in Fig. 12b for the
real workload where Lat-Power saves 10 ÷ 11 watts (16.5% on
average) than Lat-Node. This reduction is significant owing to the
long-running nature of DaSP applications.

Fig. 13 summarizes the results. With longer horizons the strate-
gies with switching cost consume more resources/power. For the

∥We measure the core counter. The overall socket consumption consists
in additional 25÷ 30 watts per step.

0

0.6

1.2

1.8

2.4

3

 0 20 40 60 80 100 120 140 160 180

La
te

nc
y

(m
s)

Time (sec)

Latency violations (random walk).

(a) Lat-Power NoSw - 18 violations.

0

0.6

1.2

1.8

2.4

3

 0 20 40 60 80 100 120 140 160 180

La
te

nc
y

(m
s)

Time (sec)

Latency violations (random walk).

(b) Lat-Power Sw (h = 1) - 6 violations.

0

0.6

1.2

1.8

2.4

3

 0 20 40 60 80 100 120 140 160 180

La
te

nc
y

(m
s)

Time (sec)

Latency violations (random walk).

(c) Lat-Power Sw (h = 2) - 11 violations.

0

6

12

18

24

30

 0 30 60 90 120 150 180 210 235

La
te

nc
y

(m
s)

Time (sec)

Latency violations (real data-set).

(d) Lat-Power NoSw - 38 violations.

0

6

12

18

24

30

 0 30 60 90 120 150 180 210 235

La
te

nc
y

(m
s)

Time (sec)

Latency violations (real data-set).

(e) Lat-Power Sw (h = 1) - 29 violations.

0

6

12

18

24

30

 0 30 60 90 120 150 180 210 235

La
te

nc
y

(m
s)

Time (sec)

Latency violations (real data-set).

(f) Lat-Power Sw (h = 2) - 33 violations.

Figure 10: Latency violations. Strategy Lat-Power with random walk workload (a, b, c) and the real dataset (d, e, f).

real workload Lat-Node uses 14.76%, 1.87% and 0.94% more re-
sources (respectively for h = 1, 2, 3) with respect to the strategy
without switching cost. Lat-Power has an additional power con-
sumption of 5.68%, 3.04% and 1.12% respectively.

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180

W
at

ts

Time (sec)

Power consumption (cores): random walk.

Lat-Node (NoSw).
Lat-Power (NoSw).

(a) Lat-Node vs. Lat-Power.

 20

 30

 40

 50

 60

 70

 80

 0 30 60 90 120 150 180 210 235

W
at

ts

Time (sec)

Power consumption (cores): real dataset.

Lat-Node (NoSw).
Lat-Power (NoSw).

(b) Lat-Node vs. Lat-Power.

Figure 12: Power consumption (watts) of the Lat-Power and Lat-Node
strategies without switching cost: random walk and real workload.

 3

 6

 9

 12

 15

Random Walk Real

N
o.

 c
or

es

Lat-Node strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

 40

 44

 48

 52

 56

 60

Random Walk Real

W
at

ts

Lat-Power strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

Figure 13: Resources/power consumed.

From these results we can derive the following important prop-
erty of our strategies: the use of the switching cost causes overshoot
(P4). This can be mitigated by using a longer horizon.

5.3.4 Reconfiguration amplitude
In cases of sudden workload changes, the strategy should be able to
reach rapidly a configuration that meets the QoS requirements. If

fews replicas are added/removed each time, this negatively impacts
the settling time property as several reconfigurations are needed to
reach the configuration able to achieve the desired QoS. Fig. 14
shows for each strategy the so-called reconfiguration amplitude
measured over the entire execution. It consists in the Euclidean
distance between the decision vector u(τ) used at step τ and the
one used at the previous step u(τ −1). The frequency values (from
1.2 Ghz to 2 Ghz with steps of 0.1) have been normalized using the
rule (f(τ)− 1.2) ∗ 10 + 1 to obtain the integers from 1 to 9.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

Random Walk Real

R
ec

on
f.

am
pl

itu
de

Lat-Node strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Random Walk Real

R
ec

on
f.

am
pl

itu
de

Lat-Power strategy.

NoSw.
Sw (h=1).
Sw (h=2).
Sw (h=3).

Figure 14: Settling time: random walk and real workload.

As it is evident from Fig. 14, the strategies with switching cost
and h = 1 perform smaller reconfigurations. The highest amplitude
is achieved by the strategy without the switching cost, which fol-
lows accurately the workload variations (more intensive in the real
dataset). Therefore, the switching cost reduces the average recon-
figuration amplitude while better settling time (P3) can be achieved
with longer prediction horizons.

5.4 Comparison with Peak-load Overprovisioning
In this section we compare the best results achieved by our strate-
gies against a static configuration in which the algotrader is config-
ured to sustain the peak load. In this scenario state migrations are
eventually performed at each step to maintain the workload bal-
anced among replicas. However, the number of replicas and the
CPU frequency are statically set to the maximum value throughout
the execution. The results are depicted in Fig. 15.

The peak-load configuration allows to achieve the minimum
number of QoS violations both in the synthetic and the real work-
load traces. With the real workload we have 7 and 18 more vio-
lations achieved by Lat-Node and Lat-Power respectively. How-

 0

 12

 24

 36

 48

Random Walk Real

N
o.

 v
io

la
tio

ns
.

QoS violations.

Overprovisioned.
Lat-Node (h=2).

Lat-Power (h=2).

 40

 44

 48

 52

 56

 60

 64

 68

 72

 76

 80

Random Walk Real

W
at

ts

Power consumption.

Overprovisioned.
Lat-Node (h=2).

Lat-Power (h=2).

Figure 15: QoS violations and power consumption: comparison with the
static peak-load overprovisioning strategy.

ever, this static configuration has the highest power consumption.
The relative power savings for the synthetic and real workload are
respectively of 14% and 12% with Lat-Node and 29% and 25%
with Lat-Power.

5.5 Comparison with Similar Approaches
We conclude this paper by comparing our approach with two re-
active strategies. The first is based on policy rules. It changes the
number of replicas if the relative error between the measured la-
tency and a required one is over a threshold. The second is the
control algorithm described in [14] developed for the SPL frame-
work [2] and targeting the SASO properties. This strategy changes
the number of replicas based on a congestion index (i.e. the fraction
of time the splitter is blocked in sending tuples to the replicas) and
the recent history of the past actions. If a recent action has been
taken without improving throughput, the control algorithm avoids
executing it again. To adapt to fluctuating workload, the authors in-
troduce mechanisms to forget the recent history if the congestion
index or the throughput change significantly. The algorithm uses a
sensitivity parameter to determine what a significant change means.
Like for our parameters α, β and γ, tuning is required for the in-
dex and sensitivity parameters. Both the reactive strategies do not
change the CPU frequency.

Tab. 3 shows a summary of the results for the real dataset
scenario. We compare the results achieved by the two reactive
strategies against our Lat-Node strategy with h = 2 (the best
horizon in terms of SASO trade-off). We chose this strategy in
order to change only the number of replicas in all the cases. For the
comparison we change the control step length to 4 seconds because
the SPL strategy behaves poorly with too small sampling intervals.
This is a first evident shortcoming of this approach, which is unable
to adapt to the workload with a fine-grained sampling. We found
that the best values for the congestion index and the sensitivity
parameter, according to the authors indications [14], are near to
0.1 and 0.9 respectively.

No. reconf. QoS viol. No. replicas

Rule-based 47.42 76 6.89
SPL-strategy 40.18 230 4.63
Lat-Node 11.0 30 9.97
Peak-load - 15 12

Table 3: Comparison: average values with 25 tests per strategy.

The results show that our approach is the winner. Fewer recon-
figurations are performed (stability) with fewer QoS violations. The
SPL strategy is essentially throughput oriented. Therefore, it gives
no latency guarantee and produces more QoS violations. Our strat-
egy obtains fewer violations by needing a slightly higher number
of resources than the rule-based strategy. This is a confirm of the

effectiveness of our approach and of its ability to respect latency
requirements with minimal resource consumption.

6. Related Work
Nowadays SPEs are widely used, both through academia proto-
types [12, 15] and open-source [3, 4] and industrial products [2, 7].

Elasticity is a recent feature of SPEs, based on the automatic
adaptation to the actual workload by scaling up/down resources.
Most of the existing strategies are reactive. In [12, 15, 17] the
authors use threshold-based rules on the actual CPU utilization by
adding or removing computing resources accordingly. Other works
use complex metrics to drive the adaptation. In [23] the mean and
standard deviation of the service time and the inter-arrival time are
used to enforce latency constraints without predictive capabilities.
In [14] the strategy measures a congestion index. By remembering
the effects of the recent actions, the control algorithm avoids taking
reconfigurations without improving throughput. Analogously to
our work, this approach tries to target the SASO properties in
the DaSP domain. However, our approach proposes a model-based
predictive approach instead of a heuristic-based reactive one.

Other approaches try to anticipate the future by reconfiguring
the system to avoid resource shortages. As far as we know, [22] is
the first work trying to apply a predictive approach. They leverage
on the knowledge of future resources and workload to plan resource
allocation. The approach has been evaluated with oracle models
that give exact predictions. Some experiments take into account
possible prediction errors, but they do not use real forecasting tools.
Moreover, the authors do not evaluate the SASO properties.

All the mentioned works except [23] are not optimized for low
latency. In our past works we have investigated the use of MPC in
the streaming context [24, 25] by focusing on the system through-
put. In contrast, the strategies proposed in this paper explicitly takes
into account latency constraints. In [17] the authors have studied
how to minimize latency spikes during the state migration process.
We have also studied this problem in this paper. In addition, we use
a latency model to drive the choice of future reconfigurations by
making our strategy fully latency-aware.

All the existing works take into account the number of nodes
used. Our strategies are designed to address power consumption
on DVFS-enabled CPUs. In [27] an energy minimization approach
is used to properly annotate OpenMP programs. Therefore, it is
not directly suitable for the streaming context. A work addressing
power consumption in DaSP is [29]. Here the problem is tackled
by a scheduler of streaming applications on the available machines.
Thus, it does not propose scaling strategies.

7. Conclusions and Future Work
This paper presented a predictive approach to elastic data stream
operators on multicores. The approach has two main novel aspects:
it applies the Model Predictive Control method in the domain of
data stream processing; it takes into account power consumption
issues while providing latency guarantees. We validated our ap-
proach in a high-frequency trading application.

The high-frequency trading domain is a good candidate for
the evaluation, since automatic trading applications have usually
stringent QoS requirements in terms of worst-case latency bounds.
However, our approach is not limited to this use case. The MPC
methodology can be particularly beneficial in all the application
domains of DaSP in which QoS violations are considered danger-
ous events that must be avoided to ensure a correct system behavior.
Other examples are healthcare diagnostic systems that process sen-
sor data in real-time to anticipate urgent medical interventions, and
transportation monitoring systems, in which sensor data are ana-
lyzed to detect anomalous behaviors and to prevent catastrophic

scenarios. In these application contexts performance guarantees are
fundamental, and a proactive strategy enabling elastic processing
is of great importance to meet the performance requirements with
high probability by reducing the operating costs.

In the future we plan to extend our work on shared-nothing
machines (clusters). Furthermore, we want to integrate our MPC-
based strategies in a complete graph context, in which different
operators need to coordinate to find agreements in their reconfig-
uration decisions. Distributed optimization and Game Theory are
possible theoretical frameworks to solve this problem.

Acknowledgments
This work has been partially supported by the EU H2020 project
RePhrase (EC-RIA, ICT-2014-1). We want to thank Prof. Marco
Vanneschi to have been an invaluable reference during our work.

References
[1] Fastflow (ff). /http://calvados.di.unipi.it/fastflow/.

[2] Ibm infosphere streams. http://www-03.ibm.com/software/
products/en/infosphere-streams.

[3] Apache spark streaming. https://spark.apache.org/
streaming.

[4] Apache storm. https://storm.apache.org.

[5] Enhanced intel speedstep technology for the intel pentium m proces-
sor, 2004. URL ftp://download.intel.com/design/network/
papers/30117401.pdf.

[6] Joachim wuttke: lmfit a c library for levenberg-marquardt least-
squares minimization and curve fitting, 2015. URL http://apps.
jcns.fz-juelich.de/lmfit.

[7] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Mill-
wheel: Fault-tolerant stream processing at internet scale. Proc. VLDB
Endow., 6(11):1033–1044, Aug. 2013. ISSN 2150-8097. doi: 10.
14778/2536222.2536229.

[8] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati. An efficient unbounded lock-free queue for multi-core
systems. In Proceedings of the 18th International Conference on
Parallel Processing, Euro-Par’12, pages 662–673, Berlin, Heidelberg,
2012. Springer-Verlag. ISBN 978-3-642-32819-0.

[9] H. Andrade, B. Gedik, and D. Turaga. Fundamentals of Stream Pro-
cessing. Cambridge University Press, 2014. ISBN 9781139058940.

[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proceedings of the Twenty-
first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’02, pages 1–16, New York, NY, USA,
2002. ACM. ISBN 1-58113-507-6.

[11] E. F. Camacho and C. Bordons, editors. Model predictive control.
Springer-Verlag, Berlin Heidelberg, 2007.

[12] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Piet-
zuch. Integrating scale out and fault tolerance in stream processing
using operator state management. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’13, pages 725–736, New York, NY, USA, 2013. ACM. doi:
10.1145/2463676.2465282.

[13] R. Fried and A. George. Exponential and holt-winters smoothing. In
M. Lovric, editor, International Encyclopedia of Statistical Science,
pages 488–490. Springer Berlin Heidelberg, 2014.

[14] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu. Elastic scaling
for data stream processing. Parallel and Distributed Systems, IEEE
Transactions on, 25(6):1447–1463, June 2014. ISSN 1045-9219.

[15] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez. Streamcloud: An elastic and scalable data streaming
system. IEEE Trans. Parallel Distrib. Syst., 23(12):2351–2365, Dec.
2012. ISSN 1045-9219.

[16] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy
consumption for short code paths using rapl. SIGMETRICS Perform.
Eval. Rev., 40(3):13–17, Jan. 2012. ISSN 0163-5999. doi: 10.1145/
2425248.2425252.

[17] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer. Latency-aware
elastic scaling for distributed data stream processing systems. In
Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, pages 13–22, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2737-4.

[18] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[19] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn. Self-adaptive
workload classification and forecasting for proactive resource provi-
sioning. In Proceedings of the 4th ACM/SPEC International Con-
ference on Performance Engineering, ICPE ’13, pages 187–198, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1636-1. doi: 10.1145/
2479871.2479899.

[20] W. Hummer, B. Satzger, and S. Dustdar. Elastic stream processing in
the cloud. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 3(5):333–345, 2013. ISSN 1942-4795.

[21] J. F. C. Kingman. On queues in heavy traffic. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 24(2):pp. 383–392, 1962.

[22] A. Kumbhare, Y. Simmhan, and V. Prasanna. Plasticc: Predictive
look-ahead scheduling for continuous dataflows on clouds. In Clus-
ter, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM In-
ternational Symposium on, pages 344–353, May 2014. doi: 10.1109/
CCGrid.2014.60.

[23] B. Lohrmann, P. Janacik, and O. Kao. Elastic stream processing
with latency guarantees. In The 35th International Conference on
Distributed Computing Systems (ICDCS 2015), page to appear, 2015.

[24] G. Mencagli, M. Vanneschi, and E. Vespa. Control-theoretic adapta-
tion strategies for autonomic reconfigurable parallel applications on
cloud environments. In High Performance Computing and Simulation
(HPCS), 2013 International Conference on, pages 11–18, July 2013.
doi: 10.1109/HPCSim.2013.6641387.

[25] G. Mencagli, M. Vanneschi, and E. Vespa. A cooperative predictive
control approach to improve the reconfiguration stability of adaptive
distributed parallel applications. ACM Trans. Auton. Adapt. Syst., 9
(1):2:1–2:27, Mar. 2014. ISSN 1556-4665. doi: 10.1145/2567929.
URL http://doi.acm.org/10.1145/2567929.

[26] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and R. Ra-
jkumar. Critical power slope: Understanding the runtime effects of
frequency scaling. In Proceedings of the 16th International Confer-
ence on Supercomputing, ICS ’02, pages 35–44, New York, NY, USA,
2002. ACM. ISBN 1-58113-483-5.

[27] R. A. Shafik, A. Das, S. Yang, G. Merrett, and B. M. Al-Hashimi.
Adaptive energy minimization of openmp parallel applications on
many-core systems. In Proceedings of the 6th Workshop on Parallel
Programming and Run-Time Management Techniques for Many-core
Architectures, PARMA-DITAM ’15, pages 19–24, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3343-6. doi: 10.1145/2701310.
2701311.

[28] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin. Flux:
an adaptive partitioning operator for continuous query systems. In
Data Engineering, 2003. Proceedings. 19th International Conference
on, pages 25–36, March 2003.

[29] D. Sun, G. Zhang, S. Yang, W. Zheng, S. U. Khan, and K. Li. Re-
stream: Real-time and energy-efficient resource scheduling in big data
stream computing environments. Information Sciences, 319:92 – 112,
2015. ISSN 0020-0255. doi: http://dx.doi.org/10.1016/j.ins.2015.03.
027.

[30] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York,
Inc., New York, NY, USA, 2001. ISBN 3-540-65367-8.

[31] U. Verner, A. Schuster, and M. Silberstein. Processing data streams
with hard real-time constraints on heterogeneous systems. In Pro-
ceedings of the International Conference on Supercomputing, ICS ’11,
pages 120–129, New York, NY, USA, 2011. ACM.

/http://calvados.di.unipi.it/fastflow/
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www-03.ibm.com/software/products/en/infosphere-streams
https://spark.apache.org/streaming
https://spark.apache.org/streaming
https://storm.apache.org
ftp://download.intel.com/design/network/papers/ 30117401.pdf
ftp://download.intel.com/design/network/papers/ 30117401.pdf
http://apps.jcns.fz-juelich.de/lmfit
http://apps.jcns.fz-juelich.de/lmfit
http://doi.acm.org/10.1145/2567929

	Introduction
	Data Stream Processing
	Parallelism and Elasticity
	Assumptions

	Elastic Scaling based on MPC
	Predictive Strategies for Elastic Scaling
	Measured disturbances
	Derived metrics
	Performance and energy models

	Optimization Problem

	Runtime Mechanisms
	Increase/Decrease the Number of Replicas
	Heuristics for Load Balancing
	State Migration
	Frequency Scaling and Energy Measurement

	Experiments
	Application Description
	Implementation Evaluation
	Control Strategies Evaluation
	Reconfigurations and effect of the switching cost
	QoS violations
	Resource and power consumption
	Reconfiguration amplitude

	Comparison with Peak-load Overprovisioning
	Comparison with Similar Approaches

	Related Work
	Conclusions and Future Work

