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Abstract Time-to-solution is an important metric when parallelizing exist-
ing code. The REPARA approach provides a systematic way to instantiate
stream and data parallel patterns by annotating the sequential source code
with C++11 attributes. Annotations are automatically transformed in a tar-
get parallel code that uses existing libraries for parallel programming (e.g.,
FastFlow). In this paper we apply this approach for the parallelization of a
data stream processing application. The description shows the effectiveness
of the approach in easily and quickly prototyping several parallel variants of
the sequential code by obtaining good overall performance in terms of both
throughput and latency.
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1 Introduction

Data Stream Processing [2] (briefly, DaSP) is a paradigm that enables the
computation on unbounded data streams coming from various sources (e.g.,
sensors, social media and network devices). Streaming data are not stored
persistently in memory and then computed; rather they are processed “on-
the-fly” by continuous queries whose operators run constantly over time in
order to produce outputs in a continuous way. The goal is to extract greater
knowledge from the data by maintaining a feasible history of the stream, and
to detect recurrent patterns by generating complex events in real-time.

The parallelization of stateful operators, in which the stream history is
maintained in succinct data structures (e.g., synopses, sketches and wavlets)
or, more often, in windows containing the most recent data [9], has received
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increasing attention by the research community. Common parallelizations [16,
7] consist in having replicas of the same operator that receive inputs belonging
to the same sub-stream identified by a partitioning data attribute. Examples
of such operators are sorting, aggregation and one-way joins. Available parallel
implementations are usually hand-coded using standard streaming frameworks
like IBM InfoSphere [17], Spark Streaming [27] and Storm [28]. These frame-
works do not offer to the programmer adequate high-level abstractions for
parallel programming (e.g., bolts and spouts of Storm are too low-level to ex-
press high-level parallel patterns), and they require to re-write the application
from scratch without the option to re-use the available sequential code.

Rewriting applications from scratch using parallel programming frame-
works and libraries (e.g., Storm [28] TBB [18], FastFlow [15], TPL [21]) is typi-
cally too costly in terms of time-to-development. For this reason, a great effort
has been made by the research community in developing high-level program-
ming interfaces to introduce parallelism in existing sequential (legacy) codes.
Examples are the pragma-based approach (OpenMP [8] and OpenACC [14]
models), language extensions like Cilk [6] and data-flow models [20]. Unfortu-
nately, these frameworks are not particularly suitable to deal with data streams
and stateful operators.

Recently, the REPARA project [24] proposed a programmer friendly high-
level parallel programming interface based on C++11 program annotations
(i.e attributes [19]). C++11 generalized attributes allow to attach arbitrary
annotations to regions of a program by integrating such annotations directly
into the abstract syntax tree of the program itself. The advantages of this
approach are that C++11 attributes are portable, fully integrated in the same
language used to define the sequential code, and most of all, they allow to in-
troduce parallel patterns without explicit program refactoring thus preserving
the entire original sequential code.

In the context of the REPARA project, C++11 attributes are used to define
parallel regions (called “kernels”) in an application and their parallel behavior
through parallel patterns. Those patterns have a well-know parallel semantics
and relieve the programmer from the burden of dealing with the traditional
low-level parallel programming issues such as thread synchronization and map-
ping, and job scheduling. By using the REPARA attributes, the programmer
can express both stream computations (by using pipeline and task-farm at-
tributes) and data parallelism (by using map and reduce attributes) [11].

The programmer using the REPARA model is involved in two phases: i) re-
shaping the sequential code in order to be compliant to the standard REPARA
C++ [25]; ii) identifying the regions of the code that need to be accelerated by
using proper attributes to express the parallel patterns. At the time of writing,
this second phase still requires a direct programmer intervention for introduc-
ing code annotations. In the future, the model will be enriched in order to
automatically generate annotations with negligible user assistance.

The goal of this paper is to investigate how the REPARA methodology can
be used to parallelize DaSP applications on multicores. To this end, we consider
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a high-frequency trading (HFT) application that represents a paradigmatic
example of the DaSP application domain.

Preliminary results have been reported in [10]. In this previous work a
preliminary evaluation of the REPARA approach for the same HFT applica-
tion has been proposed. Different parallelizations have been defined by using
proper REPARA attributes. In the present paper, by building upon the at-
tribute extension proposed in the previous work, we propose a new and more
sophisticated parallel implementation of the application that is capable to of-
fer good performance as well as good resilience to very dynamic arrival rates.
The new parallelization provides a good tradeoff between the positive aspects
of the other two parallelizations proposed in the previous work [10].

The rest of the paper is organized as follows. Sect. 2 describes the related
work. Sect. 3 provides a brief introduction to the REPARA approach. Sect. 4
describes the high-frequency trading application. Sects. 5 and 6 present the
parallel variants and the experiments on a commodity multi-core machine.

2 Related Works

The most challenging data stream processing computations are those charac-
terized by stateful operators that maintain complex data structures to produce
results [2,4]. Usually, in this domain the applications are written from scratch
by using the programming API of stream processing frameworks such as IBM
InfoSphere [17], Spark Streaming [27] and Apache Storm [28].

In this paper, we propose a different approach, more commonly used in
the high-performance computing domain for parallelizing sequential applica-
tions on multi-core platforms: introducing parallelism in the sequential code
by means of program annotations. Annotations are introduced by using the
standard annotation mechanism of C++11 attributes [19]. In the REPARA
framework [24], C++11 attributes can be used to parallelize portion of code
called “kernels” by means of well-known parallel patterns [22,1].

Compared to pragma-based approaches (OpenMP [8] and OpenACC [14]),
REPARA attributes provide additional flexibility as they can be directly at-
tached to syntactic program elements. Moreover, high-level data streaming
parallel patterns, as pipeline with unbounded input streams and task-farm
with non-trivial task scheduling policies, are not suitable to be easily expressed
through OpenMP and OpenACC pragma directives.

Other approaches are those based on explicit parallel programming lan-
guages such as StreamIt [29]. StreamIt provides primitive constructs for pipeline,
split-join and feedback loop which are used to write the entire application
graph through combination and nesting of these constructs. However, as for
other streaming frameworks, it requires to rewrite the entire application from
scratch by using the constructs provided by the language.
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3 The REPARA Parallelization Methodology

The REPARA project [24] is aimed at providing a methodology to parallelize
a program starting from a sequential code (in some cases reshaped if neces-
sary) by using a set of C++ attributes to define parallel regions of code named
kernels. The methodology (sketched in Fig. 1) is structured into steps, each
one taking into account different aspects of the code parallelization according
to a clear separation of concerns design principle. A code annotation phase,
performed directly by the programmer, identifies the “kernels” subject to par-
allelization. Then a source-to-source transformation phase deals with the refac-
toring of the identified parallel kernels into suitable run-time calls. Eventually,
a target-specific compilation phase generates the actual executable code.
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Fig. 1: Overview of the REPARA parallelization methodology.

The parallelization process of the REPARA methodology consists of three
main phases. The first phase starts with a sequential program in which the user
detects those parts of the code that can be annotated using the rpr::kernel

attribute. Kernels are portions of sequential code subject to parallelization.
In the second phase the annotated code is passed to the Source-to-Source
Transformation Engine1 whose internal workflow is sketched in Fig. 1. From
the annotated source code, an Abstract Intermediate Representation (AIR)
is generated [25,26]. Then, the engine uses the AIR and a set of rules, spe-
cific for each parallel programming model, for determining whether the corre-
sponding code can be transformed into a Parallel Programming Model Specific
Code (PPMSC)2. The PPMSC is the parallel generated code that is function-
ally equivalent to the original sequential code extended with parallel kernels
execution accordingly to the attribute parameters and to the selected pro-
gramming model (e.g., Intel TBB and FastFlow).The third phase includes the
target compilation phase using a standard C++ compiler and all low-level de-
pendencies needed to run the code. The runtime used provides coordination
and all the mechanisms needed to support the deployment, scheduling and
synchronization of kernels on the target platform(s).

1 At the time of writing, this phase is hand-made and not fully automatized.
2 REPARA imposes restrictions on the source code when targeting specific hardware.
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4 A High-Frequency Trading Application

In this paper we apply the REPARA methodology to an application from the
High Frequency Trading domain (HFT). HFT applications are characterized
by stringent high-throughput and low-latency constraints. The goal is to dis-
cover fresh trading opportunities before the competitors by analyzing market
feeds in near real-time. Many HFT applications can be described according to
the so-called split-compute-join computational scheme [3] shown in Fig. 2.

A sliding window is maintained for each stock symbol. At 
each window activation, the internal processing logic 

applies moving average filters on the window content to 
estimate the fair price per stock.

Pricing Model

A sliding window is maintained for each stock symbol with 
the most recent quotes. Forecasting techniques (e.g., 

regression, interpolation, pattern matching) are applied to 
estimate the future tendency of the quotes per group.
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Fig. 2: The split-compute-join application scheme. Forecasting from existing quote data
and correlation with the fair price for each stock symbol.

The application is fed by an unbounded stream of elementary elements
from the market (financial ticks) having two types: trades represent closed
transactions characterized by a price, a stock symbol and number of stocks
(volume); quotes are buy or sell proposals (bid and ask) featuring a proposed
price, a stock symbol and a volume.

Trades, grouped by stock symbol, are processed by the Pricing Model in
order to estimate their fair price using the most recent trades (see [3] for further
details). Usually, the model uses moving averages [3] (e.g., Volume-Weighted
Average Price) by maintaining a window of the last trades per symbol.

Windows are the predominant abstraction used in data stream processing
to deal with stateful operators that need to store the entire input to produce
the outputs [2]. Due to the unbounded nature of the streams, the computation
is applied on the most recent tuples buffered in a temporary window buffer.
The window semantics is expressed by two parameters: i) the window size |W|,
in time units for time-based windows or in number of tuples for count-based
windows; ii) the sliding factor δ (in tuples or time units), which expresses how
frequently the window moves and its content gets processed by the operator
internal algorithm. Commonly δ < |W|, and the model is called sliding window.

The Quote Forecasting phase processes bid and ask proposals grouped by
the stock symbol. It represents the most compute-intensive part of the appli-
cation for two main reasons: i) quotes are around ten times more common
than trades [3]; ii) the prediction models (e.g., neural networks, regressions)
are aimed at estimating the future volume and prices of the quotes based on
historical data, and their execution is more compute-intensive than the moving
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averages computed by the pricing model. Also in this case we need to main-
tain a sliding window of the most recent quotes per group. Quote forecasts
and current fair prices are finally correlated (join) based on the stock symbol
and the results processed by further decision-making phases, e.g., to update
the quotes owned by the user (a market trader) by changing their volume and
price attributes based on the results of the computation. The results of the
quote forecasting are often visualized off-line by the human users to have a
graphical feedback.

4.1 Starting Code of the Application

In this paper we focus on the Quote Forecasting processing chain. Our goal
is to apply the REPARA methodology to speedup the execution of this phase
with a reduced developing effort by the programmer, which is only involved in
adding proper REPARA attributes to a sequential code (shown in Listing 1)
by respecting the REPARA C++ directives [25].

Listing 1: REPARA C++ code of the Quote Forecasting processing.

1 i n t main ( ) {
2 l ong w s i z e , w s l i d e ;
3 quo t e t quote In , q F i l t e r e d ;
4 HReturn type r e s u l t ;
5 WinTask w task ;
6 S o c k e t I n t e r f a c e s o ck e t (PORT) ;
7 s t d : : map<i n t , CBWindow∗> map ;
8 . . .
9 wh i l e ( s o c k e t . r e c e i v e ( quote In , s i z e o f ( quo t e t ) ) ){

10 f i l t e r Q u o t e s ( quote In , q F i l t e r e d ) ;
11 winManager (map , w s i z e , w s l i d e , q F i l t e r e d , w task ) ;
12 computeWindow ( w task , r e s u l t ) ;
13 sendAndWrite ( r e s u l t ) ;
14 }
15 }
16 vo i d winManager ( s t d : : map<i n t , CBWindow∗>& map , uns i gned i n t w s i z e ,

un s i gned i n t w s l i d e , con s t quo t e t& quote , WinTask& w task ){
17 CBWindow∗ win=map [ quote . s t o ck s ymbo l ] ;
18 i f ( win==n u l l p t r ){win=new CBWindow( w s i z e , w s l i d e ) ;
19 map [ quote . s t o ck s ymbo l ]=win ;}
20 boo l i s T r i g g e r e d=win−>i n s e r t ( quote ) ;
21 i f ( i s T r i g g e r e d ) w task . s e t ( win , SUCCESS) ;
22 e l s e w task . s e t ( n u l l p t r ,EMPTY) ;
23 }
24 vo i d computeWindow ( con s t WinTask& w task , HReturn type& r e s ){
25 i f ( w task . s t a t u s==EMPTY) r e s . s t a t u s=EMPTY;
26 e l s e w task . f i t t i n g m o d e l ( r e s ) ;
27 }

The program consists of a while loop (lines 9-14) in which at each iteration
we process a quote received from an input socket (interfaced using the object
socket). Each quote is filtered by a function filterQuotes, which deletes
unused fields and removes outliers. This function is very fine grained, and its
definition is omitted for brevity. The core part of the code are the winManager

and computeWindow functions. The first one receives a filtered quote and gets
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the corresponding window from a hash table based on the stock symbol at-
tribute. If the window does not exist it is created (lines 18, 19). The insert

operation (line 20) on a window data structure adds a new quote to the window
(by copying it) and removes the oldest quote (expiration).

Then, a WinTask object is prepared. It contains a reference to the quotes in
the actual window and a status flag that can be SUCCESS or EMPTY. The
first identifies a non-empty task and is generated if and only if the reception of
the new quote triggers a window activation. Otherwise, if the window has not
been triggered, the function returns an empty WinTask. The computeWindow

function receives a WinTask and, based on the status value, executes the fore-
casting model if it is SUCCESS, or produces an empty result otherwise. In this
application the forecasting model (fitting model, line 26) is the Levenberg-
Marquardt regression algorithm implemented by the lmfit library3. Finally,
the result is stored in a local database and sent to the next stage of the appli-
cation by the function sendAndWrite.

It is worth pointing out that the code described in Listing 1 is not the
original one, but rather a reshaped version that adheres to the REPARA C++
constraints [25,23]. To be annotated by using the current version of the source-
to-source transformation tools, the body of the while loop must contain only
plain function call statements but not conditional or jump statements (if,
switch, break). These limitations will be relaxed in future releases. Each
iteration of the while loop corresponds to the execution of a quote, and must
consists in a sequence of statements that can be eventually parallelized as
it will be shown in Sect. 5. The function filterQuotes is always executed
for each quote, while the winManager and computeWindow functions need to
discriminate if a window has been triggered or not. This condition must be
tested inside the body of the two functions. As a consequence, the output of
the winManager function can be a valid or an empty task. In the last case the
task is discarded by computeWindow, which in turn produces an empty result
to the last function.

5 Prototyping Parallel Variants

In this section we will show how the REPARA methodology can be used for
the fast prototyping of different parallel implementations.

The basic pattern that we use is the pipeline one. It combines multi-
ple stages executed in a strict sequential order on the stream elements. The
rpr::pipeline attribute identifies a loop whose body is composed of several
functions (stages). Stages are annotated with the rpr::kernel attribute and
the variables corresponding to the input and output elements at each iteration
are identified by the rpr::stream attribute. The REPARA pipeline uses the
loop termination condition to determine the end of the stream.

While the pipeline pattern allows different input elements to be processed
in parallel on different stages, the attribute rpr::farm is used to replicate the

3 http://apps.jcns.fz-juelich.de/lmfit
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same kernel. Each worker thread of the runtime executes a replica of the kernel
on a subset of the input elements. An emitter thread schedules input elements
to the workers using standard policies like the round-robin or the on-demand
ones, enabled through specific options in the farm attribute. The parallel ex-
ecution of the same kernel may introduce ordering problems between results
because of their relative running times. The ordered or unordered options can
be added in the farm attribute to specify whether the results must be pro-
duced to the next stage with the exact same order of the corresponding input
elements, or if any order can be tolerated. The ordered option can be used
provided that the farm produces one output for each input element.

In our previous work [10], we have shown that the pipeline implementation
is not able to achieve good speedup for this application, because the com-
putational cost of the computeWindow function is about 95% of the overall
execution time of a single iteration of the while loop. Therefore, combinations
of pipeline and task-farm patterns are needed to improve the speedup.

5.1 Pipeline and Farm

Listing 2 shows the version in which the computeWindow kernel is executed
in parallel by a set of workers. The number of workers is statically expressed
by the integer variable nw whose value is chosen by the programmer (e.g., it
is passed as a command line argument). With this parallelization, windows
with the same stock symbol and with different symbols can be executed in
parallel by distinct workers. Each window, once triggered and copied in the
winManager kernel, is distributed to a worker according to a round-robin dis-
tribution policy. As typical of the farm pattern, if the computation time per
task exhibits a high variance the results can be received to the next stage
in a different order than the corresponding inputs. To avoid this, we use the
option ordered of the farm attribute to enforce a total ordering between input
and output elements. The attribute rpr::target(CPU) is used to specify the
device on which the kernel is executed (alternatives are GPU and FPGA).

Listing 2: Using rpr::pipeline and rpr::farm attributes.

1 [ [ r p r : : p i p e l i n e , r p r : : s t r e am ( w task , r e s u l t ) ] ]
2 wh i l e ( s o c k e t . r e c e i v e (&quote In , s i z e o f ( quo t e t ) ) ){
3 [ [ r p r : : k e r n e l , r p r : : o u t ( w task ) , r p r : : t a r g e t (CPU) ] ] {
4 f i l t e r Q u o t e s ( quote In , q F i l t e r e d ) ;
5 winManager (map , w s i z e , w s l i d e , q F i l t e r e d , w task ) ;
6 }
7 [ [ r p r : : k e r n e l , r p r : : f a rm (nw , o rd e r ed ) ,
8 r p r : : i n ( w task ) , r p r : : o u t ( r e s u l t ) , r p r : : t a r g e t (CPU) ] ]
9 computeWindow ( w task , r e s u l t ) ;

10 [ [ r p r : : k e r n e l , r p r : : i n ( r e s u l t ) , r p r : : t a r g e t (CPU) ] ]
11 sendAndWrite ( r e s u l t ) ;
12 }
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5.2 Providing a Customized Distribution Policy

A different parallelization can be designed by annotating with the rpr::farm

attribute a block containing both the winManager and the computeWindow

function calls. In this way, the input elements of the second stage are single
quotes filtered by the first stage, and not entire windows as in the previous
parallelization. Quotes must be properly transmitted to the workers according
to a user-defined distribution policy in such a way that the parallel computa-
tion performs the very same set of windows for all the stock symbols of the
sequential program, i.e. without altering the computation semantics.

For this reason, we propose to extend the rpr::farm attribute by passing
as an extra optional parameter the name of a user-defined function that will
be used by the runtime to determine to which workers the input elements have
to be sent. The proposed extension can be formalized as shown in Listings 3.

Listing 3: Expressing a customized distribution function.

1 s t d : : v e c to r<s i z e t> r o u t i n g ( con s t s i z e t N, con s t i n p u t 1 t& input1
, . . . , c on s t i npu tK t& inputK ) { . . . }

2 [ [ r p r : : k e r n e l , r p r : : f a rm (nw , r ou t i ng , . . . ) , r p r : : i n ( input1 , . . . , inputK )
, . . . ] ]

3 k e r n e l−r e g i o n

The function routing gets in input the number of active workers N ≥ 1,
and the K ≥ 1 input elements specified with the rpr::in attribute of the farm.
It must return a non-empty vector of integers each one in the range [0, N). The
runtime will distribute a copy of the input arguments to each worker whose
identifier is in the vector returned by the function. Based on the definition of
the routing function we propose two possible parallel implementations.

5.2.1 Pipeline and farm with hashing

A first parallel version can be designed by using a hash function for the dis-
tribution of the quotes. The idea is to distribute all the quotes with the same
stock symbol to the same worker. Therefore, each worker maintains a subset
of all the windows. Listing 4 shows the annotated code of this parallel version.
The distribution can be performed by any hash function that returns one
worker identifier for each quote. Without any further information about the
frequency distribution of the stock symbols, the hash function (SchedByKey)
needs to map roughly the same number of symbols to each identifier, e.g.,
q.s mod N , where s is the unique number that identifies the stock symbol of
the quote q and N is the number of worker threads.

This implementation has positive effects and also some shortcomings. A
positive aspect is its simplicity: input quotes are not buffered and then the
whole window bulk of data transmitted to the farm as in the previous imple-
mentation. Instead, each single quote is routed “on-the-fly” to a worker once
it has been received from the input socket. Furthermore, all the windows of
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Listing 4: Using rpr::pipeline and rpr::farm with hashing.

1 [ [ r p r : : p i p e l i n e , r p r : : s t r e am ( q F i l t e r e d , r e s u l t ) ] ]
2 wh i l e ( s o c k e t . r e c e i v e (&quote In , s i z e o f ( quo t e t ) ) ){
3 [ [ r p r : : k e r n e l , r p r : : o u t ( q F i l t e r e d ) , r p r : : t a r g e t (CPU) ] ]
4 f i l t e r Q u o t e s ( quote In , q F i l t e r e d ) ;
5 [ [ r p r : : k e r n e l , r p r : : f a rm (nw , unordered , SchedByKey ) ,
6 r p r : : i n ( q F i l t e r e d ) , r p r : : o u t ( r e s u l t ) , r p r : : t a r g e t (CPU) ] ] {
7 winManager (map , w s i z e , w s l i d e , q F i l t e r e d , w task ) ;
8 computeWindow ( w task , r e s u l t ) ;
9 }

10 [ [ r p r : : k e r n e l , r p r : : i n ( r e s u l t ) , r p r : : t a r g e t (CPU) ] ]
11 sendAndWrite ( r e s u l t ) ;
12 }

the same stock symbol are processed by the same worker sequentially, thus the
results arrive to the next stage already ordered within the same group. This
partial ordering is often sufficient for the correct real-time analysis of outputs
by the successive processing phases of the application. Therefore, the attribute
ordered of the REPARA farm (which implies a total ordering of inputs with
respect to outputs) is not needed in this implementation.

However, this version may suffer from possible load unbalancing. When
a small subset of the stock symbols have much higher probability than the
others, a subset of the workers might receive more quotes in the same time
period thus hampering the speedup. If the frequency distribution of the stock
symbols is statically fixed and known, this issue can be mitigated by using
proper hash functions. However, with unknown or time-varying frequency dis-
tributions the problem cannot be solved statically, and an autonomic support
for state migration between workers is needed [13].

5.2.2 Pipeline and on-the-fly farm

A new parallelization can be designed by trading-off the positive aspects of
the two previous solutions. The idea is the following: all the quotes within
the same group (i.e. with the same stock symbol) are assigned to a unique
identifier starting from 1. Identifiers are also assigned to the windows within
the same group. The new distribution function (SchedByMulticast) (inspired
by the work in [5]) executed on an input quote q consists in the following steps:

– all the consecutive windows that contain the quote q will be identified. The
first has identifier d(q.id+ w size)/w slidee+ 1, the last dq.id/w slidee;

– each windowW with identifierW.id is assigned to the worker with identifier
j = (W.id− 1) mod nw;

– the result of SchedByMulticast is a vector containing all the identifiers of
the workers receiving a copy of the quote q.

Like in the implementation of Sect. 5.2.1, single quotes are routed to the
workers on-the-fly. Furthermore, as in the farm of Sect. 5.1, we are able to
execute in parallel windows belonging to the same group. The code is shown
in Listings 5.
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Listing 5: Using rpr::pipeline and rpr::farm with multicast distribution.

1 [ [ r p r : : p i p e l i n e , r p r : : s t r e am ( q F i l t e r e d , r e s u l t ) ] ]
2 wh i l e ( s o c k e t . r e c e i v e (&quote In , s i z e o f ( quo t e t ) ) ){
3 [ [ r p r : : k e r n e l , r p r : : o u t ( q F i l t e r e d ) , r p r : : t a r g e t (CPU) ] ]
4 f i l t e r Q u o t e s ( quote In , q F i l t e r e d ) ;
5 [ [ r p r : : k e r n e l , r p r : : f a rm (nw , unordered , SchedByMul t i ca s t ) ,
6 r p r : : i n ( q F i l t e r e d ) , r p r : : o u t ( r e s u l t ) , r p r : : t a r g e t (CPU) ] ] {
7 winManager (map , w s i z e , w s l i d e ∗nw , q F i l t e r e d , w task ) ;
8 computeWindow ( w task , r e s u l t ) ;
9 }

10 [ [ r p r : : k e r n e l , r p r : : i n ( r e s u l t ) , r p r : : t a r g e t (CPU) ] ] {
11 s t d : : v e c to r<HReturn type> &r e s v=Orde r i ng . n ew r e s u l t s ( r e s u l t ) ;
12 f o r ( HReturn type r : r e s v ) sendAndWrite ( r ) ;
13 }
14 }

At row 7 the winManager function is called with a proper slide parameter.
Since quotes of the same stock symbol are assigned to different workers, the
computation is activated each time a worker receives new w slide×nw quotes.
Furthermore, this implementation requires a change in the last stage of the
pipeline. In fact, as for the basic farm of Sect. 5.1, the results of the same
stock symbol can come to the last stage out of order. In this case it is not
possible to use the ordered option of the farm attribute, because the window
management is performed in the workers and there is no longer a one-to-one
correspondence between inputs and outputs. To solve this problem the last
stage consists in a block of two statements. The first is the call of a method of
the Ordering object, which keeps the results of the same stock symbol ordered
by their identifier and produces a vector of results once a new result has been
received. Each result in this vector is finally passed to the sendAndWrite.

6 Experiments

In this section we compare the parallel variants. The goal is to show the effi-
ciency of our parallel implementations, designed through a high-level approach
based on C++11 annotations and code refactoring techniques.

For the experiments, the target code produced by the source-to-source com-
pilation (see Sect. 3) uses the FastFlow [12] library for pattern-based parallel
programming. The target architecture is a dual-socket NUMA Intel multi-
core Xeon E5-2695 Ivy Bridge running at 2.40GHz featuring 24 cores (12 per
socket). Each core has 32KB private L1, 256KB private L2 and 30MB shared
L3. The operating system is Linux 3.14.49 x86 64 shipped with CentOS 7.1.
We compiled our tests using GNU gcc 4.8.3 with the optimization flag –O3.

In the experiments we use the following acronyms to identify the imple-
mentations: Farm is the implementation described in Sect. 5.1 based on the
REPARA farm, Farm+Hash is the implementation in which quotes are dis-
tributed according to a hash function (Sect. 5.2.1), and Farm+OTF is the imple-
mentation in Sect. 5.2.2, in which the standard farm is applied “On-The-Fly”.
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6.1 Synthetic Benchmarks

These experiments are aimed at understanding the maximum input rate that
the computation sustains without becoming a bottleneck. The results take
into account a slide of 25 quotes and windows of 1, 000 and 2, 000 quotes. In
this second case the computation is coarser grained, as greater windows are
triggered with the same frequency. The timestamps of the quotes are set to
reproduce a stream with a constant input speed. We consider 2, 836 possible
stock symbols with three distributions: i) uniform, in which all the symbols
have the same frequency; ii) real is a distribution extracted from a random
time instant of a trading day of NASDAQ4, iii) skewed is a distribution in
which the most frequent symbol has a probability of 0.20. The results showed
in Figs. 3a and 3b are relative to implementations with 20 worker threads (two
threads are used for the first and the last stage of the pipeline and other two
for the emitter and collector of the farm).
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Fig. 3: Maximum sustainable input rate with the uniform, real and skewed distributions.

In the case of uniformly distributed stock symbols, the Farm+Hash ver-
sion is the winner, with a maximum rate of 1.35M quotes per second. In this
case we use a simple hash function in which the quotes with symbol s are
assigned to the i-th worker such that i = s mod nw. With the other distribu-
tions this hash function is not able to assign the same number of quotes to
the workers, and workload results unbalanced. In particular, with the skewed
distribution the maximum theoretical scalability is quite low (it is the inverse
of probability of the most frequent symbol, i.e. 1/pmax where pmax = 0.2).
Therefore, Farm+Hash sustains a maximum rate of only 250K quotes per sec-
ond. This problem can be approached by using different hash functions, e.g.,
if the distribution frequency is known, it is possible to find a static assignment
of symbols to workers that minimizes the load difference.

The other two parallel implementations are independent from the frequency
of the stock symbols (although we measured some small variations especially

4 The trades and quotes NASDAQ tracefile of the 30 Oct 2014, downloadable at
http://www.nyxdata.com.
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with |W| = 1, 000). In fact, they allow different windows of the same stock
symbol to be processed in parallel. The Farm version provides results worse
than Farm+OTF. This is because in the Farm solution the first stage performs
a plain copy of each window (the default behavior of the REPARA pipeline is
to copy the output value of a kernel before passing it to the next stage). By
merging the winManager and the computeWindow calls into the same kernel,
the Farm+Hash and Farm+OTF versions avoid this copy. The relative improve-
ment of the Farm+OTF implementation with respect to Farm one is of 15%.
However, the distribution is a major concern in this version, because the mul-
ticast requires several copies of each input quote by preventing Farm+OTF to
achieve the same performance of Farm+Hash with high parallelism degrees and
the uniform distribution.

A similar behavior is depicted in Fig. 3b with larger windows. As expected,
in terms of absolute values, the parallel implementations are capable of sus-
taining lower input rates, since the computation is coarser grained. From the
qualitative viewpoint the previous discussion remains valid also in this case.
The speedup results with 20 worker threads are summarized in Tab. 1.

Farm+Hash Farm+OTF Farm

|W|=1, 000 |W|=2, 000 |W|=1, 000 |W|=2, 000 |W|=1, 000 |W|=2, 000

Uniform 18.82 19.15 11.09 13.04 8.72 10.61
Real 11.25 9.87 9.75 14.05 8.00 11.03

Skewed 3.62 3.15 9.45 13.43 10.81 11.12

Table 1: Speedup results with 20 workers.

Furthermore, we study the provided latency. For each window we mea-
sure the time interval between the reception of the last quote of that window
(measured by the first stage) to when the last stage receives the corresponding
result. Fig. 4a shows an experiment consisting in 200 seconds in which we plot
the average latency per second. We choose an input rate of 200K uniformly
distributed quotes per second with windows of 1, 000 tuples, and 10 workers.
Under this configuration all the parallel variants do not act as bottleneck (see
Fig. 3a). The latency provided by Farm+Hash is smaller (on average 577 us)
compared to the standard Farm version, which provides an average latency
of 1, 460 us mainly due to the window copy. Instead, the Farm+OTF provides
a latency close to the one of Farm+Hash (769 us). In conclusion, Farm+OTF
represents a good compromise in scenarios in which we do not have (or it does
not exist) a hash function that balances the workload among workers.

6.2 Results with the Real Dataset

We analyze the parallelizations proposed by using a real dataset of quotes
generated by the NASDAQ market during a trading day. The dataset has a
peak rate near to 60, 000 quotes per second, with an average rate well below
this figure. The goal is to find the minimum number of workers needed by the
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Fig. 4: Average latency and no. of Workers to sustain the accelerated real dataset.

parallel versions to avoid being a bottleneck. In the dataset both the frequency
distribution of the stock symbols and the arrival rate change significantly over
the execution. Since the original peak rate does not stress our implementations,
we accelerate it several times. Fig. 4b shows the results. As we can observe, the
three parallel implementations are able to sustain an accelerated input rate
up to a factor of 200×. As expected, a higher input rate needs more workers.
With 300× only the Farm+Hash and Farm+OTF implementations sustain the
input stream pressure. With a factor of 350× only Farm+Hash successes.

7 Conclusions

In this paper we used the REPARA methodology to parallelize a data stream
processing application. We showed that various parallel implementations can
be easily prototyped, simply using proper REPARA attribute annotations
in the sequential code. The results showed that the approach is effective in
providing good performance results both on synthetic benchmarks as well as
on a real-world use-case scenario. As a future extension of this work, we plan to
make use of hardware accelerators such as GPUs and FPGAs that are possible
targets in the REPARA framework.
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