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Abstract. The notion of session is fundamental in service oriented ap-
plications, as it separates interactions between different instances of the
same service, and it groups together basic units of work. Together with
sessions, session types were introduced to track the type of the values
exchanged in each session. In this paper we propose an algorithm to infer
a restricted form of session types and we show that the problem is not
directly related to the unification since we are in a context with duality in
interactions. The discussion is based on a SCC-like [3] calculus adapted
to fit session types. The calculus simplifies the discussion imposing strong
syntactic constraints, but the ideas and the proposed algorithm can be
adopted to study the type inference for other session oriented calculi.
Also an OCaml prototype of the algorithm has been developed to show
its feasibility.

1 Introduction

Sessions are used to structure interactions among parties resulting in a clearer
and bug free way to write communicating programs. Session oriented cal-
culi [13,14,20,12] were proposed to reason formally about communication pat-
terns that encompass the simple one-way remote procedure call [7,8,9,2] but
also allow for more sophisticated message exchanges.

Since the π-calculus is the lingua franca for expressing concurrent processes,
we can translate sessions in π-calculus, representing them like a freshly created
channel (a session channel) used by both the client and the particular service
instance (created to serve the client) as an exchanging context.

However, from the type system point of view no (interesting) session channel is
well typed under the simply typed π-calculus [17] which allows to transmit only
a single type of message over each channel. Thus, session types were introduced
to type session channels so as to describe both sequences (of input/output) and
choices (internal/external) taking place on a session side.

The duality of session types also changes the way to consider the type inference
problem which is no longer directly related to the unification as for the simply
typed π-calculus. In fact, in the simply typed π-calculus we consider both input
and output actions (which are dual) to reconstruct the channel sort, that is,
sorting says what kind of values each channel can input and output. For example,
the process xc | x5 uses the channel x to input values of an unknown type (the
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same as c), say α1, and to output an integer value. Here we can safely substitute
α1 with int and judge this channel of type chan(int); i.e. a channel used to
exchange integer values. However, in a dual interaction we independently need
the type of each side of the communication and, for example, the type of x
become ?(int) (input of an integer) for the first side of the parallel and !(int)
(output of an integer) for the second side. This separation easily allows to judge
that the interaction is safe, since each side performs the dual action with respect
to the other side. It is worth noticing that the substitution {α1 �→ int} still holds.
The reasoning can be iterated if we want to capture types expressing sequence
of inputs and outputs; e.g., xc.xc | x5.xy then we have both types ?(int).!(int)
and !(int).?(int) in which we unified the type of the first value exchanged in the
sequence and the type of the second value exchanged in the sequence. Similar
considerations are made for the type inference algorithm described in [10].

Furthermore, session types extend basic sequences of actions adding both ex-
ternal and internal choices which can be considered as a set of offered options
exposed by means of labels and as a selection among a set of options respectively.
Unfortunately, the expressivity introduced by choices makes the type inference
problem not directly related to the unification. First of all, the labels of each
choice are unordered and also we would accept the comparison between an in-
ternal choice that offers more options and its external choice counterpart; that
is, the “unification”could be possible if a part chooses only some of the options
offered by the dual part. Given this, one may argue that the problem is similar
to what is described in [19,18] for an object calculus and successfully solved by
means of kinds. However, we think that the use of kinds for session types is not
trivial since each session may offer multiple choices at different levels of nesting.

Instead, we tackle the problem by introducing another kind of constraints,
indicated by �, between two dual session types. Moreover, an algorithm is pro-
posed to solve this kind of constraints together with the simple equality (unifi-
able) equations.

To have a practical result, we apply the algorithm in the service oriented
architecture scenario for reconstructing the type of each service. Thus, we model
a system in which each service invocation creates a new session permitting both
the exchanging of correlated messages and the isolation from different instances
of the same service. As the possibility of different clients for a service, we assume
persistent services always available for client requests.

The algorithm is built on top of a language with SCC-like [3] syntax since its
syntactic constraints permits to focus our attention on at most two sessions us-
ages each time (the current session and the parent session) whilst it maintains the
expressivity to write interesting programs (such as factorial service) to test our re-
sults. Notwithstanding, the results can be adapted to any language, for example,
our language is a particular instance of the system studied in [20], constraining
the typing Δ to contain at most two session channels at the same time.

Outline of the paper. Section 2 fixes the syntax and the operational seman-
tics of our session calculus. Section 3 shows the classic nondeterministic typing
rules. Section 4 presents the type inference algorithm subdivided in two parts:
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P, Q ::= 0 (nil)
| s.P (service definition)
| v.Q (invocation)
| if v = v1 then P else Q (if-then-else)
| (x̃).P (tuple input)
| 〈ṽ〉.P (value output)
| Σn

i=1(li).Pi (label guarded sum)
| 〈l〉.P (label choice)
| return ṽ.P (value return)
| P |Q (parallel)
| (νs)P (service restriction)

v ::= f(ṽ) (external function call)
| x (variable)
| s (service)
| . . . ,−1, 0, 1, . . . (integer)

Fig. 1. Syntax of our service calculus

a constraints extractor and a solving algorithm. We have also implemented all
the algorithms described [15] and Section 5 shows some examples of usage of our
tool.

2 A Session Oriented Calculus

Our processes are generated by the abstract syntax in Figure 1, where the meta-
variable x ranges over variables, s over service names and l over labels. Values
can be either a variable, a service, an integer or the result of an external function
call f.

As usual 0 identifies the inaction process (omitted in tail position), | is the
parallel composition of two processes and (νs) is the restriction of s. Service
definition s.P and service invocation v.Q are used to instantiate a new session,
i.e., a way to put in direct connection a service instance P with the body Q of
the invocation client. For each service invocation a fresh instance of the body is
generated to serve the client, in this manner the service is ready for another client
invocation. Once the service side and the client side are connected by means of
a session, both parties can communicate via dual operators. This means that if
one side performs an input (x̃).P , the other side can send a value tuple with
〈ṽ〉.P and if one side offers a choice Σn

i=1(li).Pi, the other side can select a label
with 〈l〉.P .

To logically connect client and service instance, we use a special session con-
struct r �P and r �Q which says that both, the service instance P and the client
invocation body Q agree on the private name r and they will use it as communi-
cation context. Sessions can be arbitrarily nested and the operator return ṽ.P
is used to output a value upward the parent session.



How to Infer Finite Session Types in a Calculus 219

Binders are (νs)P for s in P and (x̃).P for x̃ in P ; the former is the binder
for service names and the latter is the binder for variables. As usual processes
are considered up to alpha equivalence and the set of free names is defined in
the standard way. Moreover, the operation of substitution P [ṽ/x̃] is the standard
capture avoiding substitution of variables with values.

Differently from [4], we formalize the operational semantics of the
calculus by a one-step reduction relation →, up to the standard struc-
tural congruence ≡ plus the rule r � (νm)P≡(νm)(r�P) if r �= m, for ses-
sions handling, where m range over both session and service names.
(Inv) [[ [[s.P ]] | 1[[s.Q]]]] → [[(νr) [[r � P |r � Q]] | 1[[s.Q]]]] r /∈ fn( [[s.P ]]|Q)
(Com) [[r � (x̃).P |r � 〈ṽ〉.Q]] → [[r � P [ṽ/x̃]|r � Q]]
(Lcom) [[r � Σn

i=1(li).Pi|r � 〈lk〉.Q]] → [[r � Pk|r � Q]] (1 ≤ k ≤ n)
(Ret) [[r � (x̃).P |r � (r1 � return ṽ.Q|Q′)]] → [[r � P [ṽ/x̃] | r � (r1 � Q|Q′)]]
(IfT ) [[if v = v1 then P else Q]] → [[P ]] (v = v1) ↓ true
(IfF ) [[if v = v1 then P else Q]] → [[Q]] (v = v1) ↓ false
(Scop) P → P ′ ⇒ (νm)P → (νm)P ′

(Str) P ≡ P ′ P ′ → Q′ Q′ ≡ Q ⇒ P → Q
where , ::= [[·]] | |P | r �

Priority of the operators in order of increasing relevance is: | , � and ν so, for
example r � P |Q means (r � P )|Q and (νr)P |Q means ((νr)P )|Q.

Rule (Inv) shows how the invocation of a service creates a new session that
puts in direct communication an instance of the service with the client body;
now the two processes are able to communicate.

The rules (Com), (Lcom) show respectively how a tuple is transmitted be-
tween the two sides of a session and how the process Q can choose one of the
options offered by P . Rule (Ret) illustrates how a nested session r1 can output a
value, upward the parent session, which is read by P in the dual side of r. Both
the rules (Com) and (Ret) manage similar communication patterns to what is
defined in [5] which describes a variant of Mobile Ambients calculus [6].

As an example consider the following calc service

calc.(sum).(x, y).〈add(x, y)〉 + (inc).(x).〈add(x, 1)〉
which offers two options. Option sum reads (x, y) from the client and replies with
the result of the external function call add. The add function is only available
on one session side, directly implemented in some programming language (i.e.,
add = λ(x, y).x+y). Option inc only inputs a value and then emits the result.
One client that successful interacts with the service is:

calc.〈sum〉.(1, 1).(res).return res

After rules (Inv) and (Lcom) are applied, the parallel of the two processes above
become:

r � (x,y).〈add(x,y)〉 | r � (1, 1).(res).return res →
r � 〈add(1, 1)〉 | r � (res).return res →r � 0 | r � return 2

At the end of interaction, the client has the result in the res variable which is
returned to the parent session.
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wf(0, X) = X
wf(s.P, X) = wf(P, X \ s)
wf(v.P, X) = wf(P, X)
wf(if v = v1 then P else Q,X) = wf(Q,wf(P, X))
wf((x̃).P, X) ∧ wf(〈ṽ〉.P, X) = wf(P, X)
wf(Σn

i=1(li).Pi, X) = wf(Pn, wf(Pn−1, . . . wf(P1, X)) ∀i, j.li �= lj if i �= j
wf(〈l〉.P, X) ∧ wf(return ṽ.P, X) = wf(P, X)
wf(P |Q,X) = wf(Q,wf(P, X))
wf((νs)P,X) = wf(P, X ∪ {s})

Fig. 2. Definition of wf

3 Typing

3.1 Well Formedness

In this sub-section we discuss the notion of well-formed process. Since we are
in a context with duality each service restriction (νs) authorizes to use in its
scope both s as service declaration and s as service invocation. However, syntax
does not constrain programmers to insert a service declaration in the scope of
a restriction, and it can happen that a process has a service invocation without
the corresponding declaration. Thus, we require our processes to have at least
the service declaration for each service restriction. This requirement, besides to
be reasonable, is also crux to successfully solve the constraints generated with
the type inference algorithm (see Proposition 1).

The formal definition of well formedness is built from the function wf
(Figure 2) which takes a process with all bound and free names different, the set
of service names that should be declared and returns the set of names not still
declared.

Definition 1 (Well formedness). A process P is well formed if wf(P, ∅) = ∅

The definition ensures the process P declares every service annunciated by means
of restrictions (no matters where!). Moreover, all the labels of a choice must be
different.

From now on, all the processes we are going to handle are implicitly assumed
to satisfy Definition 1.

3.2 Typing Rules

The set of types is defined by the abstract syntax in Figure 3. Session types
(ranged over by T ,U) express sequences of typed tuples of input and output. Intu-
itively, types capture the actions performed in a side of a session; ?(S1, . . . , Sn).T
expresses the fact that a process performs an input within a session and then
behaves like T . Similar holds for !(S1, . . . , Sn).T in which an output action is
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T, U ::= end (no action)
| ?(S1, . . . , Sn).T (input of a tuple)
| !(S1, . . . , Sn).T (output of a tuple)
| &{l1 : T1, . . . , ln : Tn} (external choice)
| ⊕{l1 : T1, . . . , ln : Tn} (internal choice)

S ::= int (basic integers type)
| [T ] (session type)

Fig. 3. Syntax of types

performed, instead. The type of an external choice is a list of (offered) labels
with the corresponding subprocess usage. Also, the type of an internal choice
contains a list, because multiple choices may be performed at the same time.

Sorts S can be either the type of a service [T ] or an integer.
Our set of type judgments is in Figure 4. Type judgments for values take

the form Γ � v : S where the type environment Γ is a finite partial mapping
from variables, services and external function names to sorts and function types.
When x /∈ dom(Γ ) (same holds for s /∈ dom(Γ )) we write Γ, x : S for the type
environment obtained by extending Γ with the binding of x to S. First four rules
for values are standard and the signature of each used external function must
be inserted in the environment as functional type (rule (FuncV)) because they
are not bound by the process.

Type judgments for processes take the form Γ � P : T ; U where T is the type
of the current session, while the type U represents outputs of P towards the
parent session. The type of 0 in (Tzero) is end; end since no action is performed
neither in the current nor towards the parent session. The typing rule (Tnew)
infers the right type of a service inserting it in the environment. Rule (Tdef)
constraints the protocol of the service to be the same as the body type of the
process P and no return is allowed toward the parent session. This condition
is necessary, because we want that the service body does not interfere within
the client’s context. (Tinv) checks the service behaves in the dual manner with
respect to the current client. Here, the dual of T , written T is inductively defined
as:

?(S̃).T =!(S̃).T !(S̃).T ′ =?(S̃).T ′ end = end

&{l1 : T1, . . . , ln : Tn} = ⊕{l1 : T1, . . . , ln : Tn}
⊕{l1 : T1, . . . , ln : Tn} = &{l1 : T1, . . . , ln : Tn}

Rules (Tin), (Tout) and (Tret) insert the usage type in the correct place. Rule
(Tbranch) considers any subset of the branches while rule (Tchoice) can arbi-
trarily add some branches. The shape of the rule (Tchoice) is necessary since, the
if-then-else construct allows choosing between many branches at the same time
and also different clients can invoke the same service making their own choices.
When we have multiple paths, returns to the parent session must have the same
type U . The nondeterminism in the rules (Tbranch) and (Tchoice) is typical for
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(Ser)

Γ, s : S 	 s : S
(Var)

Γ, x : S 	 x : S
(IntV)

Γ 	 n : int

(FuncV)

Γ 	 v1 : S1 . . . Γ 	 vn : Sn

Γ, f : S1 × . . . × Sn → S′ 	 f(v1, . . . , vn) : S′

(Tzero)

Γ 	 0 : end; end

(Tnew)

Γ, s : S 	 P : T ; U

Γ 	 (νs)P : T ; U

(Tif)

Γ 	 P : T ; U Γ 	 Q : T ; U
Γ 	 if v = v1 then P else Q : T ; U

(Tdef)

Γ 	 P : T ; end Γ 	 s : [T ]

Γ 	 s.P : end; end

(Tinv)

Γ 	 P : T ; U Γ 	 v : [T ′] T = T ′

Γ 	 v.P : U ; end

(Tin)

Γ, x̃ : S̃ 	 P : T ; U

Γ 	 (x̃).P : ?(S̃).T ; U

(Tout)

Γ 	 P : T ; U Γ 	 ṽ : S̃

Γ 	 〈ṽ〉.P : !(S̃).T ; U

(Tret)

Γ 	 P : T ; U Γ 	 ṽ : S̃

Γ 	 return ṽ.P : T ; !(S̃).U

(Tbranch)

I ⊆ {1, . . . , n} ∀i ∈ {1, . . . , n} Γ 	 Pi : Ti; U

Γ 	 Σn
i=0(li).Pi : &{lj : Tj}j∈I ; U

(Tchoice)

l = li ∈ {l1, . . . , ln} Γ 	 P : Ti; U

Γ 	 〈l〉.P : ⊕{l1 : T1, . . . , ln : Tn}; U

(TparL)

Γ 	 P : T ; end Γ 	 Q : end; end

Γ 	 P |Q : T ; end

(TparR)

Γ 	 P : end; end Γ 	 Q : T ; end

Γ 	 P |Q : T ; end

Fig. 4. Typing rules

(TbranchSD)

∀i ∈ {1, . . . , n} Γ 	SD Pi : Ti; U

Γ 	SD Σn
i=0(li).Pi : &{li : Ti}i∈{1,...,n}; U

(TchoiceSD)

Γ 	SD P : T ;U

Γ 	SD 〈l〉.P : ⊕{l : T}; U

(TinvSD)

Γ 	SD P : T ; U Γ 	SD v : [T ′] T � T ′

Γ 	SD v.P : U ; end

(TifSD)

Γ 	SD P : T ;U Γ 	SD Q : T ′; U T ′′ = merge(T, T ′)

Γ 	SD if v = v1 then P else Q : T ′′; U

Fig. 5. Syntax directed typing rules

session type systems, and it is actually useful in subject reduction proofs (see [4]
for the subject reduction proof of the current framework).

The two rules for parallel composition (TparL) and (TparR) allow parallel
composition of two processes only if at least one does not make any action in
both the current session and the parent session, i.e., it has type end; end.

Now we show an example of typing,
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Example 1. Take the calculator example. The type !(int, int).?(int); !(int) ex-
presses the client usage after the sum choice: the output of two integers is fol-
lowed by the reading of the result and an integer is returned outside the session
(the type after semicolon always stands for a return action, that is, an output
out of the current session). Previous in-session usage is compared with the dual
session usage ?(int, int).!(int) to ensure the soundness of the invocation. Below
we report the typing proof, where we let Γ = calc : [&{sum :?(int, int).!(int)}]

Γ � return x : end; !(int)
(Tin)

Γ � (x).return x : ?(int); !(int)
(Tout)

Γ � 〈1, 1〉.(x).return x : !(int, int).?(int); !(int)
(Tchoice)

Γ � 〈sum〉.〈1, 1〉.(x).return x : ⊕{sum :!(int, int).?(int)}; !(int)
(Tinv)

Γ � calc.〈sum〉.〈1, 1〉.(x).return x : !(int); end

It is worth noticing that we are authorized to apply the rule (Tinv) because
Γ (calc) = [⊕ : {sum :!(int, int).?(int)]. Thus, the assumption about calc ig-
nores the option labeled with inc since it is useless for this particular client.

The main problem we are going to face in the algorithmic type inference is due
to the nondeterministic nature of the typing rules for choices. Relatively to the
previous example, it is not strictly necessary to discard the inc branch when
inserting the type of the calc service in the environment (rule (Tbranch)). In
fact, rule (Tchoice) would allow to correctly typecheck the client even if the inc
branch were not specified. Consequently, a client can arbitrarily discard unused
branches allowing to correctly typecheck other clients with different choices.

4 Type Inference

4.1 Syntax Directed Rules

Before introducing an algorithm for the type inference we need to solve the
nondeterminism of the type system (due to both rules (Tchoice) and (Tbranch))
replacing it with another set of syntax directed rules, shown in Figure 5 (only
different rules are reported). Next, we are able to show that the two set of rules
coincide so that we can use the syntax directed rules to formulate our algorithm.

The previous type system permits to arbitrarily add or remove the branches
of a choice until the rule (Tinv) holds. We factorize out the nondeterminism
building the type with all the currently available information, which is equiva-
lent to take all the branches in rule (TbranchSD) and only one branch in rule
(TchoiceSD). Also, the new rule (TifSD) needs a way to deterministically get
the correct type, and it uses the support function merge defined in Figure 6.
In other words, merge works as follow: if both P and Q are internal choices we
create a new type with those branches that are not within the intersection of
the two sets of labels plus the merge of those branches that are within the inter-
section. In fact, a compliant external choice should account for all the possible
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merge(end, end) = end

merge(!(S̃).T, !(S̃).T ′) = !(S̃).merge(T, T ′)
merge(?(S̃).T, ?(S̃).T ′) = ?(S̃).merge(T, T ′)
merge(⊕{l1 : T1, . . . , ln : Tn},⊕{l′1 : T ′

1, . . . , l
′
m : T ′

m}) = ⊕{∀i ∃j li=l′
j
li : merge(Ti, T

′
j) ,

∀i,j li �=l′j
li : Ti , ∀j,i l′j �=li

l′j : T ′
j}

merge(&{l1 : T1, . . . , ln : Tn}, &{l′1 : T ′
1, . . . , l

′
m : T ′

m}) = &{∀i ∃j li=l′
j
li : merge(Ti, T

′
j)}

Fig. 6. Merge for the if branches

end � end
⊕{l1 : T1, . . . , ln : Tn} � &{l′1 : T ′

1, . . . , l
′
m : T ′

m} = ∀i, j li = l′j → Ti � T ′
j ∧

{l1, . . . , ln} ⊆ {l′1, . . . , l′m}
?(S̃).T � !(S̃).T ′ = T � T ′

Fig. 7. Services Join

options the process could select during its evaluation. Instead, if we are merging
two branches of an external choice we are able only to guarantee options that
are within the intersection of the set of labels and additionally these branches
must be mergeable.

The problem is that, at this point, the standard syntactic equivalence is not
useful for the comparison of two types since the branches in internal choices are a
subset of the corresponding branches in external choices. The � relation reported
in Figure 7, combined with the symmetric cases, solves the above problem and
is used by (InvSD) to validate the client protocol (it is just a restricted form of
subtyping, written as a symmetric operator).

The next lemma shows that a typable process in � is also typable in �SD and
vice versa. In this manner, we can build our type inference algorithm on top of
the syntax directed rules throwing out nondeterminism.

Lemma 1. If Γ � P : T ; U then there exist Γ ′ and T ′ s.t. Γ ′ �SD P : T ′; U .
Conversely, if Γ �SD P : T ; U is derivable, so is, Γ � P : T ; U .

Proof. Straightforward induction on derivations of Γ � P : T ; U and Γ �SD P :
T ; U ��

4.2 Tree Unification

The inference algorithm relies on a unification algorithm unify among trees as
the one described in [16]. Nevertheless, in order to use this algorithm we need to
clarify how to build trees starting from our types. We first introduce the standard
set of type variables V , and a set of constants K = {end, int}. The meta variable
α ranges over the elements of V . A production for type variables is also added
to the syntax of sorts in Figure 3. A tree type is a partial function T from the
set of finite strings over the alphabet of positive integers (describing paths in the
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tree), to a ranked alphabet L = {[ ], . } ∪ V ∪ K ∪ {?i, !i, &i, ⊕i|i > 0} where
the rank of V ∪ K is 0, the rank of [ ] is 1 and the rank of {?i, !i, &i, ⊕i|i > 0}
is i. For example, if T (π) = [ ] then T (π · 1) is defined, which means, if in the
tree following the path as specified by the string π we find a [ ] then we can
use the string π · 1 to retrieve the service type.

Definition 2 (treeof). The function treeof translates types into trees and is
inductively defined as:

treeof(?(S1, . . . , Sn).T ) = ?n(treeof(S1), . . . , treeof(Sn)).treeof(T )
treeof(!(S1, . . . , Sn).T ) = !n(treeof(S1), . . . , treeof(Sn)).treeof(T )
treeof(&{l1 : T1, . . . , ln : Tn}) = &n{l′1 : treeof(T1), . . . , l′n : treeof(Tn)}
treeof(⊕{l1 : T1, . . . , ln : Tn}) = ⊕n{l′1 : treeof(T1), . . . , l′n : treeof(Tn)}
treeof(K) = K
treeof(α) = α

where (l′1, . . . , l
′
n) is an ordering of (l1, . . . , ln)

Trees follow the same structure as types but we need arity annotations and a
fixed ordering among the labels of each choice.

The substitution returned by unify is a mapping p : V → T . Given a substi-
tution p and a tree T , we obtain the tree pT as the result of the simultaneous
substitution of the tree pα for each occurrence of variable α in T . Standard
substitution composition is written as p · p′ if p and p′ are two substitutions.
Another subtle aspect is that valid substitutions returned by the unify must be
acyclic (this can be verified e.g., by using the so-called occur-check), because
(for simplicity) the current type system does not handle regular recursive types.
Recursive types would permit to typecheck process like (νa)(a.(x).x.〈x〉|a.〈a〉)
and could be handled by allowing a solution for cyclic substitutions. Hereafter,
we will use types and trees interchangeably, since they are isomorphic.

4.3 An Algorithm to Extract Constraints

The type inference is subdivided in two parts: the constraints extraction part
and the solving part. For the first part, the algorithm INF, depicted in Figure 8,
takes a process P and an environment Γ . Γ contains an entry for each service
and variable in P corresponding to either a type variable (meaning that we
rely on the algorithm to find out the type of a name) or a sort (if we simply
want typecheck). Moreover, Γ must contain the functional type of each external
function used as a value; environment Γ restricted with the set of free names of
P is denoted Γ↓fn(P ). The algorithm returns a triple: a set C of constraints, the
type T of actions in the current session and the type U of outputs upwards the
parent session. The set C of constraints contains equations of the form T = T ′

and T � T ′.
Basically, INF is extracted by reading the syntax directed rules (Figure 5) in a

bottom-up manner and generating an equality constraint when the rule requires
two types to be equal: e.g., in the if case of the algorithm we add an equation
that requires equality for the returned type of both P and Q since the rule
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(TifSD) requires two U ’s. It is worth noticing that, with an abuse of notation, we
use merge for indicating a slightly different function from that defined in Figure
6, the new one behaves like the original function but also returns an equality
constraint in each case the previous function requires syntactical equality. It is
not expressively annotated when the algorithm fails but it should be clear that an
error is generated each time the code does not match the algorithm expectation.
E.g., a subtle case is in the invocation when we directly read from Γ the type
of the value; we implicitly expect the value to be either a variable or a service
(neither a function nor an integer) bound in the environment.

Next theorem is fundamental for the soundness of our results and it shows
that if we have a substitution that solves the constraints set generated with
INF(P, Γ ) then such a substitution applied to Γ yields a correct typing for each
service and variable in P .

Theorem 1. Let INF(Q, Γ ) = (C1, T1, U1), Q ≡ (νs̃)P and p a substitution for
each type variable in C1 to a concrete type (a type without type variables). Then,
�pC1 holds if and only if (pΓ )↓fn(P ) �SD P : pT1; pU1.

Proof. The assumption on p is required for throwing out some valid solutions and
recover the soundness with respect to the syntax directed typing rules; we reserve
the problem of principal typing for further investigations. ⇒ By induction on
the first applied rule in the algorithm, we sketch some cases. If INF(s′.P ′, Γ ) the
respective case is applied. By inductive hypothesis �pC holds and (pΓ )↓fn(P ′) �SD

P ′ : pT ; end. Also if �p(C∪{Γ (s) = [T ]}) holds we can instantiate the premises of
the rule (TdefSD) to obtain the typing for (pΓ )↓fn(P ′), s : pT �SD s.P ′ : end; end.
In the case of rules that introduce binders pΓ is used to get the correct type.
For example, if INF((νs)P ′, Γ ) then (pΓ )↓fn(P ′)\s, s : pΓ (s) �SD P ′ : pT ; pU and
consequently (pΓ )↓fn((νs)P ′) �SD (νs)P ′ : pT ; pU . ⇐ By induction on the last
applied rule in the type system. For example if the last applied rule was (TinvSD)
we have that p(Γ↓fn(P ′))(v) = [T ′] and that T ′ � pT ′′ holds in the premises, where
pT ′′ is the typing of P ′ in v.P ′. Since by inductive hypothesis �pC holds then
�p(C ∪ {T ′ � T ′′}) holds too. ��

4.4 How to Solve the Constraints Set

At the end of the previous sub-section we show the fundamental role played
by the substitution p, solution of the constraints set; next we show how to
algorithmically get such a solution.

The algorithm in Figure 9, in OCaml like syntax, is used to find the solution
of the constraints set C (which is treated like an ordered list of constraints). If
the equation is a simple equality, it can be directly solved by unify, which returns
a substitution applied to both the environment and the tail of the constraints
list. If the constraint is a � equation we are comparing two dual sides of a
session and we cannot directly unify. In fact, as discussed in the introduction,
the information which can be unified is only that information on the types of
the trasmitted/received tuples since they should be the same for both sides.
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VALUEINF(x, Γ)= (∅, Γ (x))
VALUEINF(s, Γ)= (∅, Γ (s))
VALUEINF(n, Γ)= (∅, int)
VALUEINF(f(v1, . . . , vn), Γ)=

let (C1, S1)=VALUEINF(v1, Γ)......(Cn, Sn)=VALUEINF(vn, Γ)
Γ (f) = S1 × . . .×Sn → S

in (C1 ∪ . . . ∪ Cn, S)
INF(s.P , Γ)=

let (C, T , U)=INF(P , Γ)
U = end
C1= C∪{Γ (s) = [T ]}

in (C1,end,end)
INF(v.P , Γ)=

let (C, T , U)=INF(P , Γ)
C1= C∪{Γ (v) � [T ]}

in (C1, U ,end)
INF((x1, . . . , xn).P , Γ)=

let (C, T , U)=INF(P , Γ)
in (C,?(Γ (x1), . . . , Γ (xn)).T , U)

INF(〈v1, . . . , vn〉.P , Γ)=
let (C, T , U)=INF(P , Γ)
(C1, S1)=VALUEINF(v1, Γ)......(Cn, Sn)=VALUEINF(vn, Γ)
in (C ∪ C1 ∪ . . . ∪ Cn,!(S1, . . . ,Sn).T , U)

INF(return v1, . . . , vn.P , Γ)=
let (C, T , U)=INF(P , Γ)
(C1, S1)=VALUEINF(v1, Γ)......(Cn, Sn)=VALUEINF(vn, Γ)
in (C ∪ C1 ∪ . . . ∪ Cn, T ,!(S1, . . . ,Sn).U)

INF(if v = v1 then P else Q, Γ)=
let (C, T , U)=INF(P , Γ)

(C1, T1, U1)=INF(Q, Γ)
(C2, T2)=merge(T , T1)
C2 = C2 ∪ {U = U1}

in (C ∪ C1 ∪ C2, T2, U)
INF((νs)P , Γ)=

let (C, T , U)=INF(P , Γ)
in (C, T , U)

INF(P |Q, Γ)=
let (C, T ,end)=INF(P , Γ)

(C1, T1,end)=INF(Q, Γ)
T = end ∨ T1 = end
if T==end then T2=T1

else if T1==end then T2=T
in (C ∪ C1, T2,end)

INF(Σn
i=1(li).Pi, Γ)=

let (C1, T1, U1)=INF(Pi, Γ)......(Cn, Tn, Un)=INF(Pn, Γ)
C′=

⋃
i{Ui = Ui+1} ∀ i ∈ 1 . . .n−1

in (C′ ∪ C1 ∪ . . . ∪ Cn,&{l1 : T1, . . . , ln : Tn},U1)
INF(〈l〉.P , Γ)=

let (C, T , U)=INF(P , Γ)
in(C,⊕{l : T},U)

Fig. 8. The algorithm to extract constraints
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let solve C Γ=
match C with
[]->Γ
|T = T1 ::C′ -> let p=unify(T,T1) in solve(pC′,pΓ)
|α �T ::C′ -> solve(C′@[α �T], Γ)
|T �T1 ::C′ -> let p=compunify(T,T1) in solve(pC′,pΓ)

Fig. 9. An algorithm to solve the constraints set

compunify(end, end) = ε compunify([T ], [T ′]) = compunify(T , T ′)
compunify(?(S̃).T , !(S̃′).T ′) = unify(S̃, S̃′) · compunify(T , T ′)
compunify(&{l1 : T1, . . . , ln : Tn},⊕{l′1 : T ′

1, . . . , lm : T ′
m}) =

⋃
li=l′j

compunify(Ti, T
′
j)

{l′1, . . . , l′m} ⊆ {l1, . . . , ln}

Fig. 10. compunify

The compunify defined in Figure 10 (with symmetric cases) solves a � equation
by unifying the type of the tuples received and transmitted (· indicates the
composition of substitutions and ε the empty substitution); the other cases follow
the same pattern as their syntactic counterparts defined in Figure 7.

It is worth noticing that we cannot solve an equation of form α � T because
this kind of equation does not contain any information. In these cases, the algo-
rithm chooses to append the equation to the rest C′ since another iteration could
substitute the type variable with a more concrete type. The following proposi-
tion shows that this is always the case since sooner or later all service definitions
become available, thanks to the well-formedness of P .

Proposition 1. Let (C, , ) = INF(P, Γ ) and P a closed process with respect to
services and variables. For each constraint α � [T ] ∈ C, it is possible to find in
C a series of constraints that yields a substitution {α �→ T ′} and T ′ is not a type
variable.

Proof. Note that constraints α � [T ] are generated by the service invocation v.P
and α is the type of the value v used for invocation. Suppose we first solve from
C all the unification constraints. Consequently, we produce the new constraints
set C′. The remaining constraints α � [T ] in C′ are because α is introduced by
an input binder. In this case we have an usage of the form ?(α) to be compared
with an usage of the form !(T1) otherwise compunify fails. If T1 is not a type
variable compunify returns the substitution {α �→ T1}. Otherwise, if T1 = α1
is a type variable then it must exists (since P is closed and well formed) an
equation α1 � T2 and we can reiterate the reasoning to find out the desiderated
substitution. The reasoning terminates and it is bounded by the number of
service invocations in P .

Thanks to the previous Proposition we can show that even if there are unguarded
appends, solve terminates.
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Theorem 2. solve terminates.

Proof. The set of constraints decreases at each iteration except in the third case.
By Proposition 1 there must exist a substitution that returns the concrete form
of α in a finite number of steps. Let |C| be the total number of constraints in the
set and d the number of the � equations. The measure we are going to define is
|C| + d!, where d! denotes the factorial of d. In fact, we need at most |C| steps
to solve all the equality equations and at most all the permutations of d to find
the correct resolution order of the � equations. ��

5 Running Examples Extracted from the Tool

We developed the described algorithm in OCaml [15] and in this section we
show some examples of executions with the generated constraints set and the
relative solution. Consider that the algorithm makes some initial work to alpha
renaming the process in such a way that all bound and free names are different
as implicitly expected by the INF function.

Example 2. We start with a classical functional flavor, factorial service. Even if
this function is recursive, its typing does not require recursive types, as each
session is isolated from each other. A client invokes the service and returns
the result upwards. Furthermore, the example shows how nested services work.
(νfatt)

fatt.(n).
if n=1 then 〈1〉 else

(νutil)
util. fatt.〈sub(n,1)〉.(x).return x | util.(x1).return mul(x1,n)

| fatt.〈5〉.(res).return res

First of all we need to instruct the tool, linking in the environment Γ only the
types of the external functions; Γ = {sub : int × int → int, mul : int × int →
int}. Now running INF with the previous process and Γ ′ = Γ ∪ {fatt : α1, n :
α6, util : α3, x : α5, x1 : α4, res : α2} yields the following constraints:

α1 = [?(α6).!(int).end] α3 = [!(α5).end] α6 = int
α3 � [?(α4).end] α1 � [!(int).?(α5).end] α4 = int
α1 � [!(int).?(α2).end] int = int

The solving algorithm computes the right solution, fatt : [?(int).!(int).end], n :
int, x : int , x1 : int, res : int, util : [!(int).end].

Example 3. The second program shows how the type inference works for an
invocation of a dynamically received service name.

(νb)((νa)(a.(sum).(x,y).〈add(x,y)〉 + (inc).(x1).〈add(x1,1)〉 | b.〈a〉)|
b.(z). z.〈sum〉.〈2,3〉.(res))
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This time Γ contains only the definition of add and Γ ′ = Γ ∪ {b : α1, a : α4, x :
α5, y : α6, x1 : α7, z : α3, res : α2}. INF returns

α4 = [&{sum :?(α6, α5).!(int).end, inc :?(α7).!(int).end}] α6 = int α5 = int
α1 = [!(α4).end] α1 � [?(α3).end] α3 � [⊕{sum : {!(int, int).?(α2).end}]

and solve produces the solution

b : [!([&{sum :?(int, int).!(int).end, inc :?(int).!(int).end}]).end], x : int,
a : [&{sum :?(int, int).!(int).end, inc :?(int).!(int).end}], y : int, x1 : int,
z : [&{sum :?(int, int).!(int).end, inc :?(int).!(int).end}], res : int

Example 4. This example shows how an external function can input services and
return services as well. In particular, the function lb has type [!(int)]× [!(int)] →
[!(int)]; it inputs a couple of services and returns a service.

(νloadbalance)(νa)(νb)(loadbalance.〈lb(a,b)〉|b.4|a.4)
| loadbalance.(x). x.(res))

The inferred types are loadbalance : [!([!(int).end]).end], a : [!(int).end], b :
[!(int).end], x : [!(int).end], res : int

6 Conclusions and Future Work

In this paper we studied an algorithm to infer session types. This is a preliminary
study and we studied only a restricted form of session types in a syntactically
constrained language which does not give to the programmer the freedom to
directly use session channels. In spite of these limitations, we shown that with
respect to the simply typed π-calculus a context with dual interactions and
choices needs a new type of equations allowing for duality.

Moreover, typical typing systems for session types are nondeterministic due
to the choices, both internal and external, embedded in the types. In fact, stan-
dard rules leave the entire freedom; one can add and remove branches until both
the invocation protocol and the service specification are not syntactically equiv-
alent (modulo duality). Thus, we have proposed a set of syntax directed rules
which uses the if-then-else to deterministically expand choice branches and a
corresponding relation to be used in place of the syntactical equivalence. Succes-
sively, we have developed an algorithm to infer types, subdivided in two parts:
constraints extractor and solver.

As a consequence, the present ideas can be adopted as a base to the enhance-
ment of the algorithm, adding μ-types [11], extending the model with multi-parti
session types [1] and studying the inference for [20].
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