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Preface

This volume contains the papers presented at the first International Workshop on Applications of Mem-
brane Computing, Concurrency and Agent-based Modelling in Population Biology (AMCA-POP 2010)
held in Jena, Germany on August 25th, 2010 as a satellite event of the 11th Conference on Membrane
Computing (CMC11).

The aim of the workshop is to investigate whether formal modelling and analysis techniques could be
applied with profit to systems of interest for population biology and ecology. The considered modelling
notations include membrane systems, Petri nets, agent-based notations, process calculi, automata-based
notations, rewriting systems and cellular automata. Such notations enable the application of analysis
techniques such as simulation, model checking, abstract interpretation and type systems to study sys-
tems of interest in disciplines such as population biology, ecosystem science, epidemiology, genetics,
sustainability science, evolution and other disciplines in which population dynamics and interactions
with the environment are studied. Papers contain results and experiences in the modelling and analysis
of systems of interest in these fields.

The workshop program includes three invited talks by Mats Gyllenberg (University of Helsinki,
Finland), Giancarlo Mauri (University of Milano-Bicocca, Italy), and Jamal Hisham Hashim (UNU-
IIGH, Malaysia). A paper by Giancarlo Mauri and colleagues related with his invited talk is included
in this volume, together with four regular peer-reviewed contributions. The volume contains also two
extended abstracts of poster presentations. Mauri’s paper and the four regular contributions will be
published also in a volume of the EPTCS series (see http://www.eptcs.org/).

We wish to thank the invited speakers, the authors of the contributed papers, the members of the
program committee, the additional reviewers Thomas Anung Basuki, Federico Buti, Paolo Cazzaniga,
Andrzej Mizera, and Ashutosh Trivedi, and the organizers of CMC11 for their contributions and support.
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Metapopulations are models of ecological systems, desgrihe interactions and the behavior of
populations that live in fragmented habitats. In this paper present a model of metapopulations
based on the multivolume simulation algorithm tau-DPPoalsstic class of membrane systems,
that we utilize to investigate the influence that differeabitat topologies can have on the local and
global dynamics of metapopulations. In particular, we ®oour analysis on the migration rate of

individuals among adjacent patches, and on their capgabilitolonizing the empty patches in the

habitat. We compare the simulation results obtained foh debitat topology, and conclude the

paper with some proposals for other research issues cangenetapopulations.

1 Introduction

The field of metapopulations ecology deals with the studypatial systems describing the behavior of
interacting populations that live in fragmented habitaf [ The purpose of these models is to understand
how the local and global dynamics of metapopulation systermsally balanced between local extinc-
tions and new colonizations of unoccupied patches, departtiespatial arrangement of the habitat.
Consequently, relevant insights into related fields of @gichl research, such as evolutionary ecology or
conservation and landscape management, can be achiedegdl|rthe topology of fragmented habitats
potentially holds relevant implications for the persisterof populations, and their robustness against
natural or anthropogenic disturbancel[36].

Recently, in addition to ever increasing applications afpd-based methods for the analysis of com-
plex networks in cell biology[l112], graph theory has alserbapplied to the study of metapopulations
systems. In graph models of metapopulations, nodes aretosegresent habitat patches, and graph
edges are used to denote some functional connections lrepaeshes (typically related to the dispersal
of individuals). Attributes can be associated to nodescriteiag the quality or dimension of patches,
while different types of edges can be exploited to repregentlistance between connected patches, the
rate of dispersal between a couple of patches, or simplyhenétvo patches are connected or not.

Metapopulation models using graph-based methiods[ 36, r&s$ienple to implement and require
relatively few data for their definition, while individudlased models implement more detailed aspects,
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2 The influence of network topologies on metapopulations oyos

concerning the nature and the interaction of populatibdsi4R Both types of modeling approaches are
useful for the analysis of specific features of metapoputatbut, while the first focuses on the properties
of the habitat topology, the second is more concerned wihethergent dynamics. In this paper, we
present a stochastic multivolume model of metapopulatiisch integrates the explicit representation
of interactions between the individuals of the populatiemsd therefore allows to simulate the emergent
local and global dynamics — with a graph description of tHaitahtopology — which allows to investigate
the influence of distinct spatial structures on the dynamics

This model, which represents a simplified extension of aipusvmetapopulation model that we
introduced in[[¥[B], is based on the multivolume stochastioulation algorithm tau-DPR_[LL] 8], a
stochastic class of membrane systems. Membrane systefAssystems, were introduced [n[27] as a
class of unconventional computing devices of distribugatallel and nondeterministic type, inspired
by the compartmental structure and the functioning of guiells. The basic model consists of a mem-
brane structure where multisets of objects evolve accgrttirgiven evolution rules. A comprehensive
overview of P systems and of its many applications in vari@search areas, ranging from Biology to
Linguistics to Computer Science, can be found.id [28[12, 29]

In tau-DPP, the distinct compartments of any multivolumedeia@an be arranged according to a
specified hierarchy (e.g., a membrane structure), undeaddéional assumption that the topological
structure and the volume dimensions do not change duringyfiiem evolution (each volume is assumed
to satisfy the standard requirements of the classical astchsimulation algorithm, sele [116] and [5] for
more details). Inside each volume, two different types &dgwcan be defined: thieternal rules which
modify the objects contained inside the volume where thkg fdace (in the case of metapopulation,
they describe the growth and death of population indivisl@gicording to the Lotka-Volterra model of
preys and predators), and tbemmunication ruleswvhich are used to move the objects between adjacent
volumes (in the case of metapopulation, they describe tigeatidn of population individuals).

In this paper, tau-DPP is exploited to analyze the emerggmardics of metapopulation systems,
where the focus is on the influence that the topology of pattias on the migration of individuals, and
their capability to colonize other patches in the habitatthis purpose, we consider six different habitat
topologies, formally described by graph structures, aradyae how the topological structure of patch-
to-patch connections, and the rate of individual dispdsstveen connected patches, influence the local
and global dynamics of a metapopulation. In particular, wkfisst consider how a given topology and
a fixed dispersal rate between patches can influence theppeegtors dynamics, and then we will focus
on the colonization of empty patches, starting from the elisal of predators that live in a few patches
which occupy peculiar positions in the given network topglo

The paper is structured as follows: in Secfidn 2 we presentdmcept of metapopulations in Ecol-
ogy, and then describe the multivolume model of metapojougtby focusing, in particular, to the
different habitat topologies. In Sectibh 3 we will show tliraglation results concerning the influence of
these habitat topologies on the emergent dynamics of metigtans, considering the effects of preda-
tors dispersal and colonization. Finally, in Secfidn 4 wedatade the paper with some final remarks and
several proposals for further research issues concernatgpopulations.

2 Metapopulations

In this section, we first provide a brief introduction to th@shrelevant features of metapopulations,
concerning both the topology of the habitats and the emedygramics. Then, we describe the modeling
approach used in this paper, that is based on a stochasitcaflanembrane systems, which will be used
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in SectiorB to analyze the influence of different networlotogies on the dynamics of metapopulations.

2.1 Dynamical models of interacting populations in Ecology

Since its introduction in[22], the concept of metapopuwlasi (also calleanulti-patch systemdas been
extensively applied in Ecology to analyze the behavior tdriacting populations, to the purpose of deter-
mining how fragmented habitats can influence various asp#¢hese systems, such as local and global
population persistence, or the evolution of spedies [18jely, this topic has been largely employed for
other populations species, living in both natural and aitifitheoretical fragmented landscapes [17].

A metapopulation consists of local populations, living pasally separated habitats callpdtches
— which can be characterized by different areas, qualitysoliation — connected each other through a
dispersal poglwhich is the spatial place where individuals from a popataspend some lifetime during
the migration among patches. In multi-patch systems, twajpal types of dynamics exist: on the one
hand, the individuals of the different populations can Haeal interactions inside each patch (according
to a given dynamical model, e.g., the Lotka-Volterra systfnimteraction between preys and predators
[25]); on the other hand, the dispersal of individuals amongually connected patches can influence
the global behavior of the whole systern [20,121,] 83] 37]. The disperkaddividuals, which is usually
dependent on the distance between patches, may reducegh@dpulation growth, and thus increase
the extinction risk, which can be due also to environmental demographical stochasticity. Hence,
the persistence of populations is assumed to be balancegdretiocal extinctions and the process of
colonization, that is, the establishment of new populaiomnempty patche$ [17].

Several theoretical frameworks for metapopulation armslyave been defined up to now, remarking
specific properties of multi-patch systems which have bébereexplicitly or implicitly considered in
these modeling methods (see, e.n.) [14,[17 24, 19] for durtdetails). For instance, referring to the
landscape, most theoretical models take care of the satisiture of the habitat, the local quality of
the environment, the patch areas and their mutual conitgcfr isolation), in order to capture the
effect of habitat fragmentation on species persistencéadiy good local conditions can determine the
growth and the survival of populations inside the patched,tdgh patch connectivity can decrease local
extinction risk. Moreover, as dispersal and colonizatiom @distance-dependent elements, they can be
used to account for the importance of real landscape stagtiReferring to population interactions and
dynamics, colonization can depend or not on the cooperafiamgrating individuals (in the first case, it
is called “Allee effect”). Models not accounting for withjmatch dynamics — but only assuming whether
a patch is occupied or not — usually consider local dynamica aster time scale with respect to the
global dynamics, and also neglect the dependence of caliimizand extinction rates on population
sizes. Finally, regional stochasticity can account ford'bar “good” years over the local environmental
quality, which depends on, e.g., the weather conditionglwvaffect sustenance resource availability and,
once more, they can influence the growth and survival of ijmurs.

Recently, graph-based models for metapopulations havieedgteo be more and more defined be-
cause of the intuitive and visual way they hold for the repnéation of these ecological systems (see
[36,123,[35] and references therein). In these models, nageesent habitat patches and graph edges
denote functional connections between patches (typicelgted to the dispersal of individuals). In ad-
dition, attributes can be associated to nodes, descrihinguality or dimension of patches, and different
types of edges can be adopted to represent the distancegbetaenected patches, the rate of dispersal
between a couple of patches, or simply whether two patcleesamected or not. These models allow
to make insights into the features of habitat distributisungch as the predominant importance of some
nodes or clusters of nodes with respect to other charattsred metapopulation, like their dynamics, the
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vulnerability to disturbance, the persistence of popatetiaccording to dispersal, and so on. These re-
sults open promising perspective in related research fes@volutionary ecology, conservation biology,
epidemiology, management and design of natural reserves.

2.2 AP system—-based model of metapopulations: focusing oetwork topologies

Most of the issues discussed in Secfion 2.1 were expliaithsizlered in our previous model for metapop-
ulations [6,.7]. In those works, metapopulation models wsased on a class of membrane systems
called DPP[[311]-30], which were used to execute qualitatteelsmstic simulations of the local and
global dynamics of metapopulations. In particular, [ih [/ wtroduced a model of metapopulations
with predator-prey dynamics, where additional featuresewsed in order to catch and better describe
relevant properties of the modeled system. For instaneerdgions of the membrane structure were
represented as nodes of a weighted graph with attributesreshe weight associated to edges cor-
responds to the “distance” among connected regions, wtiibwtes specify their surface dimension.
These new features are necessary in order to outline thialsgigtribution of patches and the relevant
additional features associated to them: the dimension eftehpgs needed to define the density of the
populations living inside that patch, while the distancededed to identify isolated patches, as well as to
define the dispersal rates of migrating individuals. Mogerplby using some rules which do not modify
the objects on which they act (the so-called “mute rules’®, modified the classical view of maximal
parallelism, by allowing the maximal application of rulaest,bat the same time, reducing the maximal
consumption of objects. The model was applied to investigaitne emergent metapopulation behaviors,
such as the influence of patch dimension, patch-to-patt¢artis, stochastic breeding, the dynamics un-
derlying migration and colonization, the effects due tdased patches, etc. Then, in [6] we extended
the analysis of that model by focusing on periodic resoueeglihg strategies, and compared different
systems where either increasing, decreasing, statiomgoyrely feeding stochastic phases were defined
inside each patch. We have shown there, for instance, hosetimonal variance can transform the basic
Lotka-Volterra dynamics inside each patch into a more cemglnamics, where the different phases of
a feeding cycle can be identified through the effect that theye on the standard oscillations of preys
and predators.

In this section, we present a simplified model of metapoparat which exploits the multivolume
stochastic simulation algorithm tau-DFP][LL, 5]. With mdpto the previous model, here we will not
need to use the concept of mute rules, as the probabilistetand applications of rules is already
embedded in the tau leaping algoritnmI[10], on which tau-B3fased. Moreover, we will not consider
the presence of the dispersal pool, but we will instead farusanalysis on the direct communication
of individuals among interconnected patches, accordirgptoe fixed network topologies. In order to
compare the influence of each network, we have decided torpeidur analysis on a total of 6 patches,
spatially arranged in different ways. Namely, we assumettiese network topologies can be described
by graphs having the same number of nodes, but distinct ctions, such as the chain, grid, star, ring,
complete or random structure (see graphs c,d, e, f, respectively, in Fig[d1). From now on, we will
refer to the formal data structure by using the term ‘grajpind use the term ‘network’ to denote the
topological relationship on each graph.

Formally, each network topology € {a,b,c,d,e f}, can be generally described by a weighted
undirected grapis, = (NX,EY,w") where:

¢ Ny isthe set of nodes, such that each npde N, i=1, ..., 6, is characterized by a valdg¢p;) € A

(with A being a set of attributes of some kind);

e EV C {(pi,pj) | pi,pj € N{} is the set of (undirected) edges between nodes;
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(a) chain (b) grid (c) star

Figure 1. Network topologies.

e W :EY — RT is the weight function associating a cost to each edge.

In the case of metapopulations, the set of nddgscoincides with the set of patches, the attribute
of a node represents the area of the patch, the edges chizeegtbich patches are directly reachable
from any patch (self-edges might exist as well but will notdoesidered in this work), and the weight
wi‘fj of an edg€(p;, p;) represents a cost to measure the effort that individuale twaface when moving
from patchp; to pj. Given a network topology, we denote byAdj(p;)” the set of nodes that are
directly connected to any noda, that is, Adj(pi)" = {p; € N{ | 3 (pi,p;) € EY}. We also denote
by degp;i)¥ the degree of patch;, that is, the number of patches directly connectegyt@ormally,
degpi)” = card(Adj(pi)”)). We outline that, in what follows, we will assume that: (&); = 1 for
each(pi, pj) € EY and eachv € {a,b,c,d,e, f}, that is, all edges have the same cost;§@);) = 1 for
eachp; € NS and eachv € {a,b,c,d,e, f}, that is, all patches have the same dimension. The rational
behind this is that, in this paper, we focus our attentionh@nimfluence that different topologies of the
habitat network can have on the local and global dynamicsethpopulations, regardless of the local
features of each patch, or of the distances between patdiese features might be naturally added
in further works related to this model, where real data candsl to define a specific model of some
metapopulation systems.

In addition to the chosen network topology, this model ofapepulations also considers the pres-
ence of species individuals, which locally interact acamydo a chosen dynamics, and give rise to global
dynamics thanks to the dispersal processes. To this pyrpotes paper we assume that each patch is
characterized by the Lotka-Volterra (LV) model describihg interaction between the individuals of two
populations, namely preys and predators. Inside each,pghhV model is described by the following
set of internal rules:

ri: AX— XX
r,:. X¥Y—-YY
rg3: Y—A

whereX denotes the prey¥, denotes the predators, denotes the sustenance resources /gl the
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empty symbol. Rules; andr, model the growth of preys and predators, respectively, evhilers
models the death of predators. Each rule is also charaetielly a stochastic constants (expressed in
time™1), that is used — together with the current amounts of indiaigl occurring in the patch —to evaluate
its application probability step by step, according to e leaping algorithm (se& 110,111, 8] for more
details). All the simulations shown hereafter have beecuesl using the following values of stochastic
constants and of initial amount of preys, predators, antesaace resources;=0.1, ¢,=0.01,c3=10,
Xo=Yp=1000,Ap=200 (the value of is fixed for the entire duration of each simulation). The datians
have been performed with the software BioSimWale [5], thetléements different stochastic simulation
algorithms for both single and multivolume systems. Thdveafe is available for free download at
http://bimib.disco.unimib.it/index.php/Software.

In Fig. [@ we show the oscillating dynamics (left side) of mend predators in the single patch,
obtained with this choice of parameters, and the correspgrghase space (right side). These figures
can be considered as reference to compare and discuss #mmidgrobtained in the multi-patch model,
as described in Sectidnh 3.

5000 T T T T 5000

4500 - 1 4500 -

4000 4000 -

3500 |
3500 |-
00 |
3000 |
2500 |

Individuals

2500 f
2000

2000

1500

1000 1500

500 |- 1000

I I | I I I
0 2 4 6 8 10 0 500 1000 1500 2000 2500 3000 3500

Time [a.u.] X

Figure 2: The Lotka-Volterra dynamics in the single patcétikations in preysX, and predators (left
side), and corresponding phase space (right side).

The single patch model is then extended to a multi-patch ineldere, inside each patqhy of each
network topologyv, we add as many communication rules as the number of patcmsected top;
(that is, a total ofdeg ;)Y rules inside each patch). These rules are needed to movéapopundi-
viduals among the various patches of the network, thus ailpto analyze the effects of migration and
colonization in the metapopulation. This is done by attagla destination target to each communication
rule, specifying the destination patch, as it is usuallyedonP systems. Formally, in each patghof
networkv, we add the so-calledispersal rules

gy, =Y — (Y,target(p;j)),

for eachp; € Adj(pi)¥. Similarly to the local rulesy,rz,r3, the probability of applying each dispersal
rule is determined by using its stochastic constagju; whose values will be given in the next section to
consider different migration rates.
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3 The influence of network topologies on metapopulation dymaics

In this section we analyze how the topological structureaitip-to-patch connections, and the rate of
individual dispersal between connected patches, infludreéocal and global dynamics of a metapop-
ulation. In particular, in Sectioh3.1 we consider how a givepology and a fixed dispersal rate can
influence the prey-predators dynamics, while in SedfiaivBZXocus on the capability of colonization
of empty patches, starting from the dispersal of predateirsyl in a few patches which occupy peculiar
positions in the given network topology.

3.1 Network topologies and migration

In this section, we analyze the role of migration and comiaeesix network topologies with respect to
four different conditions for the dispersal rules. Namelg assume that each patch of each topology is
initialized with a complete LV model as given in Sect[on] 2iere the value of the stochastic constant
Cdp, for the dispersal of predators, in each papcke Ny, can assume one of the following values:

1. Ca, =1, for eachp; € Adj(pi)";

2. Ca, =10, for eachp; € Adj(pi)Y;

3. Ca, =20, for eachp; € Adj(pi)";

4. Cdpj:ﬁopi), for eachp; € Adj(pi)".
By considering the first condition as reference, the powetiggersal in the second (third) condition is
ten-fold (twenty-fold) the first one, irrespective of thesjimn that patchp; occupies in the considered
network. In other terms, the flux of dispersal from each paichthe first three conditions, results
amplified by the number of connections that each patch hds netpect to the other patches in the
network. On the contrary, the fourth condition correspotadthe situation when, for each pateh <
Adj(pi)Y, the sum of the values of constants of dispersal rulgs is always equal to 10, but the rate
of dispersal along each edge frgmto p; depends on the degree pf For instance, in the network
topology a (Fig. M), the value obdpj in patchespy and ps is equal to 10, while the value @apj in
patchespy, ..., p4 is equal to 5; in the network topology(Fig. ), the value otdpj in patchpg is equal
to 2, while the value oty in all other patches is equal to 10, and so on. So doing, we eagivihe
dispersal of predators according to the position of eacbhpit the network, and simulate a situation
where the flux of dispersal from each patch towards its adjguatches is uniform throughout the whole
network.

For space limits, in Fig[13 we present the phase spaces ok#ilonk topologies, obtained from
simulations of the fourth condition only. For each netwankparticular, we show the phase space of the
local dynamics of each patch. The graphics show that, indke of the chain graph (phase space (a)), the
patches having different degrees are characterized ®reliff dynamics: in fact, patches and ps show
a different behavior with respect to the other patches. thtiah to the role of patch degree, we can see
that also the position of patches in the graph plays a cemriel despite the fact that patchps, p2, ps
and p4 have all the same degree, the dynamics ingigand p4 differs from that of patcheg, and ps.
This is due to the different power of dispersal rules of ttwi neighbors, namelgzdpj = 10 in patches
Po, Ps, wWhile ¢q, = 5 in patchesp,, ps, which cause a larger flux of predators dispersal towardshpat
p1 andp4. The global effect is the presence of three different dywartone inpg, ps, another one iy,
ps, and a third one iy, p3), all of which are characterized by oscillationsXrandY with no regular
amplitudes (compare these phase spaces with the standapthid3é space in the single patch model
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Figure 3: The power of migration: LV dynamics in the phasecspat each network topology.
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given in Fig.[2, right side, and also with the phase spacesgnd; graphics (d) and (e)). Furthermore,
we can evidence that these oscillations are characterizad itial wider amplitude, which is reduced
during time.

Similarly, the dynamics of the patches in the grid graph §eghspace (b)) is influenced only by the
number of edges; in this phase space, we can identify twerdifit types of dynamics: one for the patches
with three edgesp:, p4) and another one for those with two connections.

In the star graph (phase space (c)), the LV dynamics endur@spatches apart fromg, where the
number of preysX collapses to an attractor in zero, and no oscillations agegrto the LV dynamics
in both X andY can be established. In this patch, the number of predatatuéites in a certain range,
because of their dispersal from/to the other patches. Blsit this condition patchpg, that represents
the center of the star, becomes a local area of the habitatvamty dispersal occurs.

The simulations for the ring and complete graphs (phaseesp@d, (e)) show very similar results:
in both cases, all patches in each graph have the same déagoem the first configuration and five in
the second one), leading to regular oscillationX iandY with almost constant amplitude.

The results concerning the last configuration, the rand@plg(phase space (f)), show a combination
of the effects described above. In particular, the dynawiidke patches differ each other depending on
the degree of the patches themselves; moreovey,iwhich is characterized by the highest degree, the
high number of incoming predators (migrating from the fodjaaent patches) leads to the extinction of
preys (similarly to what happens in patph of the star graph).

We also tested, for each network topology, the other threelitons listed above. In these cases,
the results have shown that the amplification of the powersdeadsal with respect to the patch degree
gives rise to a balance between the incoming and migratidigiduals, which leads to comparable LV
dynamics for all networks, with regular oscillations insigach patch (data not shown).

3.2 Network topologies and colonization

In this section, we compare the six network topologies wétpect to the capability of colonizing the
empty patches that each network contains, starting fronpalbehes that contain a complete LV model
and that occupy a peculiar position in that network . We teabat in this work we are considering only
the migration of predators, hence the empty patches arbyassumed to contain no predators but only
an initial amount of preys. In each netwarkthe set of patches initialized with the complete LV model
will be denoted a}\,. To test the feature of colonization, we consider four défe initial conditions,
hereby denoted as KCk=1,...,4, whereYy=0 and:

1. IC1is characterized bgapj =1 andXy=10;
2. IC2is characterized bgepj =1 andXp=100;
3. IC3is characterized bgapj =10 andXy=10;
4. 1C4 is characterized bgapj =10 andXy=100.

In each given network, all empty patches are initializechwlie same chosen conditiond®esides the
patches in the sqt}\, that are initialized with a standard LV model, having the commication constant
Cq,, €qual to the one given in the choserkj@nd all other parameters as given in Sediioh 2.2.

With this type of analysis, we expect to determine whichuesg of the network topologies are more
relevant with respect to the colonization of empty patcheser a given initial condition. All conditions
have been tested for each network and, for each fixed iniiadliion, different sets ofy), have been
considered. In the following, for space limits, we presemlysome results of these simulations, and
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briefly discuss the results obtained in the other analyzewdliions. In each of the following graph,
preys K) are represented with solid lines, while predatdfsdre represented with dashed lines.

We start by considering the network= a, that is, the chain graph. In this case, we present the
results obtained in all the initial conditions IC1, IC2, |G&4, considering three sets of LV patches,
namely pd,={po, ps}, PA,={P2} and pd,={po}. In the first case,={po, ps}, shown in Fig.[}K) we
can see that, when the power of dispersal is low (IC1, IC2) tithe required by the predators to reach
the patcheg, and p3, which are at the highest distance frgaand ps, allows an initial uncontrolled
growth of the preys im, and ps, which subsequently undergo extinction as soon as the forsdanter
the patch. Such “delay” in the local establishment of a pafpoh of predators is the effect that prevent
the formation of the LV dynamics; this effect, as shown hitezais a common aspect of all network
topologies. Concerning the chain network, this is more@with condition IC2, where the initial amount
of preys inside the empty patches is higher than IC1: in thgecthe LV dynamics can be established
only in four of the six patches. On the other hand, with théahiconditions IC3 and IC4, the power
of dispersal is sufficient to colonize all of the patchesgdpectively of the numbers of preys that are
initially present in the empty patches and of the positiothef LV complete patch. Similar results for
the chain network have been obtained in the second analyzed(s\,={p.}, shown in Fig.[b) and in
the third case§\,={po}, data not shown).

12000 14000

10000 F 12000 -

10000 -
8000 [

8000 [

Individuals
Individuals

4500 6000
4000
3500

3000

2500

Individuals
Individuals

1500 |

1000

Figure 4: Colonization in the chain topology, wit,={ po, ps } and initial conditions IC1 (top left), IC2
(top right), 1IC3 (bottom left), IC4 (bottom right).
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Figure 5: Colonization in the chain topology, wii,={p2} and initial conditions IC1 (top left), IC2
(top right), IC3 (bottom left), IC4 (bottom right).

For the network topology = b, that is, the grid graph, we show the results obtained indsesIC1,
whenp?,={po} (Fig.[, left side) ang®,={p1} (Fig.[, right side). According to the position of the LV
complete patches in this network topology, we can see th#gi first case, the predators are capable to
colonize patchep; and ps, that are directly connected m, and patchp,, that is directly connected to
both p; and p3. However, patchep, and ps cannot be colonized. In the second case, the higher degree
of the LV complete patclp;, allows the colonization of all patches. With the initiaincition 1C2 (data
not shown), in the other tested caﬁ§:{ po} and pEV:{ p1}, only the patches directly connectedg
andpz, respectively, are colonized by the predators.

For the network topology = c, that is, the star graph, we show the results obtained indakesc
IC1, whenpf,={p1} (Fig.[4, left side) andgf,={p1, ps} (Fig. [, right side). According to the position
of the LV complete patches in this network topology, we cam that, in the first case, no patches are
colonized because of the high degreepgf(which is the only patch connected @) that spreads the
predators over the other patches, thus preventing the fanmef the LV dynamics. In the second case,
the combined effect of migration fropy and ps allows the colonization of patchg, which is directly
connected with both of them. We then performed other sinmuratstarting with conditions IC3 and
IC4: in these cases, the higher valuec.g)f allows the colonization of every patch (except from pgigh
independently from the initial position of the LV completatph (data not shown). On the contrary, when
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Figure 6: Colonization in the grid topology, with initial kdition IC1 andpP,={po} (left), p?,={p1}
(right).

25000 14000
12000 |
20000 |
10000
3 3
3 15000 - 2 a0 |-
3 3
£ £
10000 6000 -
4000
5000
2000
0o 0o

Figure 7: Colonization in the star topology, with initialradition IC1 andpfy,,={p1} (left), pf,={p1, ps}
(right).
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Figure 8: Colonization in the ring topology, wittf\,:{po} and initial condition IC1 (left) and IC2
(right).
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we assumepf,={po}, that is, the center of the star, then all patches are fullgrived, independently
from the considered initial condition.

For the network topology = d, that is, the circular graph, we show the results obtaingddrcases
IClandIC2, wherpEV:{po} (Fig.[8, left and right sides, respectively). Starting wiik initial condition
IC2, the predators are capable of colonizing only the patdirectly connected to the LV complete patch
Po, while in the case IC1, also patgh (being at distance 2 from the LV complete patch) is colonized
These results highlight, in particular, another aspedtilaa more marginal in the other simulations: the
stochastic nature of the communication process and of thetlyrof preys, which leads to the extinction
of preys in patchpy, while in patchp; it drives the local behavior to an oscillatory dynamics.

For the network topology = e, that is, the complete graph, we show the results obtaindttinases
IC1, whenpf,,={po} (Fig. [, left side) and,={po, ps} (Fig. [d, right side). While in the second case
— where the LV dynamics is initially placed in two patches e fitedators can colonize all patches, in
the first case the colonization of all empty patches failscémore, this is an effect of the stochastic
noise combined with the low amounts of predators, which tsiin caused by the fact that the higher the
number of adjacent patches, the lower the number of pregititat persist inside each patch. In all other
simulations performed with initial conditions IC3 and IGH| patches have always been colonized, as
the higher values of dispersal rules assure a more uniforeadmf predators throughout the network,
and thus flattens the influence of migration delay (data nowah

For the network topology = f, that is, the random graph, we show the results obtaineckindabes
IC1, Whenp[\,:{ po} (Fig. [0, left side) ancp[vz{pz} (Fig. 10, right side). According to the position
of the LV complete patches in this network topology, we cam tbat, in the first case, all patches are
colonized by predators (similar results are obtained bgiptathe LV complete model in patghy — data
not shown). Inthe second case, papshis not colonized because there is only one path of length 2twhi
connects it to the initial complete LV patgi; the same holds for patgbs, which has distance from,
equal to 3. For similar reasons, considering the case ddlicibndition IC1, with the LV complete model
in patchps, the only patch that is not colonized by predatorgsi¢data not shown). In all the simulations
performed with the initial condition 1IC2, some of the patsh@ve not been colonized because of the high
amount of preys initially occurring in the patches. On theeothand, with the initial conditions IC3, IC4,
the power of dispersal allows the colonization of all pagcfdata not shown).
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Figure 9: Colonization in the complete topology, with iaiticondition IC1 andpf,={po} (left),
piv=1po, s} (right).
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Figure 10: Colonization in the random topology, with initeondition IC1 andp[vz{po} (left),
pLv={ P2} (right).

4 Discussion

The fragmented habitats of real metapopulations are yscladiracterized by complex network topolo-
gies. In this paper, we have analyzed six small topologiasdhn be considered representative of local
areas in a structured habitat, and we have investigatedtlfoemce that the degree and the position of
each patch in the topology can have on the migration of iddids, as well as on the capability of col-
onizing empty patches. Our analysis suggests that, wiflect$o the power of migration (Sectibni3.1),
we can identify different behaviours that depend on two attaristics of the topology: on a first level,
the local behaviour inside each patch is influenced by itsadedrhis is especially evident if we compare
the network topology described by the circular or completpbs, with the topology described by the
star graph: while in the first case (where all nodes have time skegree) all patches are characterized by
a similar (regular) oscillating dynamics, in the seconcedhg most critical node is the center of the star
(which has a much higher degree than all other nodes in the gaaph). In the latter case, this patch is
likely to undergo a local modification of its initial dynamsicdue to a more higher incoming migration
of individuals from all other adjacent patches. On a secenrdl] assuming in this case that the degree
of nodes is equal, then also the position of each patch ingpeldgy matters: for instance, we have
seen that in the network topology described by the chainhgraghere all nodes, besides the ones at
the extremes of the chain, have the same degree — the loa@idysis also influenced by the dynamics
of the adjacent patches in the graph. Therefore, in hypotidiabitats where there exist many patches
connected in a linear way, our results suggest that theHesfghe chain might have a negative role in
the establishment and in the maintenance of local dynamics.

Considering the feature of colonization (Sectlonl 3.2), veeehevidenced that, in most network
topologies, the lack of colonization can be due to the defayigrating predators with respect to the
(uncontrolled) local growth of prey, which then leads to &éxtinction of preys and the prevention of
the LV dynamics. To effectively measure how strong is the groef the delay, it would be interesting
to understand whether the local growth of preys can be diedrby inducing their death and thus po-
tentially allowing the establishment of oscillations. Bles this aspect deserving further investigations,
our analysis have evidenced that the colonization of ematghgs occurs more easily in those patches
that are adjacent to the patch(es) initialized with the Lyhptete model. Once more, this highlights the
relevance of the position of the patch(es) where standaitiai®ns in preys and predators are already
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settled at the beginning of the simulation. Indeed, the pafeolonization is stronger in the circular
and complete networks — where the position of the LV cometeh is irrelevant (as the spread of mi-
grating individuals throughout the network results uniidrand it is weaker in the star network — where
the position of the LV complete patch is of primary importar{es the spread of migrating individuals
throughout the network strongly depends on whether thépatalaced at the center or at the tips of the
star).

In addition to the investigations that we have presentedimwork, further types of analysis that
we plan to perform on metapopulation systems concern, sairce, the study of the aspects considered
in this paper (migration, colonization, network topolagietc.) by assuming other local and global
dynamics, e.g., the population growth according to theskigfunction. Moreover, an interesting issue
that might be investigated is the synchronization of loagydation dynamics (e.g. by considering the
establishment and decay of oscillations in preys and poesladuring migration through a given network
topology, or in the process of colonization.

Concerning the use of graphs, other relevant questionsddga analysis of the dynamics with
respect to graph properties, such as different measureahitbh connectivity (centrality indexes) 113,
2@]. In this context, for example, the star graph can reseriiitd notion of hub (a node with high degree)
in a typical scale-free network, a structure that is knowhdaobust to random disturbances but highly
vulnerable to deliberate attacks on the hlibs$ (32, 3].

Another topic of interest concerns the fact that variousutettipns can coexist in a common habitat,
but have distinct (inter)species dynamics or differenpeisal capabilities in that habitat [9]. In cases
like this, it would be interesting to construct and analyi#feent metapopulation models, one for each
target species, according to both the patch-to-patch ations and to the specific population dynamics.
By comparing and intersecting the results obtained on thndi network topologies of the common
habitat derived in this way, it would be possible to deterniine locations of the habitat that are most
important for each species, and thus aid the design of naesarve systems where we can have the
most appropriate solution for all species in terms of the imakimprovement of dispersal (reduction
of species isolation) and the minimal spread of disturbaifdeseases, pathogens, invasive species, etc.)
[38].

We believe that our modeling approach opens interestirgppetives and can represent an useful tool
for the investigation of a wide range of properties in mefapation systems. We expect that applications
of this model to real cases — characterized by complex halstavorks (where each patch possesses its
own features of quality, occupancy, connectivity) andetght population dynamics — will aid in the
achievement of important results and new perspective ihoggo
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We present a methodology for modelling population dynamiits formal means of computer sci-
ence. This allows unambiguous description of systems apticagion of analysis tools such as
simulators and model checkers. In particular, the dynawfigspopulation ofAedes albopictuga
species of mosquito) and its modelling with the Stochastilc@us of Looping Sequences (Stochas-
tic CLS) are considered. The use of Stochastic CLS to modeiljation dynamics requires an
extension which allows environmental events (such as amirgthe temperature and rainfalls) to
be taken into account. A simulator for the constructed méaldeveloped via translation into the
specification language Maude, and used to compare the dgsaimiained from the model with real
data.

1 Introduction

In the last few years many formalisms have been defined to himdiegical systems at molecular
and cellular levels[]3,19, 18, 22,123]. These formalismsvalimambiguous description of systems and
application of analysis tools, such as simulators and mcitetkers.

Among these formalisms the Calculus of Looping SequencésS) (3] seems to be applicable to
other classes of biological systems. CLS is based on termitirgy in which terms may represent simple
biological structures and compartments, and rewrite nulag represent very general events. Moreover,
a stochastic extension of CLS has been defined, called Sioci@ S [2], which allows the dynamics
over time of the described system to be studiedl[6, 7].

In this paper we deal with the problem of modelling populatsynamics with formal means of
computer science. Many aspects of population dynamicé asidirths, deaths and interaction of indi-
viduals, can be modelled by using Stochastic CLS. Othercispelated to environmental events, such
as changes in climatic conditions, require an extensiohefdrmalism. In this paper we define such an
extension and use it to model the dynamics of a populatiokeades albopictus

Aedes albopictugSkuse), or Asian tiger mosquito, is a species indigenotisg@riental region, but
it is now widespread in many countries throughout the wdtl an aggressive mosquito, which causes
nuisance and it is well known as an important disease vetjr [
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A simulator for the constructed model is developed via tegitn into the specification language
Maude [12], and used to compare the dynamics obtained frermthdel with real data.

There are a number of other approaches to the modelling aflatign dynamics with formal means
of computer sciencé& ][5, 110,20]. Barbatial.[5] extend P systems with features typical of timed automata
with the aim of describing periodic environmental eventshsass changes of seasons. Carderal. [10]
propose a modelling framework based on P systems and apjolyttie modelling of the dynamics of
some scavenger birds in the Pyrenees. McCaig, Norman amki8hd [20] present a process algebraic
approach to the modelling of population dynamics. With eespo these proposals we believe that our
approach allows a finer modelling of environmental eventarddver, thanks to the extensions of the
tools already developed for Stochastic CLS, it offers méanaccurate analysis of phenomena.

2 Stochastic CLS

Calculi of Looping Sequences (CLS class) is a class of fasma introduced in Milazzo’s PhD the-
sis [21] for modelling biological systems. The first fornsafi of the class to be defined, the Full Calcu-
lus of Looping Sequences (Full CLS) uses 4 operators: seqgrnparallel composition, looping and
containment. The parallel compaosition operator has thiedygemantics as in other formalisms such as
the -Calculus and Brane Calculi. Sequencing is inspired by #dugiential structure of several macro-
molecules such as DNA. The looping operator is always aghptigether with the containment operator
and supports the modelling of membrane-like structures.imdportant language of the CLS class is
Stochastic CLS, which supports the modelling of quantitatispects of biological systems such as time
and probabilities.

We start by introducing the syntax of sequences and terrasydhic building blocks of Stochastic
CLS.

Definition 1. Sequences S and Terms T are defined as follows:
Si=¢ | $S | a T =S | (T)LJT | TIT

wheree represents the empty sequence ardd. We denote the set of all terms wifi, and the set of
all sequences withy”.

We assume the existence of a possibly infinite set of symijolEhe parallel composition operator
| is used to model a mixture of elements. The application ofidbping and containment operator to
two termsT; and T, denoted by(Tl)L | T2, models structurd, within a compartment surrounded by
structureTy. StructureTl; is called thdoop partandT; is called itscontent part

The behaviour of a biological system is modeled by meansagttions between terms. This is done
by applyingrewrite rules that are described by twaatterns to be instantiated by terms, andade that
defines the frequency with which the rule is applied.

Definition 2. Let TV be an infinite set of term variables ranged over hy,X, ... Term Patterns TP
and Patterns P are defined as follows:

TPu=S | (P"|P | TP|TP Pu=TP | TP|X

where Xe TV. We denote witl¥” the set of all patterns. We denote with YRy the set of variables in
P.
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Definition 3. Aninstantiationis a partial functiono : TV — 7. We denote witk the set of all possible
instantiations. Given B &7, we denote with B the term obtained by replacing all variableseVar(P)
with g (X).

Definition 4. A rewrite ruleis a triple (R_,k,Pr), denoted with Bﬁ Pr, where P,Pr € &, ke R and
such that Va(Pr) C Var(R).

Definition 5. A biological system is a paifT,#), where T is a term representing the initial state of the
system and? is a set of rewrite rules that represent the potenéeéntswhich may occur in the system.

Interactions between populations in a biological or ecialalgsystem occur through some kind of
reactions, which may be biochemical reactions at moledelal or changes in organisms’ development
in ecosystems. To perform in silico analysis of a biologimakcological system, the behaviour of the
system must be simulateth(silico experiment The problem of simulating chemically reacting system
was stated by Gillespié [17]. We generalise Gillespie'srfglation of the problem to any biological or
ecological system as follows.

A volume or environmen¥ contains a mixture oN speciesS,...,Sy which can inter-
react throughM reaction channelsR,...,Ry). Given the initial numbers of individuals
(molecules or organisms) of each species, what will thegeillption levels be at any later
time?

Gillespie consider time evolution of a reacting system asréte and stochastic. In Gillespie’s Stochastic
Simulation Algorithm[16], the state of the system is repreasd by a vector = X (t) = (Xy(t),- -, Xn(t)),
whereX(t) represents the number & individuals inV at timet. Gillespie assumed that for every
reaction channeR;, there is a constamtj such that;dt is the average probability that a particular com-
bination of reactant individuals iR; will react accordingly in the next infinitesimal time intahdt. To
calculate the probability that a reactiBpwill occur inV in the next infinitesimal time intervat ¢ -+ dt),
we must multiplyc;dt by the total number of distinct combinations of individuails/ at timet that are
reactants oR;. Let us denote such number hy(x). Gillespie defines thpropensity function gx) for
reactionR; as the product ofi;(x) andc;j, such that;(x) dt is the probability that on&; reaction will
occur in the next infinitesimal time intervdl f + dt).

Gillespie defines a Direct Method to implement his StockaSimulation Algorithm [1FF]. This
version of Gillespie’s SSA is defined as follows.

Algorithm 1. Let {Ry,...,Ru} be a set of rewrite rulesxs,...,Xy be numbers oN categories of
individuals, maxtimebe the time limit for the duration of the simulation.

Step 0 Initialise simulation time to 0. Compute propensits; for every rewrite ruleR;.
Step 1 Compute the time incrememt

Step 2 Increase simulation timieby time increment.

Step 3 If t > maxtimethen stop. Otherwise select the next rule ingdiex

Step 4 Execute ruleR,, and update numbebs,, ..., Xy of N categories of individuals and propensities
g for all rewrite rulesR; affected by the application &, accordingly. Return t&tep 1

Gillespie showed in his pap€r [17] that the time when nexttiea occurs (time + T calculated at
Step 2 when reactioR, selected at Step 3 occurs) is exponentially distributett pétrametesg(x) =
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z{\":lai(x). Gillespie used a general Monte Carlo method calfwérsion methodo compute the expo-
nentially distributedr andu from two uniformly distributed random numbers as follows:

1 1
" a0 " ®
p-1 u
p =the integer for WhiChZ ay(X) < raap(x) < Z ay(x) (2)
v=1 v=1

wherery,r, are two real values uniformly distributed over intervalll0generated by a random number
generator.

In previous work Basuki, Cerone and Carvalhb [6] extendegoAthm[] to handle compartment
selection. This is useful when we have to simulate a biokggstem with multi-compartments as is
the case for molecular reactions occurring within cellsctSa modified version of the Direct Method is
described as follows.

Algorithm 2. Let {Ry,...,Ru} be a set oM rewrite rules,Xy,...,Xy be numbers oN categories of
individuals, maxtimebe the time limit for the duration of the simulation.

Step O Initialise simulation time to 0. Compute propensits; for every rewrite ruleR;.
Step 1 Compute the time incrememt
Step 2 Increase simulation timeby time increment.

Step 3 If t > maxtimethen stop. Otherwise select the next rule ingeand the inde)d of the compart-
ment in which ruleR,, will occur.

Step 4 Execute ruleR, in the compartment with inde® and update numbers,,..., Xy of N cate-
gories of individuals and propensitiesfor all rewrite rulesR; affected by the application d®,
accordingly. Return t&tep 1

Since reactions are confined within compartments, we neextémd Gillespie’s algorithm to choose
in which compartment reactioR,, should occur. LeC be the number of compartments axfl the
number of individuals of kin& in thei-th compartment. We defing = 3 ; X/.

Let a' be the propensity of reactidRj occurring inside thé-th compartment. Ther:\ij is defined as

the product ot; by the numbehij of distinct combinations of reacting individuals of reactR; within
thei-th compartment. We defirg = < ; aij. If t is the current simulaton time, thér- T represents the

time at which next reaction occurs, withexponentially distributed with parametay = zJM:laj. Time
incrementr is calculated as in Alghorithfal 1. The indgxof the reaction that occurs at tine- 7 and
the index8 of the compartment in which such reaction occurs are catedlas follows:

Hoo-1 .
(u,0) =the integers for WhiChz Zla < raag < Z Zalj (3)
i=

wherer; is a random real number which is uniformly distributed ovdéeival [0,1].

3 Extending Stochastic CLS

The evolution of a system modelled by using Stochastic CLént#ely characterised by the rewrite
rules, which determine the occurrence of events in the systin this way the set of rewrite rules
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predicts all events that may occur. This works well for biptal systems, where all events are caused
by biochemical reactions which are governed by precise.laws

In ecological systems, instead, we need to deal with enwieamtal events, whose cause is often un-
known or depends on a very complex combination of factorschvéire external to the system itself. For
example the dynamics of a population of a given species dispeot only on the interaction with other
species within the same ecosystem, such as predators,gméy®mpetitors, but also on the occurrence
of environmental events such as climatic events (i.e. trariaof temperature and rainfalls) and events
related to habitats (i.e. tree clearing, desiccation of gem@ontainer, pollution, hunting and human set-
tlement). Therefore, we assume the existence of a list @reat events, with information about the
time when these events occur. The occurrence of an extevaat emay modify some environmental
information which affects the ecosystem evolution, suckeagperature, volume of water, desiccation,
level of pollution. Moreover, the list of external eventsynthange dynamically. For instance, an initial
desiccation event for a water container will be removed ftbmlist after the occurrence of a rainfall
event, and will be replaced with a new desiccation event wititer desiccation time.

We extend Stochastic CLS by introducing a Esbf external events. The events in listare sorted in
increasing order based on the time they are scheduled to. Mtien an external event occurs it updates
information in the system state. The updated informatioy beathen used by rewrite rules.

In general, the environment is organised as several nestagartments, each associated with spe-
cific environmental information, which is relevant to theespic ecosystem we are modelling and may
be modified by the occurrence of external events. We furtkieme Stochastic CLS by attaching en-
vironmental information to the looping operator. This isgar to the extension of Stochastic CLS to
Spatial CLSI[4], in which spatial information is added to theping operator and sequence.

Definition 6. TermsT, Nonparallel Term&, Sequence$S andEnvironmental Information are given
by the following grammar:

To=C" | T|T Cu:=s | (T)
Si=¢ | a | SS li=A | a:v | Il

where a is a generic elementdf € represents the empty sequenteepresents the empty environmental
information, V represents the information value and N. We denote witly, ¢, . and .# the infinite
set of terms, nonparallel terms, sequences and enviromiiefdrmation, respectively.

Note that in Definitiol b we have introduced a notation to grimlentical nonparallel terms together.
For instanceC® is equivalent t«C |C |C|C | C.

Events in event lisE update environmental information in the system state. ¥Eglment ofE is
a triple (Ng, Ve, tg), whereNg is the name of the eventg is a value that will be used to update the
information field related to this event amg is the time at which this event is scheduled to occur. We
assume the existence of an event handler algorithm whidharnldle the update of the term representing
the system state due to the occurrence of an éWnitVe, te).

To run the simulation using the extended version of Stoah&itS, we need to modify the version
of Gillespie’s Direct Method [117] defined in Algorithfd 2. Inadelling population dynamics we have to
deal with the same problem we encounter at cellular levektrens occur in compartments. Therefore,
we extend the Direct Method for multi-compartments desctim Algorithm[2 with additional steps to
handle the execution of external events from the eventAiier computing the time of the next rewrite
rule, we need to compare this time with the time of the firsneue the list, and execute the event with
earlier occurrence time. We propose the modified versioniddMethod as follows.
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Algorithm 3. Let {Ry,...,Ru} be a set of rewrite rulesXy,...,Xy be numbers oN categories of
organismsE be a list of events anghaxtimebe the time limit for the duration of the simulation.

Step 0 Initialise simulation time to 0. Compute propensits; for every rewrite ruleR;.

Step 1 Compute the time incrememt Let (Ng, Vg, tg) be the first event fror with Ng the name of the
event Vg the value needed to update the system statdgatie occurrence time of the event.

Step 2 If tg < t+ 1 then set totg and then call the event handler algorithm to handle the nenteand
return toStep 1 Otherwise increase simulation tihéy time increment.

Step 3 If t > maxtimethen stop. Otherwise select the next rule ingeand the indeXd of the compart-
ment in which ruleR,, will occur.

Step 4 Execute ruleR, in the compartment with inde® and update numbers,,..., Xy of N cate-
gories of organisms and propensit@sfor all rewrite rulesR; affected by the application d®,
accordingly. Return t&tep 1

The event handler algorithm is specific to the external eveoturring in the system. This algorithm
updates system state and list of external events and redesihe propensities that have been affected
by the change of system state.

The simulation is affected by the propensity of every reswritle. Propensity depends on the number
of individuals in the population and the rule rate const&ixternal factors from the environment affect
propensity values. In general, we cannot associate a ridecomstant with each rewrite rule, because
the value of the rule rate depends on environmental infaomatvhich changes according to external
events. Since environmental information is incorporateterms, to model the rule rate we associate
with that rule a functionf ranging over terms.

Definition 7. Let TV be an infinite set of term variables ranged over by, X, ..., IV be an infinite

set of information variables ranged over byyyz, ... and NV be an infinite set of natural number vari-

ables ranged over by,gs,... Information Patterns IP, Term Patterns T P and Patterns PdeBned as
follows:

IP =1 | 1|x CPu=S | (T):‘PJP TP u=CP' | TP|TP Pu= TP | TP|X

where Xe TV xe IV and ge NV. We denote witl¥” the set of all patterns. We denote with \fay the
set of variables in P.

Definition 8. Theinstantiationis a partial functiono : TVUIV UNV — .7 U .# UN such thato (TV) C
J,0(lV)C .7 ando(NV) C N. We denote witlx the set of all possible term instantiations. Given
P e 22, we denote with B the term obtained by replacing all variableseXVar(P) with o (X).

Definition 9. Arewrite ruleis a 4-tuple (§, P, P, f), usually written as

[f A5 P

where £ : % — {true, false}, Var(R) C Var(R), and f: T — R=0.

The left pattern matches a portion of the term that modelsystem by using an instantiation func-
tion g € Z. This portion of the system must also satisfy the constfaimttion f; to enable the rule to be
applied. A rate functiorf associated with the rule will be appliedBpo. After the rule is appliedf. o
is substituted byro.

Definition 10. An ecosystem is a triplel, %, E), where T is a term representing the initial state of the
system,Z is a set of rewrite rules that represent the potentigkrnal eventsvhich may occur in the
system, and E is a list afxternal events
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4 Modelling the Population Dynamics ofAedes albopictus

We use the formalism developed in the previous section tcefeedes albopictupopulation dynamics.

4.1 Modelling Information about a Mosquito

We model each mosquito by using a looping and containmentatgrewith a parallel composition of
symbols representing information about the mosquito irctrgent part and a symbalin the loop part.
The information in the content part consists of the curretetbpment phase of the mosquito and an
indicator of whether the mosquito has sucked blood or notounapproach we only model females,
assuming equal numbers of males and females in the populdtichis way we do not need to model
gender in the information of a mosquito.

Aedes albopictugoes through 4 development phases in its life cycle: eggalgrupa, and adult.
The larval stage is divided into ifistars[8]. The adult stage is divided into @onotrophic cycle$l4].

A gonotrophic cycle is a cycle in the adult life which consisif three phases called Beklemishev
phases[[18]: search for a host and blood-feeding, digestiche blood and egg maturation, search
for a suitable oviposition site and oviposition. We use sglalkgg Larva, Pupaand Adult to denote
the 4 development phases. Since larva phase is divided intats, we use symbols 1, ..., 4 to represent
instars. Analogously, we use symboils 1, ..., 8 to represembtgophic cycles.

An adult mosquito needs blood before ovipositing eggs. Welehthis phenomenon by adding
symbol Blood to the content part of the looping and containment operagfinithg the mosquito to
represent an adult mosquito that has sucked blood. The nmuohfood symbols in the content part
indicates how many times that mosquito has sucked bloodinstance we represent 3 adult mosquitoes
at gonotrophic cycle 1 that have sucked blood twice and @a&aat instar 1 phase using the following
term:

((@)% | (Adult] 1| Blood?))? | ((a)t | (Larval| 1))°.

4.2 Modelling Compartments

In Stochastic CLS compartments are modelled by using lgepantainment operators. As we have seen
in Definition[@ compartments play an important role in ourra@gh, because environmental information
is attached to them.

Aedes albopictydike other species of mosquitoes, spends its immaturestagvater. In particular,
Aedes albopictuprefers to lay eggs outdoolis J11]. Its natural breedinggdare small, restricted, and
shaded water collections surrounded by vegetation. Innuaibeas, many man-made containers such as
tin cans, pots, tires and bottles are usually stored ousdand collect rainfall water, and thus become
ideal breeding place§ [15]. Adultedes albopictuseeds to suck blood before ovipositing. However,
Aedes albopictusnly sucks blood during daytime. Moreover, during immatstages, the duration of
the stage is affected by temperature while death rate istaffdoy population density. We can therefore
define an outermost environmental compartment (we cahiironment, with the value of average
daily temperature and daytime/nighttime as relevant enwirental information, inside which there are
several other compartments where immature mosquitoeg\eecall themcontainery. Population
density in one container is defined as the number of individirsside the container divided by the
water volume in the container. Therefore, relevant envirental information for a container includes
not only temperature but also water volume and desiccatima. t Typical external events are sunrise
and sunset, which determine switching between daytime aylitime, temperature changes, which
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affect desiccation time by reducing the volume of waterdaghe containers and, as a result, increases
population density, and rainfalls, which increase thelle¥&vater in containers where mosquitoes live,
so decreasing the population density.

Each kind of compartment has different environmental mmi@tion. The outermost compartment
is the environment, to which we need to attach informatioaualzurrent temperature and daylight.
Therefore, environment is modelled by a term

L
(E n)Tem PVremp DaylightVpayiight J (T )

whereVrempis a real number representing the current temperallisgigh: is @ boolean representing
whether it is daylight time andl is the term representing the populationfades albopictus

ImmatureAedes albopictusive in small containers, modelled by using looping-comtaént oper-
ators with symbolC inside the loop part. For each container we attach the faligvenvironmental
information:

 an index to identify each container, to be used for contasréection by Algorithnfil3;
« the volume of water inside the container, to be used to céenpopulation density;
* container temperature;

* three population density thresholds, to be used in the atetipn of death rates of mosquitoes
living in the container;

« container desiccation time.

If Nc is the number of containers in our model, we use natural nribél, Nc| to identify containers.
We model the volume of water in an abstract way by classifydgagtainers agull, hal f — full and
empty Population density thresholds, which are used to class#ypopulation density in a container
and set the death rates accordingly will be defined in SeBfi@n Desiccation, or decrease of water, in
a container is a process that depends on the charactefiigtie container. A desiccation time, which
measures how many days are needed to reduce the volume ofimateontainer, is assigned to each
container. Container desiccation time will be defined intida@.4. As an example, term

; e L
Containers ::= (C)indzl TemplO Vol:empty:100 ¢,:250 ¢3:300 DTime2.0 J € |

(& ime10 ] €
ind:2 Templ0 Vol: full ¢:50 ¢:125 ¢3:150 DTimel.0

defines two containers, one identified by number 1, with nceergtopulation density thresholds 100,
250 and 300, and desiccation time 2 days, and one identifieditmper 2, full of water, with population
density thresholds 50, 125 and 150, and desiccation timg.1 da

A population of immature and adultedes albopictusdividuals is modelled as a parallel composi-
tion of looping and containment operators, each with syntbwiside the loop part to model a specific
container and a parallel composition of looping and comt&nt operators (with symbalinside the loop
part) inside the content part to model the immature mosesitiving inside that container, and looping
and containment operators with symlaoinside the loop part to model the adédledes albopictusm-
dividuals living in open space. The whole population is tipem inside another looping-containment
operator with symboEn inside the loop part, which models the environment in whioh population
lives. In this way we model the environment in which a pogalatives as the outermost compartment
of the Stochastic CLS term that models the biological systémterest.
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Given the two containers defined above, a daytime envirohrea temperature of 20C with a
population of 8 adult mosquitoes at the first gonotrophidesys of which have sucked blood twice and
3 of which haven’t sucked blood, and 2 empty containers isxddfas follows.

Pop = (En)'ll_'emplo DayIight:trueJ (AdUItPOp’ Containers)

AdultPop ::= ((a)} | (Adult|1|Blood?))® | (a)} | (Adult|1))®

We assume that the temperature in all containers is the ssthe gemperature in the environment. Prop-
agations of temperature changes in the environment to thi@ioers are handled by the event handler
algorithm as we will explain in Sectidn4.4.

4.3 Modelling Internal Events

We have seen in Sectibn .1 that the lifecycldeties albopictusonsists of the following 14 stages: egg,
larva (instar 1-4), pupa and adult (8 gonotrophic cyclesjerhal events describe transitions between
some of these stages as well as other events occurring atiicptage. We identify 29 internal events
and we model the effect of each of them on the system by a eevuli:

Rule R1 egg hatch

Rules R2—R4 transitions between instars

Rule R5 pupation

Rule R6 adult emergence

Rule R7 blood sucking

Rules R8—R15 oviposition at each gonotrophic cycle

Rules R16—-29death at each stage of the life cycle (14 events)

Rules R1-R5, which model transitions between immatureldpreent stages, rule R6, which mod-
els the transition from the last immature development stadkee first adult stage, and rules R16—R21,
which model the death events in such stages, are shown ingElgu

The duration of an immature stage depends on temperaturie emghsured in degree-days. Degree-
days for each immature stage is defined as the number of dekeg for an individual in that stage to
develop at 1C above the minimum temperature for development (MTD) [Hlidwing this definition,
we define the values of temperature in the environmentatnmdtion as the difference between the actual
temperature and MTD.

If d; is the average duration of tlwth development stage, then the rate constant of the rulerogl
the transition from stageto the next stage is/t;. This is true if there are no other events occurring
during this stage. For every immature development stageefimedone rule for the transition to the next
stage and another one for the death event. Rate functiorimafwitions in immature stages and death
events are computed by multiplyingd; by survivability rate at-th stage and by death rateigh stage,
respectively. We assume that the sum of death rate and ahilitiy rate at one development stage is
equal to one. Since the duration of an immature stage depenigsnperature, the rate is then multiplied
by the difference between the current temperature and MTHe. death rate at an immature stage is
defined locally for each container and depends on the papuldensity of the container. We classify
the population density in a container into 4 classes of dgnsparse, normal, crowded and overcrowded.
We define 3 thresholds to be used to classify dengityg andgs. These three thresholds are part of the
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©k | (Y|@} | (Eggx)) 5 ©) | (Y](@)} | (Larval1]x)) (R1)
(©)% | (YI@)} | (Larval1|x)) ~2 (C)k(Y|(a)} | (Larva2X)) (R2)
(©)% | (YI@)} | (Larval2x)) 2 (©)k | (YI(a)} | (Larva3X)) (R3)
©)% | (YI(@)} | (Larval3x)) % (©)k | (YI(a)} | (Larval4|X)) (R4)
©)% | (YI(@) | (Larval4|x)) —= ()% | (Y|(@)§ | (PupdX)) (R5)
©)% | (YI@Y | (PupdX)) —% (©)% ] Y | (a5 ] (Adult1]X) (R6)
©X | (@)% | (EggX) |Y) -2 () | Y (R16)
©% ] (@) ] (Larva1|x) | Y) =2 )k | Y (R17)
©k | (@)% | (Larva2)X) | Y) 2% ©)k | ¥ (R18)
©k ] (@) ] (Larva3|x) | Y) =2 ©)k | Y (R19)
©% ] (@) ] (Larvad|x) | Y) 2 ©)k | Y (R20)
©)k | (@5 | (PupaX) |Y) 2 ©) | Y (R21)

Figure 1: Rewrite rules for the immature stage#\etles albopictus

environmental information attached to each container. ratefunctions for rules R1-R6 and R16—-R21
are computed as follows:

DD()

VrempDR(i—15n,W Vo Vo, Vo3)
DD(i—15)

(4)

{ VTemp(1—DR(i7n7VVO|7V¢l7V¢2,V%)) if | c [1 6]

if i € [16,21]

where
* i is the index of the rewrite rule,

* | =ind:k TempVremp VOI:Mioi @1:Vy @:Vy, @3:Vy DTIimeVprime is the environmental
information attached to the container to which rRlies applied,

Vremplis the container temperature,

DR(j,n,Wol, Vi, Vg, Vg,) is the death rate function at immature stgger the container which
containsn immature mosquitoes, with density threshot@sg,, @3 and contains a volumé,q of
water,

» DD(j) represents the duration of stagia degree-days.

We use 4 classes of population density (sparse, normal dewand overcrowded) to define death
rate in our model. We use the following assumptions for atitaimers:

« threshold values used to classify population density iordainer are defined for the case in which
the container is full of water,

* the baseline death rate of stége the death rate of the population in a container whose jtipul
density is normal,



28 Modelling the Dynamics of aAedes albopictu®opulation

» when population in one container is overcrowded or thermisore water in the container only
death events can occur, so the death rate is set to 1,

death rate increases by 20% above the baseline death paijgullation density is crowded,

death rate decreases by 20% below the baseline death pateulfation density is sparse,

» when a container is only half full, the values of threshalded to classify the population density
are divided by 2.

We define the death rate functi@R: N x N x & x N x N x N — R as follows:

1 if V is empty
1 if Vis full andn > ¢
. _J 12.BDR(j) if Vis fullandg <n< ¢
RNV 01, @, %) = | gpR(j) if V is full andgy < n< @ )
0.8-BDR(j) if Vis full andn< ¢

DR(j,2n, full, @, @, @) if Vishalf—full

whereBDR(j) is the baseline death rate for phasef the life cycle,n is the number of immature
mosquitoes in the containep;, @, @ are the container density thresholds ahi the volume of water
in the container.

The adult life of anAedes albopictuss divided into 8 gonotrophic cycles. Every gonotrophic cy-
cle consists of two internal events: blood sucking and aiijmm. The oviposition (the sixth internal
event) is also a transition from one gonotrophic cycle toribgt gonotrophic cycle. Figuild 2 shows
the rewrite rules modelling blood-sucking and ovipositevents. Ruld7 models the blood sucking by
adult mosquitoes. All adult mosquitoes have the same pifitlyatf sucking blood. We assume that a
mosquito always sucks a constant amount of blood. To ovipibsi amount of blood sucked by an adult
female must be above a threshold (representedl ilyrules R8—R15).

Rules R8—-R15 model the oviposition for the 8 gonotrophideyof the mosquito. We assume that
all adults die after ovipositing at the 8th gonotrophic eycfhe number of eggs any female can produce
in each gonotrophic cycle is between 45 and 80. This numbelimds over age. We model this by
defining functioneggs for each gonotrophic cyclgof the mosquito.

40 ifj=1 30 ifj=5
) oa7ifj=2 27 ifj=6
€00%)) =19 35 fj_3 25 ifj=7 (6)
32 ifj=4 22 ifj=8

Although the number of eggs produced by a female mosquiteegtth gonotrophic cycle is between 45
and 80,eggg j) only returns half of this value to take into account that wiy omodel female individuals.
Finally figure[3 shows rules R22—-R29, which model the deatvaty adult stage. Rule rates for
rules R7—R15 and R22—-R29 are defined as follows:
Tli) ifi=7

fi={ SRR ific(s 1y ©)

i ific[2229

whered(i) is the duration of stageandBDR(i) is the death rate at stage
All rules presented in this section are implemented by uslagde rewrite laws.
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ENSayighttrue x| (YI(@)Y | (AdultX|Bloodf)) -~
ENbayighttrue x| (Y1(@)% | (AdultX|Blood™L)) (R7)
(9> 8] (En)s | (Y](@)§ | (Adult2(X[Blood®)|(C)} | Z) % (En)k |

Y|(@)5 | (Adult2X)[(©)f | (ZI((@)5 | (EggX))®9esY) (R8)
9> é] En& Y|(@)} | (Adulti2[X[Blood)|(C)} | Z) ~2 (En)k |
(Adult|3X)[(C)} | (ZI((@)} | (EggX))®2) (R9)
Y|(a)} | (Adult/3X|Blood™)|(C)} | Z) 2% (En)t |
(Adultl4)X)[(C)} | (ZI((@)} | (EggX))®%) (R10)
Y@} | (Adulti4|X |Blood®)|(C)5 | Z) 5 (En)k |
(Adult/5X)[(C)} | (ZI((@)} | (EggX))®eY) (R11)
Y|(a)} | (Adult/5X|Blood™)|(C)} | Z) ~22 (En)t |
(Adulti6[X)|(C)} | (ZI((a)} | (EggiX))®99) (R12)
Y|(@)} | (Adult/6[X[Blood)|(C)} | Z) ~2 (En)} |
(AUIt7X)[(©)} | (ZI((@)} | (EggX))®9®)) (R13)
Y|(a)} | (Adult7]X|Blood™)|(C)s | Z) 2% (En)k |
(Adulti8[X)|(C)} | (ZI((a)} | (EggiX))®99s7) (R14)
Y|(@} | (Adultig|X|Blood)|(C)5 | Z) 25
Y)Y | (@)Y | (Eggx))*9es®) (R15)

e N T e B TR T T )

Figure 2: Rewrite rules for blood-sucking and ovipositimerts ofAedes albopictus

4.3.1 Implementation Strategies

Since we use Maude to implement our model, which mosquithiésen in the application of rule R7
depends on the strategy implemented in Maude. To guaraaiteeds we implement our own strategy
in choosing the mosquito with the smallest number of bloakisig times first.

All adult mosquitoes in a given development stage that haekexd enough blood have the same
probability of ovipositing. Therefore we consider one ride each development stage (rules R8—R15).
We have to deal with the same problem (of choosing the mastudaviposit) as in rule R7. To guarantee
fairness we define a strategy of choosing the mosquito, basdtbw many times the mosquito has
sucked blood. As a consequence of the strategy defined ®rRidlthe number of times a mosquito
sucks blood is proportional to the time spent in adult sta@as strategy will choose the mosquito with
the biggest number of blood sucking times of ovipositing firs

We also implement a strategy for choosing the container isiwé mosquito oviposits. This strategy
randomly chooses the container in which the mosquito ovgos

The three strategies we have defined in this section havéeaatif purpose from the strategy defined
by Basuki, Cerone and Milazz6l[7], which was used to choositwrewrite rule to apply during a
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(Enk | (YI@) | (Adult1[X)) =2 (En) | Y (R22)
(Enk | (YI(@)F | (Adult2[X)) 2 (En) |'Y (R23)
(Enk | (YI(@)§ | (Adult3[X)) -2 (En) | Y (R24)
(Enk | (YI(@)§ | (Adult4[X)) -2 (En) | Y (R25)
(Enk | (YI(@)§ | (Adult5[X)) =2 (En)t | Y (R26)
(Enk | (YI(@)§ | (Adult6[X)) -2 (En) | Y (R27)
(Enk | (YI(@)§ | (Adult7[X)) 2 (En); | Y (R28)
(Enk | (YI(@)§ | (AdultgX)) -2 (En)t | Y (R29)

Figure 3: Rewrite rules for death events in adult phaseseales albopictulfe cycle

simulation. Instead, the strategies defined in this se@ienused to choose which portion of the term
that models the system state matches the lefthand side ofrgereule.

4.4 Modelling External Events

External events are events that cannot be controlled byytern. These events are usually used to
model changes in the environment that affect the populaiwery event is modelled as a tripigd, V1),
where the event nani¢ is used to distinguish the kind of event, the event value used to update the
environmental information in the system state and the direet is the time when the event is scheduled
to occur. Event names and values will be explained in the papeigraphs. Event tinteés a non-negative
real number and measures time in days. The integer pantegfresents the day and the fractional part
represents the time of the day at which an event should oEcuiinstancd = 1.5 means that the event
is scheduled to occur on day 1 at 12 pm, &r8d4.125 means that the event is scheduled to occur on day
4 at 3 am.

As explained in Sectiofi 4.2, for each container there arerskinds of environmental information
in our model: container index, container temperature, mewf water in the container, three container
thresholds for population density and container desiondime. External events must deal with these
kinds of environmental information. We define four kinds wéet: light change event, change of tem-
perature, desiccation, and rainfall. Light change evergssaheduled twice a day, one at sunrise and
another at sunset.

A sunrise event changes tiaylight information associated with the environment frdalseto
true. A sunset event changes tBbaylight information fromtrue to false A change of temperature
event updates temperature in all compartments. A desiccatrent updates the volume of water in a
specific container. A rainfall event updates the volume daiewan all containers. Container indices are
used by the event handler algorithm to handle all eventsabedr. Population density thresholds are
used to compute propensity after population density in @mainer is updated due to the occurrence of
a desiccation or a rainfall event. Container desiccatiore tis used to schedule new desiccation events
due to the occurrence of a desiccation or a rainfall event.

A light change event is modelled as a tripleight,V,t). The time when the sun rises and the time
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when the sun sets depend on the position of a place on the aadtthe time of the year. Valué
determines whether the event is sunrige={ sunrisg or sunset\{ = sunse} event. For instance in a
place where in a winter day the sun rises at 8 am and sets atth@munrise event on day 1 is modelled
as a tripletLight, sunrise1.33) and the sunset event on the same day is modell€dglst, sunset1.71).

Temperature affects the duration of immature phases of tsgjnito development. We model a tem-
perature change as a tripldiempVremp t), which is interpreted as the event of setting the tempegatur
to a new valué/rempstarting from timet. We consider only the average daily temperature. We scaedul
one temperature change event every day at midnight. Sdettfiiemp10,3.0) means that the average
temperature on day 3 is 10 above the MTD ofAedes albopictus

The desiccation event is modelled as a trigl@esici,t) which is interpreted as a desiccation in the
container with index at timet. We assume that the desiccation time depends on contaiperatyd
measure this time as the number of days needed to reduce thewshume by one level (fronfull to
hal f—full or from hal f—full to empty. Initially, we introduce one event for each container 8t Li
scheduled according to the desiccation time of the containehich it refers. Every time a desiccation
event occurs and the container is not yet empty, anothecad®in event is scheduled to reduce the
water volume to the next level. For instance, if the systeateds represented as:

(En)l_ J ((C)h]d:l Vol:empty DTime.0 I/ J T ’(C)ilﬁd:Z Vol:full DTimel1.51” J T”)

wherel,|” andl” represent part of environmental information which is n@vant for desiccation events,
T', T" are terms representing population of Aedes albopictusénsbntainer 1 and 2, respectively, and
the first event in lis€ is (Desic 2,1.0), then at time 1.0 the system state becomes

(En)ll_ J ((C)il?ldzl Vol:empty DTime.0 I J T |(C)=?1d:2 Vol:hal f—full DTime1.5 1” J T”)'

The eventDesic 2,1.0) is removed from and a new desiccation evd@sic 2,2.5) is added to lisE.

In our model we only consider containers stored outdoorghignway, rainfalls are scheduled events
that increase the water volume level in all containers. faliinare assumed to be prescheduled initially.
Every time a rainfall event occurs, all desiccation everagehto be removed from the list and new
desiccation events should be added. We classify rainfalteavyandlight. A heavy rainfall increases
the water volume level of all containers fall. A light rainfall increases the water volume level of all
containers fromemptyto hal f—full or from hal f—full to full. The rainfall event is modelled as a
triplet (Rain lev;t) which represents a rainfall event with level (heavyor light) starting at time. For
instance, if the system state is represented as:

(En)ll_ J ((C)il?ldzl Vol:empty DTime.0 I/ J T ‘(C)Eﬁd:z Vol:hal f—full DTimel1.51” J TN)

and listE contains three eventRainlight,1.25), (Desic 2,1.5) and (Desic1,2.0), then at time 1.25
the system state becomes

(EN) J ((C)ing:1 vorhalf—full oTimezo 1 ] T’ 1(C)ind:2 vor: full imers 17 | T”)

The three events are removed from the list and two new déiiocavents(Desic2,2.75) and
(Desic 1,3.25) are added to the list.

The event handler algorithm is very simple. Given aHigif eventsNc containers and a terifi that
represents the system state, the algorithm removes thevest(Ng, Ve, te) from E and performs the
different actions decribed above according to the valug:of {Light, TempDesic Rain}. The removal
of the first event from the list and the subsequent actiongvgkemented by using Maude rewrite laws.
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Figure 4: Temperature and Rainfall in Massa Carrara, Italy

4.5 In silico Experiment and Analysis

As already mentioned, we have implemented our model in MabMde have then run a simulation by
using data collected during May—November 2009 in the pia®iof Massa-Carrara (Tuscany, Italy) in
11 CO, mosquito traps. The 11 traps have captured a total of 2&8%es albopictusndividuals, and
have been checked at the following dates: 8 May (4 Aedes@aldy (25 Aedes a.), 19 May (81 Aedes
a.), 5June (33 Aedes a.), 18 June (167 Aedes a.), 3 July (366sfee), 14 July (561 Aedes a.), 29 July
(381 Aedes a.), 19 August (486 Aedes a.), 3 September (47&sA&(, 19 September (276 Aedes a.),
23 September (292 Aedes a.), 14 October (398 Aedes a.). hattéraps need to be charged wld,

in order to work, and that the charge allows the trap to workofte day. Hence, data refer to captures
of mosquitoes in one day for each considered date. This wagrapling mosquito populations follows
standard practice.

Figure[4 shows the climatic data (temperature in °C and alnfn mm) during May—November
2009 in Massa-Carrara province. In our simulation we u8e@as MTD [24] and 11 containers. Each
container has carrying capacity of 100—250 organisms asidaiion time between 4.5 and 9.0 days.

In our simulation we initialise the population with 4 adulbsguitoes (which equals the number of
adult mosquitoes collected on 8 May 2009) and 10 immaturegmittses in each of the 11 containers,
6 eggs, 2 instar-1 larvae, 1 instar-2 larva and 1 instara&lafhe water volume level in each container
is initially set to half-full. We also set initial desiccati events according the desiccation times of the
containers. Letg be the time when the simulation starts db@ be the desiccation time of container
identified by index, then we set initial desiccation events at titpe- DT; for i = 1 to 11.

Figure[® shows the result of our simulation compared withpihyeulation sampling produced by us-
ing the 11 traps. We can notice some differences betweernirthdagion results and the field sampling.
For example, the number of mosquitoes in the sampling deesdaetween 19 May and 5 June, whereas
in the simulation such number rapidly increases. This grlgbhappens because of the coarse classifi-
cation of rainfalls in our model: a very tiny rainfall, witheglectable effect in reality, which occurs just
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Figure 5: Comparison of in silico simulation (dark line) Wwidata sampled from mosquito traps (light
line)

before 19 May, is classified as light rain and, as a resulteases the level of water of the containers in
the simulation. This may indicate that we need to improvernadel by using a finer classification of
rainfalls.

The number of mosquitoes captured in traps rapidly inceeisen 18 June to 14 July, probably due
to rainfalls. However, no population growth is shown by timdation during that period. This may be
due to an overweighed effect that temperature decrease bas model on immature stage duration and
death rates. It may also be due to too small values for deagsidames used in our model.

In the simulation the effect of the heavy rainfalls that acitist before 19 September immediately
causes a population increase on 23 September, but the sebsatpcrease in rainfalls and heavy de-
crease in temperature lead to a population decrease on dbhedcin the field sampling, instead, pop-
ulation samples keep increasing from 19 September to 14b@ctd his difference might indicate that
decrease of rainfalls and temperature take a longer timeality to affect the population growth than
in our simulation. This might be again due to too small valieesiessication times used in our model.
Moreover, a decrease in temperature might cause a slowiecdtsn, a phenomenon that is not consid-
ered in our model.

5 Conclusions

We have presented an extension of the Calculus of LoopingeS®gs aimed at describing population
dynamics and ecosystems. The extension consists in atjoavirst of external events to be provided
by the modeller in order to describe environmental eventh $15 changes in the climatic conditions.
The modeller has also to provide an event handler algorithathis used by the simulation algorithm
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associated with the extended formalism. The event hantfjeritom is invoked every time an external
eventis planned to occur and it changes the simulationistatecordance with the type of the considered
event.

We have used the extended formalism to give a model of a pogulaf Aedes albopictysan ag-
gressive mosquito that is well known as an important diseasw®r. A simulator for this model has been
developed via translation into the specification languageidié. We have compared results of simula-
tions of our model with real data obtained from the samplifignosquitoes during May-November 2009
in the province of Massa-Carrara (Tuscany, Italy). Sin@nges in the temperature and rainfalls have a
significant effect on the mosquito population dynamics, wechexploited data on such environmental
events (in the same area and the same period of the samplingsofuitoes) to construct a list of external
events for the model.

The results of our simulations show some differences fragrrélal data. However, these differences
seem to be motivated by some restrictive modelling choltaisdould be revised in order to construct an
improved and finer model. Improvements to the model are heactef our future work, which includes
also

» modelling of populations of other disease vector mosgustech ag\edes aegypti
« study of dynamics of populations in other geographic greas
« study of different control policies to the mosquito popida.

It would be particularly interesting to study the effectsegénts such as periodic cleaning of containers
and use of pesticides on the mosquito population to cho@sentist promising control policy. Such a
policy could then be experimented in the field, and the resabitained could be used to further validate
the model. A method to choose the best mosquito populatiotraopolicy would be of interest in
particular in those areas in which such mosquitoes act dergeaf diseases.
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We define an individual-based probabilistic model of a sole (Solea solea) behaviour. The individual
model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA), a new
formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision
process. A given EPDTA model can be probabilistically model-checked by giving a suitable transla-
tion into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given
population of soles in different environmental scenarios, an agent-based simulation environment is
defined in which each agent implements the behaviour of the given EPDTA model. By varying the
probabilities and the characteristic functions embedded in the EPDTA model it is possible to repre-
sent different scenarios and to tune the model itself by comparing the results of the simulations with
real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon.
The simulator is presented and made available for its adaptation to other species.

1 Introduction

Ecosystems are composed of living animals, plants and non-living structures that exist together and
interact with each other. Fish are part of the marine ecosystem and interact closely with their physical,
chemical and biological environment. They are inter-dependent with the ecosystem that provides the
right conditions for their growth, reproduction and survival. Conversely, they are a source of food for
other animals and form an integral part of the marine food web.

The fishing activity impacts both on the fish stocks and on the ecosystem within which they live.
The Ecosystem Approach to Fisheries (EAF) [17] recognises that fisheries have to be managed as part
of their ecosystem and that the impact on the environment should be limited as much as possible. Part
of this approach is the fish stock assessment. A “stock” is a population of a species living in a defined
geographical area with similar biological parameters (e.g. growth, size at maturity, fecundity etc.) and
a shared mortality rate. Its aim is to provide information to managers on the state and life history of
the stocks. This information is used into the decision making process. Stock assessment can be made
using mathematical and statistical models to examine the history of the stock and to make quantitative
predictions in order to address the following questions: 1) What is the current state of the stock? 2)
What has happened to the stock in the past? 3) What will happen to the stock in the future if different
management choices are made? Fisheries employs a wide variety of recognised assessment models and
statistical methods to assess the stocks of fish. If we know about the stock size (biomass) and the biology
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of the fish stock, we can estimate how many fish can be safely removed from the stock in order to ensure
a sustainable resource.

Using the data from a recent research project [[15, [16] on the common sole (Solea solea), it was
possible to obtain new information on the biology of this fish. These data are the input of mathematical
models based on equations determining the stock assessment of this species. This makes possible to
regulate the fishing effort in order to avoid overfishing. In this work we want to introduce a somewhat new
way of addressing fish dynamic population modelling and fish stock assessment. The main characteristic
of our approach is that it is individual-based, that is to say, every single individual of the population under
study is considered as an independent entity and the dynamics of the overall population living in a given
environment emerges from the individual interactions and behaviours. Every aspect of the population
can then be observed and measured in a simulation environment. This last aspect permits the tuning and
the validation of the individual model by using existent experimental data.

Since systems biology was proposed as a challenge of a new way of understanding biology, it has
involved biologists, physicians, mathematicians, physicists, computer scientists and engineers. In par-
ticular, in the computer science community a lot of models, languages, approaches and methodologies
have been applied in a biological context, and several formalisms have been specifically developed for
describing different aspects of biological systems. In [7]], authors extend P systems with features typical
of timed automata with the aim of describing periodic environmental events such as seasons or periodical
hunts/harvests. In [[13] it is proposed a modelling framework based on P systems and it is applied to the
modelling of the dynamics of some scavenger birds in the Pyrenees. This model considers information
about the feeding of the population. In [6], a spatial extension of P systems is introduced and an example
of the evolution of ring species, based on small changes between geographically contiguous populations,
is modelled. Authors of [25] present a process algebraic approach to the modelling of population dynam-
ics. Currently no time characterisation can be provided of the modelled biological environment because
the calculus has not a notion of time. Stamatopoulou et al. provide, in [28] and [29], models based
on X-machines and P systems for biological-inspired systems such as colony of ants or bees, flocks of
birds and so on. Besozzi et al. [10] model metapopulations (which are ecological models describing
the interactions and the behaviour of populations living in fragmented habitats) by means of dynamical
probabilistic P systems where additional structural features have been defined (e.g., a weighted graph as-
sociated with the membrane structure and the reduction of maximal parallelism). Such a work effectively
uses many regions to model an ecological system, thus it really exploits the advantages of the membrane
structure. In [18]] authors model the behaviour of a bee colony as a society of communicating agents act-
ing in parallel and synchronising their behaviour. Two models are provided: one is based on P systems
while the other is based on X-machines but no tool, thus no actual results, are available to compare the
behaviour of the two models. Finally, in an older work of Bahr and Bekoff [S]] authors model a flock
in terms of cellular automata; although interesting, theirs work concentrates only on the vigilance of the
flock and how it is affected by internal and external factors (such as flock size, number of obstacles and
SO on).

The individual-based vision is quite natural in the computer science world, since notions such as
process, component, activity, flow, interaction all can be easily related to an executor or a virtual entity.
When adapting these notions to a biological scenario it is natural to reason in terms of entities that
“do something” and probably collaborate to make the whole system function well. On the other side,
biologists have often a view that abstracts from single entities preferring to reason in terms of aggregated
variables, for which a continuous domain can be adopted and that are related by differential equations
(ODE, PDE). Consequently, the available data from observations and experiments follow this way of
thinking and are not directly interpretable in an individual-based setting. To bridge the gap there is the
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Figure 1: A simple EPDTA.

need to develop methodologies and software systems that make the two worlds interact and somehow
work in synergy to transport the advantages of each view into the other and vice versa.

In this paper we define a formalism called Extended Probabilistic Discrete Timed Automata (EPDTA)
that is a variant of probabilistic timed automata [23]]. It simplifies the time domain, that is discrete, but
introduces integer and boolean variables in the state. The formalism is shown to be interpretable as a
Markov decision process and also easily translatable to a syntax that is accepted by the probabilistic
model-checker PRISM [20, 22]. A model of the behaviour of the common sole (Solea solea) living
in the North Adriatic sea is then given in terms of an EPDTA by using available data from a recent
project [15, [16]. After the individual behaviour is defined we introduce a simulation environment that
is agent-based and derives from the one developed in [26]. Essentially, it creates a Multi-Agent System
(MAS) in which every agent represents a sole whose internal (probabilistic) behaviour is given by the
individual model. The MAS permits a precise monitoring of all the events occurring in the virtual square
kilometre of sea that is simulated. The simulator, called FIShPASs (FIshing Stock Probabilistic Agent-
based simulator), is available [2]] and easily adaptable to simulate other species.

The paper is organised as follows: Section 2] defines EPDTAs and gives their semantics as a Markov
decision process. Section [3] shows a particular EPDTA representing the individual behaviour of a sole
living in the North Adriatic sea. Section [] introduces the simulator as a MAS in which each agent
implements the individual probabilistic behaviour described in Section |3 and shows the preliminary
simulation results that have to be tuned/validated using the real observation data available form the
SoleMon project. Section [5|concludes, describing some future work.

2 Extended Probabilistic Discrete Timed Automata

In this section we introduce EPDTAs, a variant of probabilistic timed automata that we need for our
purpose. We then show that an automaton of this kind can be interpreted as a Markov decision process
and that can be translated easily into one handled by the model checker PRISM [20, 22]].

Briefly, a timed automaton (TA) [4] is an automaton equipped with real-valued clock variables and
such that transitions are guarded by clock constraints. The control flows from a state to another instanta-
neously if and only if the guard of that transition is enabled. Each transition has an action associated and
can reset some clocks. While the control stays in a state, time elapse i.e. clock values increase. Possible
conditions in states, called invariants, can prevent the passage of time forcing the control to exit from
that state with one of the enabled transitions.

Following the approach of [[11]], probability has been introduced into timed automata yielding prob-
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abilistic timed automata (PTA) [8, [23]]. In this case every transition from a state has a clock constraint as
a guard, but then the action, reset and destination state is given by a finite probability distribution. Thus,
every step of a PTA consists in a resolution of non-determinism among different enabled transitions, pas-
sage of time included, followed by a probabilistic choice of the action, reset and destination according to
the given distribution.

An EPDTA is essentially a PTA with the set N of natural numbers as time domain and in which
the locations are enriched with a finite set of boolean and finite-range integer variables. Clocks, that
are considered similar to integer variables with range [0, o], grow at discrete steps of length 1. We also
add a subset of actions that are called urgent and that must be executed as soon as they are enabled.
The motivation of these variants are essentially given by the peculiarities of the models of individuals in
ecosystems: their state-changes are typically modelled in terms of transitions that happen at a time scale
of years, months and, in the finer grain, weeks. Thus, there is no need of continuous time. Moreover,
each individual has some characteristics, e.g. age, sex, length, weight, fertility, last time of reproduction,
etc. that are easily representable by integer (with finite range) and boolean variables and that influence
its behaviour. Last characteristic of this meta-model is a constant MAX_TIME € N that represents the
maximum number of time steps that the automaton can perform. This means that each clock has, actually,
arange [0, MAX_TIME]. Since this constant can be chosen arbitrarily large, this requirement does not limit
the generality of the meta-model both if it is used in a simulation environment and if it is used for model
checking. On the other hand it permits to give a finite range to all variables of the model, clocks included.

Now we define in detail the syntax and the semantics of EPDTAs. This part is quite technical and
can be skipped by the non-familiar reader. Section [3|will present the model of the Solea solea behaviour
as a particular EPDTA that can be quite intuitively understood even without knowing all the technical
details. The idea of clock variables is central in the framework of timed automata and it is imported in
our meta-model. A clock is a variable that takes values from the set N. Clocks measure time as it elapses,
all clocks of a given system advance at the same pace and clock variables are ranged over by x,y,z,...
We use X, X', ... to denote finite sets of clocks. A clock valuation over X is a function assigning a natural
number to every clock. The set of valuations of X, denoted by Vy, is the set of total functions from X to
N. Clock valuations are ranged over by v,V’,.... Given v € Vx and n € N, we use V + n to denote the
valuation that maps each clock x € X into v(x) + n.

Clock variables, like other variables, can be assigned during the evolution of the system when certain
actions are performed. The assignment consists in instantaneously set the value of a variable to a new
value. Clock variables are always assigned to 0, i.e. they are reset. Immediately after this operation a
clock restarts to measure time at the same pace as the others. The reset is useful to measure the time
elapsed since the last action/event that reset the clock. Given a set X of clocks, a reset 7y is a subset of X.
The set of all resets of clocks in X is denoted by 'y and reset sets are ranged over by 7,7, ... Given a
valuation v € Vy and a reset , we let v\ y be the valuation that assign the value 0 to every clock in y and
assign v(x) to every clock x € X\y.

We need also to consider a finite set B of boolean variables, ranged over by b,b’, .. ., a finite set I of
integer variables, ranged over by v,V/, ..., together with a range assignment function range : [ «+ Z X Z
such that if range(v) = (z1,22) then z; < z». Finally, we need a finite set F of totally specified functions,
ranged over by f, f’,..., that we use as tables in which constants values are collected and where then
they can be retrieved by applying each function to values in its domain (essentially they are tables of
probability values or array of constants). Such tables can contain rational numbers. If they are involved
in integer operations they are rounded to the closest integer.

The grammars introduced in the following define the syntax of a first-order language in which very
usual functions and relations are present. The language can express boolean and arithmetic expres-
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sions. Moreover, we define a syntax for expressing assignments to variable of corresponding type, clock
constraints and guards. Bexp ::= 1t | ff | b | Bexp A Bexp |~ Bexp | Aexp = Aexp | Aexp <= Aexp |
Aexp < Aexp | (Bexp), Aexp ::= z|v| f(Aexp,Aexp, )P_-I | Aexp + Aexp | Aexp x Aexp | Aexp — Aexp |
Aexp/AexA?] | Aexp%AexﬁfH (Aexp) where z € 7. Assignments are of the form Assign ::= b < Bexp |
v« Aexp | Assign,Assign. Boolean expressions are ranged over by f3, B, ..., arithmetic expressions are
ranged over by o, ¢, ... and assignments are ranged over by 17,7’, .. .. The timed behaviour of the system
is expressed using constraints on the actual values of the clocks. Given a set X of clocks, the set Wx of
clock constraints over X is defined by the following grammar: y ::= frue | false | x#c | x—y#c| WAy
where x,y € 2, c € N, and # € {<,>,<,>,=}. Finally, guards, ranged over by g,¢’,... are defined
as Guard ::= y | Bexp | Guard N\ Guard. As usual, we use the name of the syntactic category to de-
note the set of the generated objects. Thus, for instance, Guard represents the set of all strings that are
well-formed guards.

Given sets B, I, we define an interpretation t as a function assigning a value to every variable in B and
1. By means of an interpretation 1 we can evaluate a boolean expression f3 or an arithmetic expression o
in the standard sense; we denote with & (f3) the boolean value of 8 and with &, () the integer value of
o both using the interpretation 1. Moreover, we can define a satisfaction relation = such that v = v if
the values of the clocks in v satisfy the constraint y in the natural interpretation. Finally, the satisfaction
relation can be extended naturally on guards: 1,V = g.

An assignment 7 is evaluated as a change in the interpretation 1. We denote with 2/ (1,7) a new
interpretation 1’ in which the variables that are assigned in 1 are allﬂ changed with the corresponding
values, evaluated from 1 in the above sense.

Given a set H let us denote by p(H) the set of finite probability distributions over H i.e. u(H)
contains functions p: H — [0,1] such that ;.5 p(h) = 1 and the set {h € H | p(h) > 0} is finite. A
probability distribution p can be represented as follows: p = [h; — py,...,h, — p,] where the h;’s are
exactly all elements of H that have p(h;) = p; > 0.

Definition 2.1 (EPDTA). An extended probabilistic discrete timed automaton 7 is a tuple
(0,X,B,1,X,E,U,qo,10,Inv), where: Q is a finite set of locations, ¥ is a finite alphabet of actions, B
is a finite set of boolean variables, I is a finite set of finite-range integer variables, X is a finite set of
clocks, K is a finite set of edges, U is a finite set of urgent edges, qq is the initial location, 1y is the initial
interpretation of the variables of BU I, MAX_TIME is the maximum time of evolution and Inv is a function
assigning to every g € Q an invariant, i.e. a clock constraint Y such that for each clock valuation v € Vx
and for each n € N°°, v 4-n |= w = v |= y. Constraints having this property are called past-closed.

Each edge e € EUU is a tuple in Q X Guard x [1(X X Assign X £(X) x Q). If e = (q,g, prob) is an
edge, q is the source, g is the guard and prob is the distribution. If prob((a,n,v,q’')) > 0 then there is
a possibility for the automaton to reach the target location q' performing the action a, the assignment 71
and the reset 7.

Figure[I|shows an EPDTA with three locations /0,/1,/2. The set of clocks is {x}, the alphabet is {a},
[0 is the initial state, and the invariant of state /0 is x < 2. There is an edge starting from location /0 with
a guard that is the conjunction of the clock constraint x > 1 and the boolean expression ~ b, where b € B.
At the edge it is associated a distribution [(/1,a,€,{x}) — 0.7,(12,&,b < tt,{}) — 0.3], where € is the

! According to what said above, this can be considered a constant. Of course the arguments of the function must be of the
right number and of the right type.

ZInteger division.

3Rest of integer division.

4Note that we suppose that 17 does not contain more than one assignment for each variable.
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Figure 2: EPDTA representing the behaviour of the sole when it is in class i. The other classes are equal.

PrR(t — lastB)

empty string. From /1 there is an edge in which the probability distribution is trivial. This transition is
equivalent to a “classical” one.

The semantics of an EPDTA is a Markov decision process. A Markov decision process (MDP) is a
pair (8,Steps) where S is a set of states and Steps is a function giving for each state s a set of probability
distributions. Each p € Steps(s) is a discrete probability distribution in p(8), saying the probability of
each state of being the next state s” in the process. A given MDP evolves as follows: at each step it is
in a state s. Firstly it performs a non-deterministic choice to decide which distribution p € Steps(s) it
will apply. Then it performs a probabilistic choice to go to a new state s” according to the chosen p. The
process then cycles again.

The semantics of T = (Q,%,B,1,X,E,U,qo,19,Inv) is a MDP (S,Steps) where the set of states S is
the set of all the tuples of the form (g, Vv,1) where ¢ € QU {stop}ﬂ, Vv € Vxy(y) 1s a valuation of the set of
clocks X augmented with a fresh clock ¢ that is never reselﬂ and 1 is an interpretation of the variables in
BUI. Note that if we fix a MAX_TIME as the maximum time step for the system evolution then the set of
states if finite as Q is finite and all variables, clock included, have a finite range.

For every state s = (g, v, 1) the set of distributions Steps(s) is determined by the following rules:

Stop if v(r) = MAX_TIME then [(stop,V,1) — 1] € Steps(s)

Time if v+ 1 = Inv(q) and v(r) + 1 < MAX_TIME and (V(q',g¢’,prob’) e U(¢' = q=1,v £ ¢')) then
[(g,v+1,1) — 1] € Steps(s)

Urgent if v(r) # MAX_TIME and (¢, g, prob) € Uand 1,V |= g then [(¢},v\n, < (1,m)) — p1,...,

(Q:l7v\’}/l’la'52{(l7nn)) = Pn] S Steps(s) where P”Ob = [(ahnla’}/laq/l) ’_)pla"w(an)nna’ynaq;l) =
Pn]

5The fresh location stop is added to terminate the activity of the automaton when the maximum time is reached.
OThis clock is needed to count the global elapsed time.
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Non-Urgent if v(¢) # MAX_TIME and (q,g, prob) e Eand 1,v =g and (V(¢', g, prob’) e U(¢' = q =
L,V = g)) then [(¢1,v\n,«(1,m)) = pi,--s (@ V\ ¥, @ (1,M0)) — pa] € Steps(s) where
prOb: [(alanlaylaqll) lea"'v(anvnnaynaQLL) *_)pn}

When rule Stop is applicable then no other rule is applicable. The process goes unconditionally to
the stop location in which it stops. Rule Time lets one time unit to elapse, provided that the invariant of
the current location will be satisfied at the reached state, that the maximum time was not reached and that
no urgent transitions (i.e. that do not permit time passing) are enabled. Rule Urgent inserts in Steps(s)
all possible distributions that derive from urgent transitions. Note that in case of more than one urgent
transitions enabled all are inserted in Steps(s) and thus a non-deterministic choice is done among them
by the MDP. The resulting distributions are essentially the same of the original automaton, but here all
the operations are performed on the clocks and on the variables to calculate the resulting state. The last
rule Non-Urgent is applicable only if there are not urgent transitions enabled. The effect is the same of
the urgent case and among different enabled non-urgent transitions a non-deterministic choice is done by
the MDP.

Proposition 2.2. Given an EPDTA T and a natural number MAX_TIME it is possible to construct a
Markov decision process 11 in the syntax readable by the model checker PRISM such that 11 and the
semantics of T are the same Markov decision process.

We plan to provide an automatic tool for this translation inside our simulator FIShPASs (see Sec-
tion[4.3)). This is very important because having the PRISM equivalent model improves the tests that the
biologists can do against the probabilities put in the model itself. This is because quantitative questions
can be asked to the model checker to test hypothesis made about the model or to validate it with available
real data. A very powerful and useful logic language, Probabilistic CTL (PCTL) [20} 21]], is suitable for
expressing such questions.

3 Sole Characteristics and Behaviour: an EPDTA Model

The body of the common sole (Solea solea) is egg-shaped and flat [1, |16} [12]]. The maximum body height
is equal to 1/3 of the total length. The eyes are on the right side, the upper one slightly anterior to the
lower. Both pectoral fins are well developed, the left one being somewhat smaller than the right one.
The dorsal fin begins anterior to the eyes, by the mouth. The last rods of the dorsal and the anal fins are
connected to the caudal fin, which is round. The colour on the eyed side of the body is greyish-brown to
reddish-brown, with large and diffused dark spots. The pectoral fin has a blackfish spot at its distal half.
The posterior margin of the caudal fin is generally dark. This common sole species lives in the eastern
Atlantic, from Scandinavia to Senegal and in the entire Mediterranean. It is rare in the Black Sea.

Here we present an individual model of a sole living in the North Adriatic sea as an EPDTA. This
model is quite adaptable for other species of fish or soles of different environments by varying the differ-
ent characteristic functions and probability tables that are embedded in the model itself. The quantitative
information (lengths, probabilities, offspring estimation) was elaborated in collaboration with the Insti-
tute of Marine Sciences of Ancona, Italy and members of their project SoleMon [[15, [16]]. As usually for
this kind of fish, sole are categorized into so called classes which represents soles of similar age/length
and thus with similar behaviour and subject to similar natural mortality or fishing. In the Adriatic sea,
according to the project SoleMon, sole of age class 0+ aggregates inshore along the Italian coast, mostly
in the area close to the Po river mouth; age class 1+ gradually migrates off-shore and adults concentrate
in the deepest waters located at South West from Istria peninsula. Growth analyses on this species have
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been made using otoliths, scales and tagging experiments. An otolith is a structure in the saccule or utri-
cle of the inner ear, specifically in the vestibular labyrinth [24], whose section presents several concentric
rings, very much like those of the tree trunks. By measuring the thickness of individual rings, it has been
assumed (at least in some species) to estimate fish growth because fish growth is directly proportional to
otolith growth. However, some studies disprove a direct link between body growth and otolith growth.
A great variability in the growth rate was noted: some specimens had grown 2 cm in one month,
while others, of the same age group, needed a whole year. The von Bertalanffy growth function [9]
(VBGF) introduced by von Bertalanffy in 1938 predicts the length of a fish as a function of its age:

fva(age) = Le [1 _ o Klage—t)

The length (fyp(age)) obtained is expressed in centimetres while age and 7y are in months; the different
parameters that occur in the function are partly constants and partly calculated for our specific sole case
study. L. is not the maximum length of the animal but the asymptote for the model of average length-at-
age , K is the so-called Brody growth rate coefficient which, if varied, allow to manipulate the growing
function in order to represent periods of low food or abundance of food (so the soles grow less or more
having the same age) and 7 is the time or age when the average size is zero. There parameters of VBGF
for the Adriatic sole have been calculated using various methods. Within the framework of the SoleMon
project, growth parameters of sole were estimated through the length-frequency distributions obtained
from surveys. The results are L., = 39,6cm, K = 0.44 and fyp = —0.46. With this correspondence we
can calculate the length of a sole of age age and consequently put it in one of the length classes. In the
following table the ranges of the classes are shown:

Class | Minimum length (cm) | Maximum length (cm)
0 0 18.3

1 18.4 25.8

2 259 30.7

3 30.8 33.9
4+ 34 39.6

Considering the relevance of K for the purpose of the growth function we defined in general a func-
tion fyp(age,t) where the parameter 7 is an absolute month such that different periods could have a
different K. The absolute month ¢ = 0 can be linked to a particular month of a particular year: in this
way known past periods of low food or other environmental events can be represented in the growing
function of the model. In the simulation of Section 4.4| we used always the same K along time. Knowing
the length, it is possible to estimate the weight using the length-weight relationship:

Weight (1) = a-1°. The parameters have been estimated in SoleMon: a = 0.007, b = 3.0638. Using this
relationship we can determinate, at every instant during our simulations, the biomass of the whole stock
under simulation.

Natural mortality (not including fishing) has been estimated through a mortality index M available
from the SoleMon project. From this annual index a probability distribution has been derived: Pry(i,)
is the probability that in a given month ¢ a sole in class i dies for natural mortality. Fixing a specific
month for ¢ = 0 the values of the function are cyclic of a period of 12 months. However, in a simulation
of several years the index can be varied in different years and months with a very fine granularity. This
permits to represent in a simulation catastrophic periods or particularly favourable ones. The mortality
probabilities Pry(i,7) (on a month basis per class) used in the simulations whose results are shown in
Section 4.4] are the following:
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Class | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec.
0 0.083 | 0.078 | 0.073 | 0.068 | 0.063 | 0.058 | 0.058 | 0.053 | 0.048 | 0.043 | 0.038 | 0.033

1 0.032 | 0.031 | 0.030 | 0.023 | 0.030 | 0.028 | 0.028 | 0.028 | 0.027 | 0.026 | 0.026 | 0.025

2 0.024 | 0.024 | 0.023 | 0.023 | 0.023 | 0.023 | 0.023 | 0.022 | 0.022 | 0.022 | 0.021 | 0.021

3 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021
4+ | 0.020 | 0.020 | 0.020 | 0.020 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.018 | 0.018

Mortality for fishing is estimated by a fishing index F. With the same reasoning done for the natural
mortality a probability has been derived: Prg(i,7) is the probability that in a given month # a sole in class
i is fished. In this case the periods of no fishing can be represented in the model. Similarly to the previous
case the probability table can be cyclic over years or can be personalised month per month. The fishing
index can be F = 0, meaning that there is no fish, can be moderate (estimated F = (0.2) or can be so
strong that a situation of overfishing may occur (typically £ > 1). For instance, the fishing probabilities
Prrg(i,7) (on a month basis per class) corresponding to a fishing index F = 0.2 are the following:

Class | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec.
0 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65
1 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65
2 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65
3 1.65 | 1.65| 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65
4+ 1.65 | 1.65| 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65

Breeding is another important aspect of the life of soles that has been embedded in the model. In this
case two estimations are needed. The first one is the probability of being reproductive after m months
since the last breed, that we denote Prg(m). For simplicity, this probability has been estimated as 0 for
m=0,1,...,11 and as 1 for all m > 12. However, this can be changed and refined in future versions
of the model. If a sole passes this check of fertility then there is the probability of breeding Prg(i,7).
In this case, of course, soles in class 0 have this probability equals to 0. Soles of higher classes have
higher probability to breed, but only in the appropriated months, which are from November to March of
every year. This probability is then spread along these months. The table used in our simulations is the
following:

Class | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec.
0 03 ] 025| 0.1 0 0 0 0 0 0 0 0.1 | 0.25

1 03 |1025] 0.1 0 0 0 0 0 0 0 0.1 | 0.25

2 03 | 025] 0.1 0 0 0 0 0 0 0 0.1 | 0.25

3 03 | 025] 0.1 0 0 0 0 0 0 0 0.1 | 0.25
4+ 0.3 | 025 0.1 0 0 0 0 0 0 0 0.1 | 0.25

Note that in the case of breeding there is a potential artificial situation in a simulation. It can happen
that one sole of the higher classes do not breed at all along one year. It is unlikely, but in the simulation
may happen. This is absolutely not possible in reality. We plan to adapt the model in the future in order
to avoid this situation. Another weakness of the model (and obviously of the simulator) is the lack of
information about the offspring of an individual. This is a forced missing because no real information is
known about the number of eggs that are fecundated nor the number of eggs that hatch, becoming new
individuals. This issue is managed from the tool for the purposes of the simulation and will be treated in
details in Section

The resulting overall model is shown in Figure [2| Two clocks are used, x for counting the passage
of one month and ¢, never reset, for measuring the absolute time since the beginning. Note that only
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Demography of the classes over time (in months)
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Figure 3: Demography over time without fishing (F = 0.0).

the transitions from one generic location “class i”” are shown. The whole model is simply the resulting
EPDTA considering the locations for all the classes, while the locations “dead” and “fished” are the
same for all the classes. Every class has its particular fishing, mortality and breeding probability (e.g. a
smaller, thus younger sole, has less probability to die/be fished than a older one). The boolean variables
M., F., R, are used to assure that every month the sole makes a mortality check (M,), a fishing check
(F;) and a reproduction/breeding check (R.). Note that time can advance of one month only if all these
checks are done. The urgencyﬂ is used for forcing the class change of the class as soon as the sole reaches
the minimum length for that class. The labels dead_i, fish_i and breed_i are used to communicate to the
simulation environment that a particular sole (the one sending the signal) of class i died, was fished or
breed. The meaning of the integer variables age, length is obvious and the variable lastB counts the
months elapsed since the last breeding of this sole. The probability tables and the functions used in
Figure have been all described above.

4 Simulation

As shown at the end of Section 2] the probability model can be automatically checked to discover inter-
esting properties or to make consistency checks on the given probabilities. Another important way to use
the same model is for simulating a sole in a population of them. The idea is not new, but it very naturally
fits in the fish stock monitoring. If we want to predict what happens to a population after several years
of fishing of a certain strength under normal or particular conditions, all we have to do is to instruct a

[Tt

7In the picture the urgent transitions are indicated by a little “u” attached at the beginning of their arrows.
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Demography of the classes over time (in months)
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Figure 4: Demography over time with light fishing (F = 0.2).

population of virtual soles that uses the given model as probabilistic behaviour and let them evolve over
time. In every moment, our virtual environment can show to us all the statistics we want to know about
the whole stock but also about every single sole.

Naturally the hard thing to do is to precisely tune the model with the most possible available real
data. This work has to be done before the simulations on the model can be considered to have a certain
degree of reliability.

In this section we show the simulator that we have developed for reaching this goal. It uses agent
technology, as we discuss in the following. We are currently at the very initial phase of the tuning of
probabilities and other values using real data. The implementation is quite stable and the adaptability to
other species can be done quite easily. More information is available at [2]].

4.1 Multi-Agent Systems

Several definitions have been given for the term “agent” during the last decades, the most suited of which
is the one given from Russel: an agent is something that can retrieve information from the environment
through its sensor and can perform actions with its actuator [27]]. Alternatively, Woldrige and Jenning
[19130] define agent as hardware or software-based computer system that have the following properties:
autonomy, reactivity, pro-activeness, and social ability. A Multi-Agent System (MAS) is a collection of
autonomous agents that communicate, cooperate, share knowledge and solve their own problem.

In a MAS, each agent can be either cooperative or selfish; in other words the single agent can share
a common goal with the others (e.g. an ant colony), or they can pursue their own interests (as in the free
market economy). MAS are usually exploited when the problem considered cannot be solve (efficiently)
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Demography of the classes over time (in months)
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Figure 5: Demography over time with overfishing (F = 1.2).

by an individual agent or a monolithic system. They are used to model coordinated defence systems
but also for disaster response models, social network modelling, transportation, logistics, graphics as
well as in many other fields when the problem is non-linear or the interaction with flexible individual
participants have to be represented or again when in-homogeneous space is relevant. Finally, MAS are
widely used in networking and mobile technologies, to achieve automatic and dynamic load balancing,
high scalability, and self-healing networks.

In the context of a MAS, an agent needs to communicate its information to the others and after that
it needs to coordinate its activities (which is important to prevent conflicts between the agent belonging
to the MAS) and negotiate its interest to solve a problem without conflicts. This need of interaction
and exchange of information between agents is the basic characteristic that differentiate MASs from
traditional artificial intelligence which work only as a single agent.

4.2 Hermes middleware

Hermes [[14} 3] is an agent-based middleware for designing and execution of activity-based applications
in distributed environments. It provides an integrated environment where users can focus on the design
of the particular activity of interest ignoring the topological structure of the distributed environment.
Hermes consists of a 3-layer software architecture: the Agent layer, the BasicServices layer and the Core
layer.

An Hermes execution consists of a creation of a MAS in which the agents are of two kinds: user
agents and service agents. The Agent Layer is the upper layer of the mobile platform that contains both
kinds of agents. A service agent accesses to local place resources such as data and tools (which, for
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security reason, are not directly accessible) while a user agent executes complex tasks and implement
part of the logic of the application. Hermes is based on the concept of place: a place is a well defined
node of a network where service agents are located. When a service agent is created on a place and
bound to it, there is no way for it to migrate to another place of the network. User agents can instead be
copied to another place (weak mobility) and their execution can continue on the migration place.

4.3 FIShPASs: FlIshing Stock Probabilistic Agent-based Simulator

FIShPASs [2] is a simulator based on Hermes. It exploits the agent paradigm to simulate, as a MAS, the
evolution of a population of fish of a certain species. At the moment a model for a sole (Solea solea)
population living in the North Adriatic sea is available, but the simulator can be easily adapted for other
species or soles of different environments

The basic elements of the simulator are: the SoleaAgent, the SquareKilometreSea, the Registry
and the Randomizer. The SquareKilometreSea is exactly the Hermes place where the simulation is
started. This first version of the simulator is quite simple since the sea is not spatially simulated; it is
more like a simple container for the population of soles (exactly what is an Hermes place for its agents).
In the near future we point to improve the overall model with support to space and thus displacement of
sole in the simulated sea, water currents, temperature and so on.

The SoleaAgent is a user agent and represents a single sole in the simulated sea. While the spa-
tial model is not so accurate, the sole behavioural model is quite complex. Indeed the SoleaAgent
implements the EPDTA presented in Section [3| and thus can be fished, can die for natural mortality,
can reproduce with the given probabilities, and naturally grows as time passes. Note that also the non-
deterministic choices that are presented to the agent (as its behaviour is essentially a Markov decision
process) are resolved probabilistically with a uniform distribution on all the enabled non-deterministic
choices. As briefly discussed in Section [3] since the simulation is managed on a month basis, we can
arrange theoretical probability so that certain behaviour cannot occur or can occur rarely in certain peri-
ods of the year. For instance, we can suppose that the fishing period goes (hypothetically) from October
to February while in the other months fishing is prohibited and fix the fishing probability to O for the
prohibited period. Since the probability values are given also on the basis of the length of the sole, the
model can be easily adapted to different scenarios to simulate, for example, overfishing of some classes
or sudden reduction of the population of some other classes because of a disease and so on.

The third element of the simulation is the Randomizer. It is a service agent which generates random
numbers in [0, 1] for the sole. Every time a sole checks the probability of doing something (death,
reproduction, etc.) it requests a new number to the Randomizer. The service returns a new generated
value that is contrasted with the probability of the individual to decide whether the action occurs or not.

The last main element of the simulator is the Registry. Like the Randomizer it is a service agent
and it simply keeps track of the sole available in the simulated sea. Its main purposes are the consistency
control over the simulation and the generation of statistics about the simulated months (in particular,
population per different class, weight of the biomass, number of death/fished soles in the last month).
At the beginning of the simulation the Registry reads the input data and computes the number of
individuals of the initial population then waits for them to communicate their status to the registry itself.

SoleAgents are programmed to communicate their status to the Registry every month in any
case (even in case of death), which means that the Registry can always know if all the soles have
communicated with it during the current interaction. Moreover, it always knows the exactly demography
of the population. This communication acts also as a synchronization that ensure time consistency on the
population. It is the Registry that manages time increments and that enables the sole to execute their
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internal behaviour (setting the SoleaAgent variable corresponding to the local clock “x” of the model of
Figure2]to 1). Before each increment the Registry waits for a communication from all the population
of soles and then it increments the time. In this way the Registry ensure that at each simulation step
(i.e. each month) no sole is out of simulation time range (behind or beyond the current time).

Finally, the Registry generates new soles if some of the existing ones reproduced during the last
month. Having the generation in the Registry is a strategic choice to be sure that the new born sole
will be correctly set in the current time frame. In reality, a female sole produces, depending on its class,
between 150000 and 250000 eggs and spreads them in the water. The number of them that will grow
at least until class 1 is very low. Currently there is not a direct known relation between the number of
females that breed in a month or in a season and the number of surviving and developing eggs in the
following months/season. Thus, the Registry creates every month a number of newborn soles in class
0 that corresponds to the number observed in reality (data from SoleMon project). One challenge for the
future will be trying to find a relation between the signals of breed (breed;) given by the SoleAgents to
the Registry in a certain period and the number of surviving newborn to introduce after some month(s).

Given the real data about individuals in the different classes from 2005 to 2008, we taken the first
column, which represents the newborns (males + females) of every year, halved the values (since we
consider only female soles) and distributed the newborns so obtained along the year, according to the
previous fertility table.

population km> | 0 1 |23 |4+
2005 169 | 82 [ 36|12 | 4
2006 92 | 179 {43 |10 | 1
2007 205 | 138 | 72 | 18 | 1
2008 1171123 161 | 10 | 6

In such a way we obtain the birth rate table below. It represents the amount of newborns that are
automatically generated from the simulator every simulated month. Since the table covers only 4 years
it is used cyclically in the subsequent years, thus the fifth year the generated newborns come from the
first row of the table and so on.

Year | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec.
1 26 21 9 0 0 0 0 0 0 0 8 21
2 14 12 4 0 0 0 0 0 0 0 4 12
3 30 25 11 0 0 0 0 0 0 0 11 25
4 16 15 6 0 0 0 0 0 0 0 6 15

Summing up, the FIShPASs simulation steps are the following:

1. the sea (place) is launched and the service agents (Randomizer and Registry) are generated on
it. The Registry calculates the initial population

2. the sole population is generated from the place basing on the SoleMon project data
3. the soles register to the Registry

4. once all population has signed to the Registry, it generates statistics and starts their behavioural
simulation by sending them a message to update their internal clock x

5. the soles execute all their operations for the current month, reset the clock x and send an ack to the
Registry
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Figure 6: Biomass over time without fishing (F = 0.0.)

6. once all the acks are received by the Registry, it generates statistics for the elapsed month, creates
newborn soles and then sends a new message to increment the clock x

The last two points are repeated until the desired period of time has passed.

4.4 Results

We set up a series of simulations to test our model. Every simulation has a timestep one month long and
lasts for 72 months (6 years) considering always a virtual square kilometre of sea. The three charts of
Figures [3] i and [5] show the trend of population that can occur, along the simulation, varying the fishing
probability (i.e. the probability for a sole to be fished) while mortality and reproduction probabilities
remain the same. The charts concentrate on three very different scenarios. The first one considers a case
of no fishing (fishing index F=0.0). In this case the population remains stable, spreading on the different
classes. It is particularly notable an increment of soles in the third class as well as a gradual and steady
increment of individual in the fourth class.

The second case considers a light fishing activity (F=0.2). The scenario rapidly changes with classes
third and fourth that grow slower than in the previous chart. Moreover all of them has difficulty to get
over 20 individuals (whereas in the previous plot all of the bigger classes where around 40 individuals).
The trend is that of a decreased population of soles composed of less mature individuals and some small
ones (see the biomasses charts for more details).

The third and last chart about the population shows another possible scenario. In this case we suppose
that the sea undergoes an overfishing activity (F= 1.2). This situation has obviously an extreme impact
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on the population. As can be seen, after two years (23-24 on the x-axis), the population is simply gone
with only the O class of individuals available (due to their automatic generation, as explained above).

The three charts of Figures [6] [7]and[§|represent the biomass trend, i.e. the total amount (in kilograms)
of soles for the different classes in the three scenarios described above. In the case of no fishing (F=0.0)
the sole population tends to spread over all the classes and the biomass grows accordingly. The biomass
increment is constant and at the end of the 6 years the total biomass is around 28 kg (against 8 kg at the
beginning of the simulation).

When we introduce light fishing (F=0.2) the biomass tendency is similar to the previous scenario but
the values are totally different. In particular the population is impoverished in the higher classes (see
previous plots) and the overall biomass grows slower at the beginning with a more marked decreasing
tendency during the last year (months 60 - 73) when soles grow, reaching class fourth and thus are easier
to be fished. At the end of the simulation the total biomass is around 13 kg which means less than an half
of the soles biomass without fishing.

With the introduction of overfishing (F=1.2) the scenario changes drastically. The fishing activities
has a great impact on the population biomass that is halved at the beginning of the second year (13-15
on the x-axis) and then runs fast under 1 kg in the middle of the forth year (41-42 on the x-axis). All the
bigger soles, more subject to fishing, have been caught or are dead and only the smaller ones (i.e. with
a small biomass) remain (also because they are auto-generated). Again, as seen in the corresponding
classes chart, the population is decimated.

More details and charts about these simulations can be found on the simulator website [2] along with
contacts to request a copy of the current version of the tool.

5 Conclusions and Future Work

We have defined an individual-based model of the behaviour of a common sole (Solea solea) living in
North Adriatic sea. The model has been specified as an Extended Probabilistic Discrete Timed Au-
tomaton (EPDTA), a formalism that is a variant of probabilistic timed automata. We have defined the
semantics of an EPDTA as a Markov decision process and we have observed that an EPDTA can be
translated to a syntax acceptable by the model-checker PRISM. The estimation of the probabilities and
of the characteristic function of the species has been done by using the real data of the SoleMon project.
The individual probabilistic behaviour then has been embedded into an agent of a MAS. The MAS sim-
ulates the population of soles over time and can provide information on the evolution of the stock by
monthly statistics of the individual states. We have presented the simulator FIShPASs (FIshing Stock
Probabilistic Agent-based Simulator) that implements the presented model and is easily adaptable for
other species.

There are a lot of interesting things to do as future work. First, we want to tune the model, working
in team with specialized biologists, in order to increase the confidence on its predictions. The translation
of the model into a PRISM acceptable syntax can be made available inside the simulation environment.
Having the PRISM equivalent model can highly improve the tests that the biologists can do against the
probabilities put in the various tables embedded in the model. This is because quantitative questions
can be asked to the model checker to test hypothesis made about the model itself or to validate it with
available real data. In the MAS part a huge number of improvements are possible. For instance, soles can
be given a geometrical space to occupy and can move in the simulated square kilometre. They can also
emigrate and immigrate from/to the simulated space. A 3D environment, i.e. a cube kilometre, instead of
a 2D one could be more appropriate because other species could be simulated simultaneously and made
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interact with the soles (towards a more predator-prey approach). Moreover, a physical conformation
of the territory can be added to the model possibly influencing the interactions (of different kind, to
be introduced in the model too) between the individuals (the formation of an isolated population, the
impossibility to meet, etc.). Finally, the effects of the passage of a particular fishing device can be
modelled; for this we know there are available data for tuning/validation.
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This paper presents an efficient program for checking Meadeonsistency in a pedigree. Since
pedigrees may contain incomplete and/or erroneous infilmmageneticists need to pre-process
them before performing linkage analysis. Removing supeuitgenotypes that do not respect the
Mendelian inheritance laws can speed up the linkage asalyge have described in a formal way
the Mendelian consistency problem and algorithms knowriténature. The formalization helped
to polish the algorithms and to find efficient data structurBise performance of the tool has been
tested on a wide range of benchmarks. The results are praniisiompared to other programs that
treat Mendelian consistency.

keywords: abstract interpretation

1 Introduction

Geneticists employ the so-callédkage analysigo relate genotypic information with their correspond-
ing phenotypic information. Genotypes are organized i datuctures callegedigrees that besides
genetic data, record which individuals mate and their oiifigp Since pedigrees may contain incomplete
and/or erroneous information, geneticists need to prega®them before performing linkage analysis.
Moreover, in many cases, we cannot know any genetic infeomdor some individuals (for instance
because they refuse to or cannot be analyzed) and we woaltbliknow which are their possible geno-
types. Therefore, we would like to pre-process the pedigyeemoving some candidate genotypes, in
such a way that the remaining genotypes respect the claségalelian laws. When the pedigree is
composed by thousands of individuals, this consistencgkihg need to be automated. The first no-
table contribution in the pedigree consistency check istbgerithm proposed by Lange and Goradia in
1987 [6]. The algorithm takes as input a pedigree with a ligiemotypes associated to every individ-
ual, and perform genotypes elimination by removing fromlits the genotypes that lead to Mendelian
inconsistencies. The algorithm performs a fixpoint iteratby processing one nuclear family at a time.
This algorithm is optimal (in the sense that it removes aldknotypes that lead to Mendelian inconsis-
tencies, and only them) when the pedigree has no loops. An@ereof loop in a pedigree is when two
individuals that mate have an ancestor in common. An algorithat is optimal even in the presence
of loops has been proposed by O’Connell and Weeks in 1999I1f8prief, the algorithm selects the
loop breakers (that is the individuals that, if duplicatezinove the loop) and perform the Lange Gora-
dia algorithm for every combination of the genotypes of thepl breakers. Unfortunately, it has been
proven [1] that the consistency check on pedigrees with erat&ita containing at least three alleles is a
NP-hard problem.

The remainder of the paper is organized as follows. Firstl/ formalize the problem of genotype
elimination (Sectiorf]2) and the algorithms of Lange-Gaaa@ectiorZ11) and O’Connell and Weeks
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(232). Then, we describe the implementatiorCefer (SectiorB). Sectiofl 4 describes the performances
of Celer on a large set of benchmarks. Then, we compare our programother existing software
(Sectiorib). Finally, we conclude and suggest some dinestior future works.

2 Mendelian consistency algorithms

A pedigree contains parental and genetic information ahaét of individuals. Pedigrees are usually
represented in a graphical way by drawing a circle for evergdle individual and a box for every male
individual. Inside the circle (or the box) there can be soratadegarding the individual (for instance
genetic information, or affection status). Parental refet are represented by lines that connect to a node
(the so called marriage node). Arrows depart from the mgerizodes to the children of the couple. In
Figure[1 we report the graph of a pedigree composed by 11lichdils. For each individual, we report
his/her identification number (id from now on) and his/hesgible genotypes.

We collect the parental structure in a trigle f,m) wherel is the set of individuals anfl andm are
two partial functions fromt into | mapping a subset dofin=domm c | of individuals to their father and
mother, respectively. The individuals that do not have pigréen the pedigree are callédunders For
the pedigree of Fidl1, the founders are the individuals with {1,2,3,6}.

We suppose that we are looking at a single locus. The possieles in the locus are in the sef,
ranged by uppercase case lett&rB,C,.... Let¥ be the set of unordered pairs of elementssn Since
we consider the genotypé#, B) and (B,A) as equivalent, the genotype of each individual will be an
element of the se¥. A fully specified genetic map of a pedigrée f,m) is an elemenh of | — ¢. We
say that a fully specified map (fsmap from now on) is Mendelidhe genotypes of every non-founder
individual is such that one of its allele is derived from thether and the other from the father. It is
often useful to check for Mendelian consistency in a subk#teindividuals in the pedigree. Since the
Mendelian conditions involve an individual and both hisquds, it makes sense to consider those subsets
that contain either both or none of the parents of each iddaliin the subset. Given a pedigréem, f)
we say thaS C | is aregular subset of if, for eachi € domf NS we have thaf (i) € S <= m(i) € S
Intersections and unions of regular subsets are againaregubsets. For instance, in the pedigree of
Fig.[, the se{3,4,7,8,9,11 12} is an an example of a regular subset of the individuals.

We can also define a functianate: ¥ x ¢ — [J(¥¢) that, given two genotypes, returns the set of
Mendelian genotypes that can be generated by selectinglleteefeom each one. We have (remember
that we use unordered pairs):

mate((A,B)(C,D)) = {(A,C),(A,D),(B,C),(B,D)}

With the help of functionrmate, we can now express more precisely when a fsmap is Mendeatian o
regular subset of individuals:

Definition 1 (Mendelian consistency)Let P = (I, f,m) be a pedigree and I&be a regular subset of
The fully specified maf is Mendelian on Sf and only if for every individuali € Ssuch thatf(i) € S
andm(i) € S, we haveh(i) € mate(h(f(i)),h(m(i))).

We say that an fsmalpon a pedigred = (I, f,m) is Mendelianif it is Mendelian onl. The reader
can verify that the fsmap in Fifl 1 is Mendelian.

Since in general we do not know precisely the genotype of gatitiduals, only partially specified
maps will be available. A partially specified mép(psmap from now on) records for every individual
of the pedigree the genotypes it may have according to oarndtion (e.g. because we have collected
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4
{A-B}

Figure 1: An example of a pedigree

some genetic data or we have observed the phenotype). A gdnspan element of the sét— [1(9).
We can introduce a partial order relatioron set.# . We say that mapl; is more precise than or equal to
mapH,, and we writeH; C Hy, if and only if, for every individual € I, H1 (i) C Hx(i). With an abuse of
notation we identify any fully specified mdpwith the partially specified map that mafis(i) } to every
individual i € I. Thus we writeh C H to mean that, for every individua| h(i) € H(i). All psmaps such
thatH (i) = @ for anyi € | describe an inconsistent situation where no possiblerasggt of genotypes
is compatible with the available information. We identifly these psmaps and denote them _bythe
psmap that mapg to all individuals inl. We denote by# = (I — [1(¢))/L the set obtained by this
identification. The set# is a complete lattice, with least upper boura@jiven by pointwise union. The
greatest lower bounf] is obtained in two steps: first, the pointwise intersect®reomputed; then, if
any individual is mapped t@ in the previous step, the result is taken talbe

In psmaps we are interested in those genotypes, taken frersets of each individual, that can be
used to build a Mendelian fsmap.

Definition 2 (Consistent genotype)Let P = (I, f,m) be a pedigree and |&be a regular subset of
Given a psmapl and an individual € |, we say that genotypge H (i) is consistent on 8f there exists
an fsmaph C H with h(i) = g such thah is Mendelian or.

A psmapH is consistent oi®if all g€ H(i), for alli € I, are consistent o8.

A pedigree consistency algorithm can be seen as a functairtakes a psmap and returns another
psmap where some inconsistent genotypes have been remdeick precisely, we define function
filters: .# — .# such thafilters(H) = H' C H andH’ is consistent o1s.

We say that a psmag on a pedigreél, f,m) is fixedon a setSC | if H(i) is a singleton set for alll
ieS
Example 3. Leti € | be a non-founder in the pedigrée f,m) and assume the psmé&pis fixed on
{f(l),m(l)} ThUSH(f(I)) = {gf} and H(m(l)) = {gm} Let us ComputeH’ = f”ter{f(i)’m(i)’i}(H).
ConsiderG = H (i) N mate(gs,gm). If G # @ thenH’ = H[G/i], otherwiseH’ = L.

Let SandT be two regular subsets &f We may want to obtaifiilters r(H) from filters(H) and
filterr (H), which may be simpler to compute. A candidate compositidiities(H ) M filterr (H), since



N. De Francesco, G. Lettieri, L. Martini 59

Figure 2: An example of the applications of the genotype ialation algorithms: the initial pedigree
[2(a], after the application of Lange-Goradia algorifpm)Rémd after the application of O’Connell and
Weekd Z(q). In the initial pedigree, we have marked with “@# untyped individuals.

this operation keeps the genotypes which are consistendtirS@ndT. However, in general, we only
havefilters t (H) C filters(H) Mfilterr (H), and the relation may be strict. Nonetheless, it can beyeasil
seen that the equality holds whenetters fixed onSNT.

A useful function in the definition of consistency check aityons is functionsplits: .# — [ (4).
Given anyS C I, splitg(H) is the set of all psmapB C H such thatF is equal toH on |\ Sand is
fixed onS Thus, ifS= {xi,...,Xn}, then for eachga,...,0n) € H(X1) x --- X H(X,) we have a psmap
F € splitg(H) such that=(x;) =g forall 1 <i <nandF(x) =H(x) forallx¢ S If P= (I, f,m) is a
pedigree andH is a psmap on it, we have the following relation forBISC | (whereSis regular)

| | filters(F) = filters(H). 1)
Fesplitt (H)

2.1 The Lange-Goradia algorithm

The idea of the Lange-Goradia algorithm is to remove all #eogypes of an individualthat are incon-
sistent on any nuclear family to whigtbelongs. This is accomplished by looking at one nuclearlfami
atatime. LeH be a psmap for a pedigrék f,m). If S={x,y,ky,...,k,} C | is a nuclear family where
x andy are the parents and, ..., k, are the children, then each p&ix, gy) of genotypes irH (x) x H(y)

is examined in turn, checking thaate(gy, gy) "H (ki) # @ for all the childrerk; withi =1,...,n. If this

is the case, thegy, gy and all genotypes imate(gx,gy) N H (ki) for each childrerk; are consistent o8.
All genotypes that are not found to be consistent after aisp genotypes it (x) x H(y) have been ex-
amined are certainly inconsistent 8mand, thus, also inconsistent, so they can be safely remd¥eck
formally, we can say that the algorithm compultgsesp,it{x?y}(mfilters(F) (note that a nuclear family is
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a regular subset d9, which is equal tdilters(H) according to[(l). For eadh € splity, (H), filters(F)
is computed aF]_, filter(yy .} (F). This is equal tdilters(F) sinceF is fixed on{x,y} = NL;{xy,k }.
Finally, filtery y i1 (F) is computed as in Examgdlé 3, for eackid < n.

The algorithm is iterated on all nuclear families until nawngenotypes are removed. Hf is the
psmap obtained at the end of the algorithm grelH (i) for anyi € S, theng is consistent on all nuclear
families to whichi belongs. Let us callG: .# — .# the function that maps an input psmipto the
output psmap.G(H) according to the Lange-Goradia algorithm. In genefigter;(H) C LG(H) and
the relation may be strict, i.e., the algorithm may not atiaté all inconsistent genotypes. As shown
by Lange and Goradial[6], a sufficient condition fdter;(H) = LG(H) is the absence of loops in the
pedigree. As an example, consider the pedigree of Figuren2. pedigree contains loops, since there
are individuals that mate that have an ancestor in commarnn$tance individuals 12 and 13 are both
descendant of individual 8). Therefore, it is not guaramtbeat the result of Lange-Goradia (Fig{ire 2(b))
contains only consistent genotypes. In fact, consideviddal 9. Although the genotypéB, B) is not
consistent, the Lange-Goradia algorithm cannot elimiriatélo see that it is not possible to find a
Mendelian fsmap that is of that depicted in Figurg Z{a), consider individual 15. @his alleles is
A. Since his alleles must come from individuals 7, 8, and 9eastl one of those individuals must have
allele A. Individuals 7 and 8 do not contain it, thus 9 must hawes allele, and we can eliminatB, B).
We will see in the next subsection that the O’Connell and Weadgorithm is able to eliminatéB, B)
from individual 9.

2.2 The O’Connell and Weeks algorithm

The O’Connell and Weeks algorithml [8] is able to remove albimsistent genotypes from a psmap. The
algorithm has the same input of the Lange-Goradia algoritanpedigreeP = (I, f,m) and a psmap
H e #. Let us callOCW: .# — .# the function that maps an input psmeipto the output psmap
OCW(H) according to the O’Connell and Weeks algorithm.

First, a suitable sdé® C | of loop breakerss found. A loop breaker is an individual that is involved
in a loop in the pedigree and imust contain such an individual for each loop in the pedigree

A new pedigreeP = (I UB, f,m) is built, whereB contains a new individudb for eachb € B, f
is undefined for alb € B, is equal tof for all x such thatf (x) ¢ B, and (x) = f(x) for all f(x) € B
(and similarly form). Thus,P is obtained fronP by breaking all loops. Then, for eaéhe splitg(H) a
psmapF on P is built, whereF (x) = F(x) for all x € | andF (b) = F(b) for all b € B. Finally, LG(F) is
computed for alF and all output psmaps thus obtained are joined. Sihcentains no loops, we have
F’ = LG(F) = filter, (F) for all F. Itis easy to see that it & (b) = F'(b) for all b € B and that this
implies that the restriction dF to | is consistent om. Indeed, ifF’ is the restriction of to | we have
F' = filter; (F).

We note that there is no need to actually build pedidtesinceLG(F) will produce the same result
asLG(F) whenevefF is fixed onB. Thus we can simply define

OCW(H)= || LG(F). @)

Fesplitg(H)

For eachF € splitg(H) we havelL G(F) = filter, (F), thus we obtaifDCW(H) = filter; (H) from ().

Fig.[d shows a block-diagram representation of the O’Cdramel Weeks algorithm. Note that dd.(2)
corresponds to the part of the diagram fromdpiéx block onwards. The initidl G block is not necessary
for the completeness of the algorithm, but is introducedrdento try to reduce the cost of the rest of
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Figure 3: The O’Connell and Weeks algorithm.

the algorithm, since the number of Lange-Goradia invoaatidepends combinatorially on the number
of genotypes assigned to each loop breaker.

As an example, consider the pedigree depicted in Figur¢ g pedigree contains various loops
that can be broken, for instance, by choosing individualed ¥ as loop breakers. This choice leads
to three applications of the Lange-Goradia algorithm toptbeigree of Fig._2(B) in which the individual
12 is typed agA,C), (B,C), and(C,C), respectively. The three runs have as results the psmajtetep
in Figure[4. The union of these three psmaps gives as rebelissmap depicted in Figlireg(c). We can
note that genotype,B) and(B,C) have been eliminated from individual 9.

3 The Celer tool

We have implemented the O’Connell and Weeks algorithm iroartamedCeler. Celer has been devel-

oped in C++ and is able to perform genotype elimination. fsircommand-line switch, it is possible
to select either Lange-Goradia or O’Connell and Weeks'srélgn. Celer receives as input a pedigree
in pre-LINKAGE format, and writes the processed pedigrea human-readable form. Moreover, it is
also possible to have a DOT-file as output, that can be predesith Graphviz||B3] to obtain a graphical
representation of the resulting pedigree.

3.1 Parental information

In the design of our application, we kept the genotypic inmfation separated from the parental informa-
tion. During the parsing of the file, parental relations doeexl in a redundant set of data structures (list
of nuclear families in the pedigree, list of partners of eiclividual, list of families each individual be-
longs to, etc.). These data structures allow to recovehalptairental relations needed by the consistency
algorithms in a fast way. For instance, during the Langea@iar algorithm, to avoid unnecessary itera-
tions, we set up a working list of the families to be process#tien the genotypes set of an individual
changes, we insert in the working list only the families thaividual belongs to.

3.2 Genotypes set as bitmaps

Our efficient implementation uses bitmaps to representetsiof] (¢) (individual of a psmap). When
the set contains few genotypes, a bitmap needs more spacettiex alternatives such as binary search
trees. On the contrary, this slight drawback is counteatia@d by many advantages. First of all, the
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Figure 4: An example of the applications of the O’Connell &Weeks: from the pedigree in Hig.Z[b)
the individuals 8 and 12 are chosen as loop breakers, le&dlitgee applications of the Lange-Goradia
algorithms whose results are depicted in this figure.

operations of search, insertion and deletion from subsgt cdn be completed in constant time. More-
over, when the maximum number of alleles is known in advabiteiaps can avoid the use of dynamic
memory, thus speeding up the operations of copy and altogdgallocation. Union and intersection
of set of genotypes can be implemented with bitwise logigarations. Even the iteration of all the
genotypes in a set can be implemented efficiently by calagldhe least significant bit in a word.

We chose to represent alleles with unsigned integers iratingefO, N — 1], whereN is the maximum
number of alleles. With this choice, elements[6f¥) are triangular bitmaps witfN rows. When
N = 32, then-th word of the matrix represents the subse¥atomposed by genotypes withas the first
allele, andk <= n as the second allele. In this way, it is easy to build bit mdsksanipulating sets of
genotypes.

As an example, consider the optimization suggestedlin [8].s@eed up the initial application of
the Lange-Goradia algorithm, O’Connell and Weeks suggestd-process the pedigree by removing
those genotypes that can be easily identified as superflyolomking at a single parent-child pair. For
instance, when a child is fully specified with allelgs B), it is possible to remove from its parents all the
genotypes that do not contain at least one fldandB. With the genotype set represented as a bitmap,
it is sufficient to clear all the bits that are not in wordlSB and in columndA, B. TheC++ code of this
operation can be found in Figure 5.

Concluding, the bitmap has been a key choice for speedingl tipaconsistency algorithms.

3.3 Loop breakers selection

We have seen that the O’Connell and Weeks algorithm exethwelsange-Goradia algorithm once for
every combination of the genotypes of the loop breakersrefbie, the selection of loop breakers greatly
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void bitmap::reduce_parent_child(int A, int B) {
/1 A is always less or equal than B
unsigned int allele_mask;
if (A == B) { // homozygous individual
allele_mask = (1 << A);
unsigned int 1i;
for (i=0; i<A;++i) {
datal[i] &= allele_mask;
}
i++; // leave A-th word untouched
for (; i<32;++i) {
datali] &= allele_mask;
}
} else {
allele_mask = (1 << A) | (1 << B);
unsigned int 1i;
for (i=0; i<A;++i) {
datali] &= allele_mask;
}
++i; // leave A-th word untouched
for (; i<B;++i) {
datali] &= allele_mask;
}
++i; // leave B-th word untouched
for (; i<32;++i) {
datali] &= allele_mask;
}

Figure 5: The C++ code for the optimization suggested by @i@tl and Weeks. When an individual
is typed we remove from his/her children (and parents) tmotypes that do not contain at least one of
his/her alleles. In the code, A and B are the alleles of thedyipdividual.
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affects the total running time of the O’Connell and Weekggoedthm. In Celer, we chose to apply the
selection strategy suggested by Becker el al. [2]. The ifiteeelection algorithm is to prefer to choose
the individuals that break more loops at a time, and to aJmédones that have a long list of genotypes.
Becker et al. show that this problem is equivalent to theuta of the minimum spanning tree of a
directed graph. The graph to be analyzed can be obtainedtfrerparental graph by removing all the
individuals (and corresponding marriage nodes) that ddoetiing to any loop. This reduction of the
graph must be put in place whenever a new loop breaker is cholee individuals in this graph are
labelled with the result of a functioh that estimates the cost of the selection of the correspgridiop
breaker. The functiorf: .# x| — Z* is defined asf (H,i) = log(fH (i))/d(i), wherefH denotes the
cardinality of setH andd(i) is the number of neighbours of individuain the graph. The intended
meaning of the functior is to be a heuristic estimate of the number of loop the indigidbelongs
to. We implemented the spanning tree calculus with a modifezdion of the classical algorithm by
Kruskal [8]. In fact, in this case, the functioh(and in particulad) must be recalculated because the
graph is reduced whenever a new loop breaker is found. Howsivee the cost of selection is only
increasing, the greedy methodology of the spanning tremigign can be preserved.

It is easy to see that, by definition gflit, givenS T € | andH € .#, with T C SandH fixed onT,
it holdssplits(H) = splitg,+(H). Therefore, in theplit phase, we discard all the loop breakers that have
a single genotype.

3.4 Recursive vs non recursive reduction

To reduce the number of Lange-Goradia reductions (one fenyesombination of the genotypes of the
loop breakers), O’'Connell and Weeks suggest to use a reewsrsion of their algorithm. Instead of
calculating all the combinations and applying the Langea@ia reduction, they adopt a backtracking
methodology and execute a Lange-Goradia reduction whemel®p breaker genotype is fixed. The
algorithm can be expressed by the following pseudo-code¢hdrpseudo-code, given a functidnwe

denote withf [x/y] the functionf’ defined as’(z) = f(z) if z# x, andy otherwise. This notation is used
for updating the The rationale behind this approach is tadeadorute-force exploration of the results of

Algorithm 1 The recursive version of the O’Connell and Weeks algorithm
1: OCWR(P, B, H)
2. if B= @ then
3: return H

4: else

5 R« L

6: select an individual € B

7. forgeH(i)do

8: H «— Hli/g]

9: R+— RUOCWR(P,B\i,LG(H"))
10: end for

11:  return R

12: end if

thesplit function in [2). However, our experiments show that thisrapph does not pay off when coping
with large pedigrees and few combinations to explore. I, faltthe psmaps that are on the recursion
call stack must be initialized and copied, thus leading tnareased use of memory. When the number
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Name Individuals Generations %Founders Avg Family size

HOPS 221 12 21.72% 1.52
APE 4921 15 3.23% 1.82
QMSIM 8420 10 4.99% 2.00

Table 1: The three benchmarks used

of individuals is not high and there are many combinatioresxglore, the recursive version is better than
the non recursive one.

4 Performances ofCeler

We have testedeler with three different pedigrees. Following the methodolagscribed in[[10], we
have simulated genetic data by picking founder alleles fiteeruniform distribution, applying randomly
the Mendelian laws down the pedigree to calculate non-feuatieles, and, finally, deleting the genotype
information of some individuals.

The first pedigree we considered is composed by 221 indilsdiais a human pedigree that traces
the ancestors of two individuals affected by hypophosi@téHOPS). The pedigree comes from the
Hutterite population living in North America, and it has bagsed previously ir |7,-10].

We analyzed 100 datasets for each combination of the nunfiladletes (5, 7, 10, 12, 15, 17, 20, 25,
30), and of the ratio of untyped individual (5, 10, 20, 30, &dercent), for a total of 4500 datasets.

Then, we tested a larger pedigree composed by 4921 indigidWiais pedigree was also studied in
[10] and has been simulated with the method of Gasbarra f@]alt has been used as a benchmark for
the tool Allelic Path Explorer (APE). The pedigree contdll® founders, and 75 percent of individuals
were inbred. Again, simulating genetic data, we have cdeaf® datasets for each combination of
number of alleles and each ratio of untyped individuals.

The last pedigree we tested is even bigger. Itis composed2yi@dividuals and has been generated
with the tool QMSIM [12]. It is composed of 10 generations. eTlounders are 420 individuals (400
females and 20 males). We have tested the performan€elef on a Intel Core 2 Duo 3.00 GHz
machine equipped with 2GB of RAM and running Ubuntu Linux®(kernel version 2.6.31-21).

Figurel® shows the execution time @éler when the Lange-Goradia algorithm is executed. We have
put the number of alleles on the x axis and there is a line feryepercentage of untyped individuals
in the pedigree. Every dot in the graph refers to the averageution time of the 100 datasets for each
combination number of alleles-ratio of untyped individusie have used a logarithmic scale on the y
axis, and therefore the linear trend corresponds to an exyiath growth of the execution time when
the number of alleles is raised. We can note that, even ththegg@MSIM pedigree is composed by a
larger number of individuals than APE, the execution timessagnificantly lower. This could be due
to its simple and regular parental structure (see Table & foomparison). We have measured a very
low variance among the same 100 datasets, except when tHeenoiralleles is high and the percentage
of untyped individual is set to 50%. This effect is partiaiyaevident in benchmark APE. We reported
in Figure[6(d) the mean, and the first three quartiles of tleeetxon times ofCeler, when the ratio of
untyped individuals is 50% and the alleles are between 2@and

We have also tested the same benchmarks la&n executes the O’Connell and Weeks algorithm.
However, in many cases, the loop breakers selection dhgoris able to find only loop breakers that
have a single genotype. In this case, as we have seen inig&gicdhe O’Connell and Weeks algorithm
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Figure 6: The performance dfeler when the Lange-Goradia algorithm is applied: HQPS]6(a), APE
[6(B), and QMSIM6(Q). I 6(d) we show the quartile for the demark APE when the ratio of untyped
individuals is set to 50%, where we noticed a significantaraze.
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Benchmark % unknown AvgLB MaxLB AvgCases Max Cases

HOPS <50% 0.0200 2 0.04 10
50% 1.7622 10 686*  4.68.0°

QMSIM <50% 0.1175 6 0.18 240
50% 2.6978 19 955* 2.240°

APE <50% 0.1175 4 0.19 32
50% 8.398 172 4.020° 3.61-107

Table 2. The number of loop breakers and the number of casesajed by theplit functions. The mean
marked with (*) have been calculated excluding testcasés e@mbinatorial explosion (4 for HOPS, 8
for QMSIM).

OW Recursive and non - HOPS 50% OW Recursive and non - QMSIM 50%

35 20 -
K Non Recursive —— Non Recursive ——

25

15

' L
+ +
20 25 0

(a) (b)

Figure 7: The execution times of the O’Connell and Weeksrélyo for HOP7(d), and QMSIT 7(p),
when only half of the individuals in the pedigree are typed.

is equivalent to the Lange-Goradia. With a low rate of untypelividuals, the number of loop breakers
(from now on we consider only the loop breakers with more thaa genotype) is different from zero
only in some sporadic cases, and thus the average execimierot the O’'Connell and Weeks is very
similar to the Lange-Goradia one (the only difference behegloop breaker selection procedure). We
report in TabldR the average number of loop breakers anduhwer of cases generated by #pdit
function. As shown in the table, there is the risk of a comtanal explosion. When the ratio of
unknown individuals has been set to 50%, we could not comphlet O’'Connell and Weeks analysis
within 30 minutes of computations for 3 out of the 900 pedigref the HOPS benchmark and 8 out of
900 of the QMSIM benchmark, and for all the pedigrees of th&ABnchmark.

In Figure[T we have plotted the average executions of the @i€lb Weeks algorithm run on the
benchmarks HOPS and QMSIM when only half of the individuaks fgped. We can note that the
recursive version of the algorithm dominates the non-igearversion. However, the gap between the
twos is very small in QMSIM, due to the overhead of the badkireg procedure that nearly counter-
balances the advantage of executing fewer Lange-Goraulatidns.
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5 Comparison with other software

O’Connell and Weeks have implemented their algorithmséRbadcheck prograrml[9]. Pedcheck is able
to check Mendelian consistency in pedigree with differemels of accuracy (and therefore with different
computational requirements). Level 1 analysis is ablegoalier simple errors related to a single nuclear
family (a child and parent’s alleles are incompatible, miti@n 4 alleles in a sibship, or 3 if there is a
homozygous child). Level 2 correspond to Lange-Goradiardlgn. Level 3 and 4 provide a basic
support to error correction. Level 3 identifies the so-chtligtical genotypes (that is the individuals that,
if left untyped, make the pedigree consistent). Level 4 ireguo know the frequencies of the alleles to
estimate the most probable corrections.

At this time Celer is more precise than Pedcheck as regards to genotype dioninaut it does
not offer error correction capabilitie€eler is more precise because it can also perform O’Connell and
Weeks algorithm that we have seen is more precise than thget@oradia algorithm. Moreover, when
Pedcheck is applied to large pedigrees, even the Level 2p@-&oradia) phase, takes a considerable
amount of time. For example, consider the QMSIM benchma8k2( individuals and 4000 families).
Even with only 10% of untyped individuals and 5 alleles, ek needs about 10 minutes of com-
putation, while our program executes the Lange-Goradiariifign in less than 20 milliseconds. We
performed the same tests that we used on our tool and we foah&é&dcheck could complete the anal-
ysis in times comparable with ours only on the HOPS benchmatke report in Figur&€l8 the average
execution times ofCeler (with the Lange-Goradia algorithm) and Pedcheck (level &yeis) for the
HOPS benchmarks and ratio of untyped individuals varyimgnfrlO to 50%. We can see th@tler
always outperforms Pedcheck.

Mendelsoft11] is another tool that is able to check Meratettonsistency and perform error correc-
tion. Sanchez et al. model the Mendelian consistency pmoléh soft constraint networks and use a
generic weighted constraint network (WCN) solver. In thesythey are not limited to a single error and
can also correct pedigree with multiple errors. They evaltaeir tool with random and real pedigrees
composed of thousands of individuals and containing maryrer Even if we cannot directly compare
Mendelsoft withCeler (that does not have error correction capabilities), we aate that the memory
requirements of the WCN solver are very high. We have testedddlsoft with a machine equipped
with 2GB of RAM and in many cases the program crashed becégsanhount of virtual memory was
not sufficient. In particular, for the HOPS pedigree, Mesd#l do not complete with this amount of
RAM when the number of alleles is above 12.

6 Conclusions and future works

We have described the design and implementatioGetdr, a program that performs genotype elimina-
tion. The design of the program has been aided by a formatigdea of the problem that highlighted
the critical aspects of the algorithms and helped us to fiad#st data structures. We have measured the
performances of the program and we have found @leddr is able to cope with large pedigrees. In the
future, we would like to improve the working list selectiolyarithm of the Lange-Goradia elimination
procedure and to test different loop breakers selectioariéfigns on highly-looped pedigrees, such as
the one found in the APE test cases.
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Formal modelling of Multi-Agent Systems (MAS) is a challémg task due to high complexity,
interaction, parallelism and continuous change of rolesaganisation between agents. In this paper
we record our research experience on formal modelling of MAS review our research throughout
the last decade, by describing the problems we have encedraed the decisions we have made
towards resolving them and providing solutions. Much o$ thidork involved membrane computing
and classes of P Systems, such as Tissue and PopulationdmSysargeted to the modelling of
MAS whose dynamic structure is a prominent characteriiore particularly, social insects (such
as colonies of ants, bees, etc.), biology inspired swarrdssgstems with emergent behaviour are
indicative examples for which we developed formal MAS maedeHere, we aim to review our
work and disseminate our findings to fellow researchers wightrface similar challenges and,
furthermore, to discuss important issues for advancingareh on the application of membrane
computing in MAS modelling.

1 Multi-Agent Systems and Formal Methods

Software artefacts are characterised as agents if theyxtabiteautonomous, reactive, proactive and
social behaviour [37]. Autonomy is a property that allowsmtg to carry out their own thread of com-
putation, without (much) intervention. Reactivity is ntagsified as an intelligent behaviour, however, it
is essential to provide immediate response to the percaptsthe environment. Sometimes, reactivity
alone is more than enough to develop an emergent behaviasysteml[5]. The operation of intelligent
agents is driven by goals that are achieved through a segu#ractions planned. Such goal-oriented
(proactive) behaviour often involves a rather complexkdghtion process. Finally, agents are able to
communicate with other agents, a behaviour which leadséodntion between agents.

Multi-agent systems (MAS) consist of independent agerds ¢hn collaborate, negotiate, compete
etc. towards the achievement of personal or shared goalsS MA rather complex, highly interactive,
highly parallel and highly dynamic systems. Agents playedént roles in a MAS but they need to
exchange and share information and knowledge in order tagenim a common problem solving activ-
ity. This, apart from the need for certain communication sxteraction protocols, requires an effective
organisation between agents. Organisation in a MAS, sudcmaest roles, communication structure,
number of participating agents etc., is not static; it clesngll the time throughout its operation. These
dynamics make MAS a challenging software development iactifrhe more complex a MAS is, the
more difficult the modelling process turns out to be and, imseguence, the less easy it is to ensure cor-
rectness at the modelling and implementation level. Camess implies that all desired safety properties
are verified at the end of the modelling phase and that an ppate testing technique is applied to prove
that the implementation has been built in accordance toehéed model[[13].

To appear in:
AMCA-POP 2010 - Electronic Proceedings in Theoretical CotepScience (EPTCS)
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In software engineering the term formal methods is usedassifly mathematical approaches to all
stages of software development. The main arguments infafdarmal methods are rigour, expressive-
ness and the ability to reason. The latter led to the pronfigelivering correct software, i.e. software
that is developed based on formal specifications and preefified and tested), such that it performs
in a desired manner under all circumstances. There is atdispioether formal methods have deliv-
ered what they promised, i.e. correctness, but no one cae #ngt research and practice have shown a
considerable number of successes.

With MAS the issue of correctness is much more complicaiededVIAS are open systems, often ex-
hibiting unpredictable emergent behaviour, and orgaragednd a rather complex structure, with agents
that intensively communicate, continuously change rafesract etc. Therefore, formal modelling and
verification that lead to implementation, testing, and dation are challenging issues in MAS.

In our area of interest, formal modelling is particularhypapling as it raises many issues that cannot
be tackled in a straightforward manner and leave many opalfeciges. More specifically we have been
investigating, among others, the suitability of classeMefmbrane Computing systemnis [28] as means
of formal modelling of agents and MAS. We have mainly focused efforts to developing models
for biological systems with emergent behaviour or biologgpired systems. In this paper we record
our research experience on formal modelling for MAS. Weeaevihe last decade work, by describing
problems and their solutions. This is aimed at dissemigatirr findings to fellow researchers who might
face similar challenges. We also focus on important issoeeadvancing research on formal methods in
MAS further.

2 Case studies for Multi-Agent Systems

During the last years we have been researching on the forrodélimg of MAS. Before we start de-
scribing our cumulative experience, we will briefly sumrsarthe kind of MAS we have been dealing
with.

One class of MAS that was thought to be of particular intenest the biological systems and mostly
systems of social insects. Colonies of ants and bees asswadllagrouping fall within this category [35;
17;123;1201 11]. Both consist of relatively simple reactiggeats that if left alone there is nothing much
they can do. Organised as colonies, however, with roles madtar indirect communication exhibit an
emergent intelligent behaviour. For example, Pharaoh[8Bt&L7], apart from the pheromone trail they
produce to be used for foraging, they have a very effectiveafrarganising their work within the society
as well as help each other to survive by exchanging food. némgabees [23] contribute as individuals
to increase the temperature in a hive and burn the attaclongeh Foraging bees communicate the
destination of the food source by the famous dance of thenietyibeel[11]. Similar emergent behaviour
but with less direct communication among agents can be\agthi@ flocks, schools and herds|[31} 27].

The other class of MAS that we have been modelling are thoaeacterised as biology-inspired.
Such a system is NASA ANTSI[8], a MAS which deploys unmanneakceprafts with a variety of
specialisations to explore asteroids. More particulaspacecrafts are organised in groups, each one
consisting of a leader, multiple workers, and one or moresemgers. Workers are responsible for
gathering measurements, messengers for coordinating goication among all involved spacecrafts,
and leaders for gathering measurements from workersngeftials and coordinating group formations.
We chose ANTS because it provides a good testbed for appfgimgal methodsl[29]. The important
feature of ANTS is that there is a rather strict organisatidrich however is not affected even though
there might be a large number of spacecrafts out of ordersir@ed [33]. Robustness is a property of
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all swarm intelligence systems.

3 Key issues in the modelling of agents and multi-agent systes

Individual agents operate based on the following:

they perceive their environment by receiving stimuli asitnghich they filter and accept for further
processing;

they receive messages from other agents;

they update their beliefs based on both the percepts as wdlieainformation encoded in the
received messages, by revising their temporary knowletlgatahe environment and others;

they react based on a specific set of rules that describedodivbehaviours;

they engage in a deliberation process, which allows themmMise their goals and plans, and decide
what is the next action to be performed;

they compile and send messages to other agents;

they act and the effects of their action appear in the enment.

Not all the above are present in every agent. For exampletiveaagents do not deliberate, while
“smarter” proactive agents do. Also, communication betwample biological agents is rather primitive
and mostly done through the environment, in contrast to raladeorated direct communication that may
follow a strict protocol. Therefore, in order to create a mlaaf an agent, one would require:

non-trivial data structures, e.g. setmfuples, sequences, lists, terms, with a set of their corre-
sponding operations, to represent beliefs, goals, plaassages, percepts etc.;

means of encoding rules that express reactive behaviouchvalan also be arranged in a strict
order, e.g. avoid collisions, follow trail, forage;

means of encoding the functionality that corresponds tio gieactive behaviour (if such must be
present), such as revision of goals and plan generation;

representation of the internal state of the agent.

In a multi-agent system:

each agent operates in parallel with others;
the mode of interaction imposes the way in which agents exgdnanessages;
the roles and organisation define the structure of the coruation flow;

new agents may come into play while other cease to exist.

At MAS level, modelling would require:

ways to deal with exchange of messages between agents; @iteet or indirect through the
environment, deterministic broadcast, peer-to-peer ardeterministic etc.;

a way to express the interaction with the environment, thaiérception and action;
a method for expressing the asynchronous computation Midhgls;

the addition and removal of agent instances “on the fly”;
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e means for structuring and restructuring the organisatanthe fly” (structure mutation).

If the modelling method used is formal, then there are a nurnbeonsequences that accompany
this choice. First of all, formal reasoning on the model carpbrformed. This can be through formal
verification, either proofs or model checking. Formal veation [10] will check whether desired prop-
erties of individual agents, or ideally of the whole systetand. This is rather crucial before someone
proceeds with implementation. Secondly, one can emplopdbtesting techniques. A set of test cases
can be produced from the model to check whether the implatientis correct with respect to the model
[1€]. Thirdly, if the formal method is accompanied by togisptotype animation or simulation may be
possible([3]. This would facilitate the identification of snbnceptions in the model which can then be
fixed before proceeding to the implementation. Finally,teofeefinement transformations could safely
lead to an implementation of the system that matches thaatigpecification and model.

Table 1: Comparison of features of CXS, tPS, PCol and PPSresiect to modelling.
Modelling feature CXS tPS PCol PPS

Individual Agents

Agent internal state representation

Rules to describe reactive behaviour

Rules to describe proactive behaviour

Non-trivial data structures for beliefs, goals, messagg@suli etc
Formal verification of individual agents

Test case generation for individual agents

X X X X X X
X X X X <X
X X X X X X

LX<

Communication

Direct communication and message exchange
Non-deterministic communication

Indirect communication through the environment
Environmental stimuli (input)

Perception

MAS Structure

X <X X <
XL
XL X
XL X

Definition of agent roles Vv vooox Vv
Addition of agent instances on the fly X X X vV
Removal of agent instances on the fly X X X vV
Communication network restructuring X X X Vv
MAS Operation

Maximal parallelism Vv v Y vV
Arbitrary parallelism Vv v oV Vv
MAS verification and testing X X X X
Tool support Vv X X Vv

Environment

Modelling of the environment X VARV

<
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In our experimentation, we tried out two types of formal noetk, namely state-based methods and
membrane computing. For the modelling process we havetigagsd a number of instances of those
methods, such as X-Machines (XM) [9; 12] and Communicatirgachines (CSX)[21] for the former,
as well as tissue P systems (tPSS) [26], P Colonies (PCol)d2d]Population P Systemis [4] with active
cells (PPS) for the latter. Tablé 1 shows a comparison betvaflemethods, as to whether they can
satisfy —directly, not through implicit means— the key issuin MAS modelling mentioned above.
The comparison refers to the most widely used definitiond/@fmhodels. There are actually numerous
extensions that one way or another try to enhance the exidtifinitions with additional features. It
should also be noted that X-Machines are not included in timeparison as an X-Machine model may
only represent a single agent whereas in the table we confiparglisms that may be used for the
modelling of MAS.

4 Methods employed for modelling of MAS

After carefully considering the aforementioned altewegiand based on the comparison presented above
we selected to work with Communicating X-Machines and Paipuh P Systems with active cells, and
attempted a number of modelling approached for all the MAStmmeed above, e.g. biological cells,
flocks, ants, Pharaoh ants, foraging bees, Japanese bdeNA&A ANTS. The reason for selecting
CXMs is due its advantages in regards to the modelling of divitiual agent’'s behaviour. Out of the
three membrane computing formalisms we selected PPSs gtitle @ells due to the fact that they best
support operations on the MAS structure, such as additidrr@moval of agents as well as communica-
tion network restructuring.

A Communicating X-Machine Syste@XMS= (XM;,R), 1 <i < nis a collection ofn X-machines
XM; able to communicate through channels, as they defined indimeeinication relatiorR. More
particularly, anXM; is a deterministic stream X-machirie[13] defined as follows:

X=(Z,T,Q, M, ®, F, qo, M)

where:
e > andrl are the input and output alphabets, respectively.
e Qs the finite set of states.
e M is the (possibly) infinite set called memory.

o @isasetof partial functiong; each such function maps an input and a memory value to antoutp
and a possibly different memory valug,; 2 x M — I x M.

e F is the next state partial functioff, : Q x ¢ — Q, which given a state and a function from the
type @ determines the next state.is often described as a state transition diagram.

e (p andmyg are the initial state and initial memory respectively.

Note that the definition of aK M; that belongs to a communicating system is slightly differént
for reasons of exposition it is not appropriate to elabonatie.

As an example consider the case of the Pharaoh ants. A mogetermodel of this case study may
be found inl[30] but it is partially included here for demaasibn purposes.

The ants spend much of their in-nest time doing nothing, staging inactive. An ant may become
active when its food reserves drop below a defined minimuestiold.

The assumptions that are made in this study are the follawing
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M = ((10, 8), 70, 30, 10, 20)
T

i M = ((10, 9), 10, 20, 5, 10)
ANT; ™% ]

1

:

(10, 8), 20)

message >
take EnoughfFood
ANT,
An inactive ant with enough food An active ant

Figure 1. An example of a Communicating X-machine modelling exchange of food between two
ants.

e the colony only consists of workers;
e the nest, in which the colony is situated, is a rectangulair@mment (2D grid);

e the ants are either inactive or move around looking for fdbdo food is found, they go outside
the nest to forage and identify (new) locations for food;

e when two ants meet they might share food, if one is activedydeng for food and the other has
food reserves;

e the ants go out to forage when they do not have sufficient fesdrves (according to the food
quantity threshold), no food source is identified and a pherte trail leading to an exit of the nest
is discovered:;

e ants that are outside may enter the nest at any time.

M=(position, food, fThreshold, fDecayRate, fPortion)

ANT search w w followTrail
[ Active die
A ﬂ meetinactiveAnt
becomeActive ignoreActiveAnt takeNotEnoughFood
doNothing Inacti
takeEnoughFood
nofFoodToGive
. giveFood
meetActiveAnt

Figure 2: An example of an X-machine modelling a Pharaoh ant.



P. Kefalas & I. Stamatopoulou 77

An example of a Communicating X-machine in regards to thevalutescription is depicted in Fig.
@ and shows how two ants communicate by sharing food. Théweeamnt's functiongiveFoodsends as
output the food amount it is willing to share to be receiveihasit by thetakeE noughFoodunction of
the active ant. Fid12 shows the state transition diagrarheXt model of one individual Pharaoh ant.
A Population P System with Active Cells [4] is defined as a tuas:

P: (V7 K7 V7 a,WE,C]_, C27 "'aCrh R)

where:
V is a finite alphabet of symbols called objects;

K is a finite alphabet of symbols, which define different typmstiie cells;

a is afinite set of bond-making rules of the general fatmg ; X2, p), with X3, X € V*, andt, p€ K;
y=({12,...n},A),withAC {{i,j}|1<i+# j <n},is afinite undirected graph;
we € V* is a finite multiset of objects initially assigned to the eoniment;

Ci = (w;,t), for each 1< i < n, with w; € V* being a finite multiset of objects, amds K the type
of celli;

Ris a finite set of:

— communication rules of the form: (a; b,in), r : (a; b,enter), r : (b,exit);, foraeV U
{A}, beV,teK, which allow the moving of objects between neighbourindscet a cell
and the environment according to the cell type and the egigibnds among the cells;

— object transformation rules of the form (a — b)¢, forae V, b e V™', t € K, meaning that
an objecta is replaced by an objettwithin a cell of typet;

— cell differentiation rules of the form: (a); — (b)p, with a,b € V, t,p € K meaning that
consumption of an objeetinside a cell of type& changes the cell, making it become of type
p. All existing objects remain the same besidashich is replaced by;

— cell division rules of the formn : (a); — (b): (¢)t, with a,b,c €V, t € K meaning that a cell
of typet containing an objeca is divided into two cells of the same type. One of the new
cell hasa replaced byb while the other byc;

— cell death rules of the form: (a); — T, witha eV, t € K meaning that an objeetinside a
cell of typet causes the removal of the cell from the system.

An example of a Population P System modelling tumour growtHepicted in Fig[d3 (model de-
scription borrowed from the NetLogo models libraryl[36];@mplete system definition using PPS may
be found inl[30]).

A tumour consists of two kinds of cells: stem and transitagllsc It is a stem cell that is required
for the formation of the tumour to begin. At each time unit@lls divide thus doubling the size of
the tumour. Stem cells may divide in two ways: ésymmetricallythus breeding a transitory cell that
moves outward, and (Bymmetrically breeding another stem cell which also moves outward atlidset
in another location thus creating a metastasis of the @idgumour. In effect, a stem cell never dies as
during division one of the two daughter cells is always a steih

Transitory cells divide only symmetrically up to a certageaafter that age they mature and eventu-
ally die. Finally, transitory cells that have originatedrir a metastatic stem cell, called metatransitory,
as well as all their offsprings die younger.

Each cell type has its own objects and rules. For instandeigifd Cs is astemcell with two rules
according to the given example: a transformation rule teptasents the cell's ageing by increasing it
by 1, and a division rule that divides the cell in two creatangew cell in positiorpos with an age of 0.
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"'/ :15

pos: (3,6)

Rs (age — (age+1))sem
(Pos,age)stem —
(D0S,ag€ )stem (POS , 0)metastem

Rs

Ws I( deathAge)metaTransitmy -7

metaTransitory

Figure 3: An example of a Population P Systd®n;set of rules related to cell;; wi: multiset of objects
associated to cefl;.

5 Synthesised Methods and Transformations

It is apparent that the two types of methods (state-basedrembrane) are complementary to MAS
modelling needs, something which led us to some kind of ®sihof the two. We attempted a potential
integration of the two as an instance of tBPERASramework [30].
TheOPERASormal framework for defining a dynamic multi-agent systéndefined by the 6-tuple
(O,P,E,R A, S) where:
e O contains the reconfiguration operations (or rules, e.gh®eneral forntondition=- action).
Each operation involves the application of one or more ofdperators that create or remove a
communication channel between agents or introduce/reranagent in/from the system;

e Pis the distributed union of the percepts of all the types afraig involved in the system;

e the communication relatioR : A x A with (Aj,Aj) € R, A,Aj € A conveys the information that
agentsAj, A; can communicate by exchanging messages;

e E is a model of the environment;

e Ais the set of agent instancés= {A1,...A,} whereA is an agent instance defined in terms of
(a) its individual behaviour, and (b) its local structuralitation mechanism for reconfiguring the
system structure in its proximity;

¢ the setS= {(Behaviour, StrMut) |t € Typeg holds the definitions of agent typeBy(pesheing a
set of identifiers of the types of agents).

In OPERAS the behaviour of an agent can be modelled sepafabeh its control. In principle,
this means that one can employ two different formal method®éch, thus taking advantage of both
state-based models and membrane computing ideas. It efdheimplied that there are several options
which could instantiate OPERAS into concrete modellinghrods. As mentioned above, we have long
experimented with Communicating X-machines and Populd®&ystems with active cells, thus result-
ing into hybrid models such @BBPERAgSc [34] andOPERARc [33]. The former uses PPS features for
both modelling the dynamics and the behaviour of the agastis abstractly depicted in Fig. 4.

OPERASc on the other hand is a combination that uses state machindsefbehaviour and PPS-
like rules for the organisation of the system, as is abdyraepicted in Fig[b. This gave us the oppor-
tunity to combine the advantages that XMs have in terms ofettiod the behaviour of an agent with
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Percepts P
A for behaviour  for structural mutation A;

Environment E

[ Behaviour part
[ Structural mutation part

............................................................ | [ W™ (o, 1) W' K), ...} |

Figure 4: An abstract example of PERASc model that uses Population P System concepts for the
representation of both the agent’s behaviour and struclgmamics.

the advantages that PPSs have in terms of defining the corntothe structure of the system. Also, the
computation is driven by either method, which leads to aetgif interesting overall MAS computation.
For a complete case study modelled usBIBE RAKc the interested reader is referredita [30].

Percepts P

for behaviour  for structural
mutation

message

R

Rules O

CXi

Computation states: (q,m,p)

Environment E
AgentA;

Figure 5: An abstract example of @PERASc model that uses state machines for the behaviour and
PPS-like rules for the organisation of the system.

We have also attempted a number of transformations betweemtnicating X-Machines and P
Systems and vice-versa [19; 23]. Others in the P systemridseammunity showed more interest in
other transformations, such as from P Systems to Petri BBisjrocess algebral [6], cellular automata
[[@] etc. These have not only demonstrated the equivalenttgesé methods but created a temptation to
try out several techniques known for one method to the other.

In the development of the MAS models, two notations have beegited, namely X-Machine Defini-

tion Language (XMDL)I[18] and Population P System Definitlanguage (PPSDL) [32]. The accom-
panied tools assisted us in understanding in depth thelbletaviour of the developed models through

textual animation.
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6 Discussion and Open Issues

There are several open issues that are left for further mresem MAS development, namely formal
modelling, verification, testing and tool support.

With respect to modelling, the effort to define a specialcleEP Systems should continue. The
new class must employ all features that will facilitate agamd multi-agent system modelling. The
computation within cells must be enhanced so that it cam sfsme complex reasoning required for goal-
oriented agents. Such an attempt may inevitably restrigimme parallelism for the sake of correctness
of the behaviour of agents as well as of the whole system. Aialifirst attempt can be found &t [22].
There is also room for development of the perception of ther@mment, since inserting an object into
the cell may not be enough in realistic systems. MAS reseasoliould also like to see built-in features
towards formal modelling of interaction between cells.

So far, there have not been useful results reported for eatifin of MAS models. Although verifi-
cation of individual agents is possible, verification of tteamplete MAS seems like an insurmountable
obstacle. The obvious reason is the combinatorial expigsioblem due to the number of interactions
that increase the state space in an exponential manner.ultdviee worth investigating whether there
exist methods that work under specific harmless assumptii@isould omit non-safety properties and
reduce the search space. Finally, model checking techsifgud® systems is an interesting area open for
research developments. A direction towards model checkmgd be the automatic or semi-automatic
translation of models into code, for model checkers suchPdbl §i14] or SMV |2].

If formal verification seems hard to achieve, informal tdghes, such as simulation have a lot
to offer |1]. Suitable and correct transformations of fofmmadels could lead to executable models
that simulate MAS. In turn, simulation can facilitate thealivery of erroneous situations or undesired
behaviour of the system. For numerous types of MAS, biolagppired included, visual animation is
highly desirablel[36;_35].

Finally, although there exist testing techniques that dentify all faults in the implementation of an
individual agent developed based on state-based modeis, ithlittle work done towards the testing of
membrane systems [15]. Inevitably, it would appear to beadl@hge to invent equivalent techniques for
the whole multi-agent system.

7 Conclusion

We have presented a review on the use of Population P Systéimaative cells in Multi-Agent System
modelling. In the process of developing formal models of MA@ discovered a number of challenging
issues that could partly be addressed by state based modgtsely by membrane computing models.
These characteristics were pinned down together with thdadle features of various methods that
could make modelling possible. The synthesized solutisaggspace to a number of challenges, such as
verification, testing and simulation. With this review, wieanpted to disseminate our findings, initialise
discussion that will set up directions of future research.

References

[1] The P Systems Webpage — Softwate://ppage.psystems.eu/index.php/Software.
[2] SMV: Symbolic Model Verifiehttp://www-2.cs.cmu.edu/ modelcheck/smv.html.



P. Kefalas & I. Stamatopoulou 81

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

(2007). FLAME: Flexible Large-scale Agent Modelling Environmehttp://www.flame.ac.uk/.

F. Bernardini & M. Gheorghe (2004 Population P SystemsJournal of Universal Computer Sci-
encel0(5), pp. 509-539.

R. A. Brooks (1991):Intelligence Without Reasonin: J. Myopoulos & R. Reiter, editorsPro-
ceedings of the 12th International Joint Conference orfididl Intelligence (IJCAI'91) Morgan
Kaufmann publishers Inc., pp. 569-595.

G. Ciobanu & B. Aman (2007)On the relationship between membranes and amhi@wsSystems
91(3), pp. 515-530.

D. Corne & P. Frisco (2007).Dynamics of HIV Infection Studied with Cellular Automatadan
Conformon-P system®ioSystem$1(3), pp. 531-544.

S. Curtis, J. Mica, J. Nuth, G. Marr, M. Rilee & M. Bhat. @0): ANTS (Autonomous Nano Tech-
nology Swarm): An Artificial Intelligence Approach To AsidrBelt Resource Explorationin:
Proceedings of 51st International Astronautical Congilessrnational Austronautical Federation.

S. Eilenberg (1974)Automata, Languages and Machinéscademic Press.

E. A. Emerson & E. M. Clarke (1981 haracterising correctness properties of parallel progra
as fixpoints In: Proceedings of the 7th International Colloquium on Autandianguages and
ProgrammingLecture Notes in Computer Scier@®, Springer-Verlag, New York, pp. 169-181.

M. Gheorghe, M. Holcombe & P. Kefalas (2000omputational Models of Collective Foraging
BioSystem$1, pp. 133-141.

M. Holcombe (1988):X-machines as a Basis for Dynamic System Configuratffwftware Engi-
neering Journd(2), pp. 69-76.

M. Holcombe & F. Ipate (1998)Correct Systems: Building a Business Process Solugqminger-
Verlag, London.

G.J. Holzmann (2004)fhe SPIN Model Checker: Primer and Reference Manfdtison-Wesley.

F. Ipate & M. Gheorghe (2009)esting non-deterministic stream X-machine models andtess
Electronic Notes in Theoretical Computer Scie@eé&, pp. 113-126.

F. Ipate & M. Holcombe (1997)An Integration Testing Method that is proved to find all fault
International Journal of Computer Mathemat&3), pp. 159-178.

D. Jackson, F. Ratnieks & M. Holcombe (200@oupled computational simulation and empirical
research into the foraging system of Pharaoh’s ants (MorramoPharaonis) Biosystems/6, pp.
101-112.

E. Kapeti & P. Kefalas (2000)A Design Language and Tool for X-machines Specificatibm
D. I. Fotiadis & S. D. Spyropoulos, editorgdvances in InformaticsWorld Scientific Publishing
Company, pp. 134-145.

P. Kefalas, G. Eleftherakis, M. Holcombe & M. GheorgB8@3): Simulation and Verification of P
Systems through Communicating X-MachinB®Systems0(2), pp. 135-148.

P. Kefalas, G. Eleftherakis, M. Holcombe & I. Stamatojou (2005): Formal Modelling of the
Dynamic Behaviour of Biology-Inspired Agent-Based Systém M. Gheorghe, editorMolecular
Computational Models: Unconventional ApproacHdea Publishing Inc., pp. 243-276.



82 Modelling of Multi-Agent Systems: Experiences with MemiieaComputing and Future Challenges

[21] P. Kefalas, G. Eleftherakis & E. Kehris (200todular Modelling of Large-Scale Systems Using
Communicating X-machine#: Y. Manolopoulos & S. Evripidou, editorg?roceedings of the 8th
Panhellenic Conference in Informati¢svanis Publishing Company, pp. 20-29.

[22] P. Kefalas & I. Stamatopoulou (2010Towards modelling of reactive, goal-oriented and hybrid
intelligent agents using P Systemis: 11th International Conference on Membrane Computing
Submitted.

[23] P. Kefalas, I. Stamatopoulou, I. Sakellariou & G. Bheftakis (2009) Transforming Communicat-
ing X-Machines into P SystemNatural Computing(4), pp. 817-832.

[24] J. Kelemen, A. Kelemenova & G. Paun (2004review of P colonies: A biochemically inspired
computing model In: M. Bedau et al., editorProceedings of the 9th Intern. Conference on the
Simulation and Synthesis of Living Systems (Alife [X)p. 82—86.

[25] J. Klein & M. Koutny (2007): Synchrony and asynchrony in membrane systdmsH. J. Hooge-
boom, G. Paun, G. Rozenberg & A. Salomaa, editdvembrane Computing, 7th International
Workshop, Leiden, Holland_ecture Notes in Computer Scieng861, Springer, pp. 66—85.

[26] C. Martin-Vide, Gh. Paun, J. Pazos & A. Rodriguez-Paf®003): Tissue P Systems heoretical
Computer Scienc296, pp. 295-326.

[27] O. Paunovski, G. Eleftherakis & A.J. Cowling (2008ramework for empirical exploration of
emergence using multi-agent simulation: S. Stepney, F. Polack & P. Welch, editoBroceedings
of the 1st Workshop on Complex Systems Modelling and SinangiCOSMOS’08)pp. 1-31.

[28] G. Paun, G. Rozenberg & A. Salomaa (2010he Oxford Handbook of Membrane Computing
Oxford University Press, Inc., New York, NY, USA.

[29] C. Rouf, A. Vanderbilt, W. Truszkowski, J. Rash & M. Himey (2004): Verification of NASA
Emergent Systemsin: Proceedings of the 9th IEEE International Conference onirteeging
Complex Computer Systems (ICECCS’Odp. 231-238.

[30] I. Stamatopoulou (2008)A Formal Framework for the Modelling of Multi-Agent Systewith
Dynamic StructurePh.D. thesis, University of Sheffield, UK.

[31] I. Stamatopoulou, M. Gheorghe & P. Kefalas (2009pdelling dynamic configuration of biology-
inspired Multi-Agent Systems with Communicating X-maehiand Population P Systemsn:
Membrane Computing: 5th International Worksha@cture Notes in Computer Scien8865,
Springer, pp. 389-401.

[32] I. Stamatopoulou, P. Kefalas, G. Eleftherakis & M. Gigtw (2005):A modelling language and
tool for Population P Systemsn: Proceedings of the 10th Panhellenic Conference in Infaosat
(PCI'05).

[33] I. Stamatopoulou, P. Kefalas & M. Gheorghe (2000PERAS: a Formal Framework for Multi-
agent Systems and its Application to Swarm-based SystemA. Artikis, G. O’'Hare, K. Stathis
& G. Vouros, editors:Proceedings of the 8th International Workshop on EngingeS8ocieties in
the Agents World (ESAW’07)pp. 208-223.

[34] I. Stamatopoulou, P. Kefalas & M. Gheorghe (200@PERASgc: An instance of a Formal Frame-
work for MAS Modelling based on Population P SystemsG. Eleftherakis, P. Kefalas & G. Paun,
editors: Proceedings of the 8th Workshop on Membrane Computing (WIM{ZSouth-East Euro-
pean Research Centre, pp. 551-566.



P. Kefalas & I. Stamatopoulou 83

[35] I. Stamatopoulou, I. Sakellariou, P. Kefalas & G. Bieftakis (2008) OPERAS for Social Insects:
Formal Modelling and Prototype SimulationSpecial Issue oRomanian Journal of Information
Science and Technology (ROMJIS®h Natural Computing — from biology to computer science
and back to applicatiorsl(3), pp. 267—-280.

[36] U. Wilensky (1999)NetLogo. http://ccl.northwestern.edu/netlogo. Centedonnected Learning
and Computer-based Modelling. Northwestern Universitigriston, IL.

[37] M. Wooldridge & N. R. Jennings (1995)ntelligent Agents: Theory and PracticeKnowledge
Engineering Revievk0(2), pp. 115-152.



A Process Calculusfor Spatially-explicit Ecological Models

(Extended Abstract)
Xenia Efthymiou Anna Philippou
Department of Computer Science
University of Cyprus
cs06ep@s. ucy. ac. cy annap@s. ucy. ac. cy

In this paper we propose PALPS, a Process Algebra with Loesifior Population Systems. PALPS
allows us to produce spatially-explicit, individual-bdsaeodels and to reason about their behavior.
Our calculus has two levels: at the first level we may definebibleavior of an individual of a
population while, at the second level, we may specify a sysie the collection of individuals of
various populations located in space, moving through tlifeircycle, traveling autonomously in
space and interacting with each other in various ways supheggng on each other. We describe the
syntax and the semantics of PALPS and we illustrate its egipiity via simple examples.

1 Introduction

During the last years we have witnessed an increasing temards the use of formal frameworks for
reasoning about biological as well as ecological systematjdling process algebras [13] L4} 10], cellular
automatallb] andP-systems|IB]. Process algebras, first proposed_ih[l12, 7diddahe understanding
and reasoning about concurrent systems, have proved tapravnumber of features that make them
amenable towards capturing biological processes. Ingodati process algebras are especially suited
towards the so-called individual-based approach of mngeiopulations as they enable one to describe
the evolution of each individual of the population as a pssceand, subsequently, to compose a set of
individuals (as well as their environment) into a completelegical system. Features such as time,
probability and stochastic behavior, which have been aitely studied within the context of process
algebras, can be exploited to provide more accurate moabie associated analysis tools can be used
to analyze and predict their behavior.

In this work, our aim is to introduce a process-algebraiecnerevork equipped with the notion of a
location to enable spatially-explicit modeling of ecological syste In particular, we propose a domain-
specific process algebra which associates individuals initiimation about their position and thus al-
lows to explore location-dependent behavior of a poputasigstem. There exists a variety of existing
work which introduces location behavior into formal franmeks. Amongst them, we mentionl! [2,[8, 1]
which introduce the concept of a location into frameworkgaligped for reasoning about biological pro-
cesses, whereas relevant proposals that introduce losdtioprocess algebras for reasoning about ad
hoc networks can be found in11,[6, 9]. The novelty of our ps&d is that it associates location infor-
mation with population-system specific behavior such asodiction and preying. In the next section
we present our process calculus and in the final section wauagwith remarks on future work.
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2 TheProcess Calculus

In our calculus, PALPS (Process Algebra with Locations fopifation Systems), we consider a system
as a set of individuals operating in space, each possessipgciées and a location identifier. Movement
in the calculus is modeled via a specialized action whoszeif to change the location of an individual,
with the restriction that the originating and the destimatiocations are neighboring locations. The
notion of neighborhood is implemented via a relatlh where (¢,¢') € Nb exactly when locationg
and/’ are neighbors.

2.1 The Syntax

We continue to formalize the syntax of PALPS. We begin by dest the basic entities of the calculus.
We assume a set of channéll, ranged over by, b, as well as a set of locatioisoc ranged over by

¢, 0. Furthermore, we assume a set of special laBe&lsrresponding to the species under consideration,
ranged over b, S. To model preying, we also assume the existence of a relRtienC S x S, where
(s,9) € Prey if individuals of species prey on individuals of species.

Our calculus also employs a set of logical expression ramyed bye. One of our main aims
being to facilitate reasoning about spatial-dependenavieh these conditions are intended to capture
environmental (location-relevant) situations which méga the behavior of individuals. Since, in the
present form of PALPS, locations are not associated witheamyronmental factors (e.g. temperature),
the only useful properties individuals may observe condeennumber of individuals of the same or
another species co-existing within the same location. JWasconsider expressiomsto be built using
the logical connectives and— and the basic expressiofs@/) i ¢, wherec is a natural number and
<€ {=,<,>}, the intention being thafs@/) < ¢ expresses that the number of individuals of species
s are equal to / less than / greater thanWe also write @ < ¢ to denote that the total number of
individuals of all species anes c. We then writeS |~ e for a population syster® and an expressioe,
exactly wherSsatisfiese. The relation= is defined by induction ogin the natural way.

The syntax of PALPS consists of three levels: (1) the indigidevel (ranged over bR ), (2) the
species level (ranged over B and (3) the system level (ranged over®y Their syntax is defined via
the following BNF’s

P = 0|nP|PL+P| cond(e1>Pr,...,en>PR) | C
R = laP
S = 0| P[sf] [ R[s] | [ [S\L ][

whereL C Ch, C ranges over a set of process constafiteach with an associated definition of the form
c P, where the nod® may contain occurrences Gf as well as other constants, and

n:=alalmovel prey| /.

Beginning with thandividual level P, theO process represents the inactive individuplP describes
the individual who first engages in activity and then behaves & Activity n can be an (input) action
on a channeh, written simply asa, a complementary (output) action on a chanmeh, a movement
action,move, a preying actionprey, or a time-passing actior/. Actions of the forma, anda, a € Ch,
are arbitrary actions performed by an individual e, and they are also used to model reproduction. A
/ action measures atick on a clock and is used to separatedegitounds of an individual’s behavior.
Essentially, given a system, the intention is that in anyegitime unit all individuals perform their
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available actions, possibly synchronizing as necessay, they synchronize on their nexy action.

P1 + P, represents the nondeterministic choice betweeandP,. The conditional processond (e; >
Pi,...,en> Py) presents the conditional choice between a set of procegdeshaves a$, wherei is

the smallest integer for which evaluates tarue. Finally, process constants provide a mechanism for
including recursion in the calculus.

Moving on to thespecies level, we note that during their life cycle, individuals mpgoduce off-
springs. To capture the creation of new individuals, we emphe specialkpecies processeRR. R,
defined asd.P, is a replicated process which may continuously receivatitirough channed. This
will result in the creation of a new individu&. Such inputs will be provided by individuals in the phase
of reproduction.

Finally, population systems are built on the basis of logatelividuals,P:[s, ¢]], wheres and? are
the species and the location of the individual, and speCigs], wheres is the name of the species.
Furthermore S\L models the restriction of the use of channels inLsetithin Sand [ is the closure
operator. This operator is applied at the highest level affaufation system and its semantic significance
is that it allows us to select the valid behavior of the systeased on the conditions that the system
satisfies, as expressed in the semantics of the calculus.

As an example, consider the model described in [2] where af $edlividual live on ann x n lattice
of resource sites and go through phases of reproduction igpdrdal. Specifically, the studied model
considers a population where individuals disperse in spatke competing for a location site during
their reproduction phase. They produce an offspring ontlgaly have exclusive use of a location. After
reproduction the offsprings disperse and continue indefinthe same behavior. In PALPS, we may
model the described specigas rep.P, where

P %' move./.cond (@ = 1> Py;else /.P)

P def rep../.PL+T1ep.rep./.P1

We point out that the conditional construct allows us to deiee the exclusive use of locatiahby
an individual whereslse is used as a shorthand tqs@¢ = 1). Furthermore, note thd&® models the
nondeterministic production of one or two offsprings of smecies. During the dispersal phase, an
individual moves to a neighboring location which is chosendeterministically, as prescribed in the
semantics of the next Section. Then a system containing @findividuals at a locatiod and one in
location? can be modeled dB:[¢, 5] |P:[[¢, s] |P:[[¢', ]| |('rep.P):[[s]]-

To model a competing specigswhich preys ors, we may define the procesep’.Q, where

Q % cond (s@¢ > 11 prey./.Quelse /.Qy)
Q1 rep’.v/.Q
Q2 cond (S@¢ > 11> prey.,/.Q1;else y/.die0)

This species looks for a prey. If it succeeds it produces fapiofg. If it fails for two consecutive time
units its dies.

The notion of food at a location may also be modeled in PALP&h#&nneleat is employed to model
eating and, for example, a food source at locatiof amountn which replenishes everytime units can
be described asoody;:[[f, (], where

eat.Food;_1 ; ++/.Food; j_1 ifi>0,j>0
Food; ; ©'{ \/.Food; j_; if i =0
Food if j=0

def

def
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2.2 The Semantics

The semantics of PALPS is defined in terms of a structuralatiperal semantics, which is given at two
levels in Tables 1 and 2. The rules of Table 1 describe theviimhef individuals in isolation whereas
the rules in Table 2 the behavior of complete systems. Aitianf P has the fornP & specifying
thatP can perform actiom under conditiore and evolve intd®'.

Table 1:Transition rulesfor individuals

(Ni)  0™Yo (Acty n.P™Ip

PE%Rlie{1,2)
PL+P 25 R

ea
(Const) P—P cdfp

c4p

(Sum)

RELR.e=an(/\-e)

(Cond) =
cond (1 >Py,....en>P) — P

Axiom (Nil) specifies that the inactive process may allow time to pastew#diom (Act) states
thatn.P can always execute actiopand evolve tdP. Rules(Sum) and(Const) express the semantics
of nondeterministic choice and process constants in theatad way, wheréCond) stipulates that a
conditional process may perform an (conditional) actiooarftinuation® assuming thag evaluates to
True and alkj, j <i are false.

Moving on to the higher level of the semantics, a transitib8 loas the forns =% S, signifying that
Scan perform actiom under conditiore and evolve intd®, where actionsr embed in them information
about the location and the species taking part in the tiansiPreciselya can have one of the following
forms:

e N @Il denotes the execution of actignat location/.

e prey,s@l denotes the execution of a prey action at locatidsy an individual belonging to the
speciess.

e 7@l denotes the internal action, which arises when two compiaing actions take place at the
same locatiort.

¢ / denotes the time passing action.

Note that in the rules below we wrifg to range over all) actions with the exception of the specialized
actionsmove and prey which are treated separately.

To begin with, rule(Loc) embeds location information to actions of a located pracégsxt, rule
(Move) specifies that a located process may nondeterministicalyento any neighboring location.
Rules(Parl) and(Par2) stipulate the semantics of the parallel composition coustftheir symmetric
versions are omitted. Rul@Rep), illustrates the semantics of the replication construcereHve may
observe how the generator of new individuals may create dowated individual of a species while itself
remaining in the environment for further use. Note tfatP):[[s] can communicate with individuals at
all locations and the newly-instantiated individual acgsithe location of its parent. Moving on to rule
(Prey) we may see how a preying individual may kill an individual a§@ecies on which it preys. Rule
(Hide) implements restriction of the set of channeld.iand rule Close) distills only those transitions
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Table 2:Transition rulesfor systems

°f PE"P (4.0) eNb
(Loc) P——P (Move) e
P:[s, €] 22 P [s.4] P[s, €] ™% P[5, ]
en@/’ e,a@! ead!
(Parl) S5 e@} S (Par2) S — e%’efzr — S
SIS — SIS SIS — 8IS
(Rep) (€ Loc (Prey) soPese g ¢ € Preys(s
(taP):[s] "2 Pi[s €] | taP):[s] P:[s.¢] | S—S
, sy né{aaacl} sy Ske
(Hide) ’ : (Close) =—rerar—
S\L®"@ s\ genel g

e 2%
(Time) L— j;j@*g’z
S® ' 88

of a system whose conditions are satisfied in the currerg efahe population system. Finallylitne)
imposes a synchronous nature to the time-passing agtion

3 Concluding remarks

This paper reports on work in progress towards the developofea process calculus for the spatially-
explicit and individual-based modeling of ecological gyst. In future work we intend to extend our
study by developing the theory of the calculus and intraglyigrobabilistic behavior. Most importantly,
we plan to implement a tool to accompany our language foopmiifig simulations and possibly analysis
of modeled systems. In related work, we have in fact impldetea prototype tool for a variant of the
calculus containing probabilistic choice, locations, Ement and reproductionl[4]. As our experiments
have shown, and as one would expect, the notion of locatimeases the burden of evaluating systems.
Thus, our future work will also have to concentrate on primgcbptimizations for system analysis.
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The aim of this work is evaluate the applicability of prodahic model checking as an analytic tool
for understanding the dynamics of ecological models. Weaedhat a specialist can obtain useful
insights, as the results of the analyses is exact as oppostbsical deterministic models. However,
in order to combat the high computational costs additioes¢arch is necessary.

The formalism used to model the population by individuasdzhapproach is stochastic sync-
automata. We employ the PRISM probabilistic model cheakewaluate the logic-based properties.
As case studies we considered the models for infectiouaskseith droplet contact route of trans-
mission and also vector-borne transmitted diseases.

1 Introduction

Mathematical modelling of the progress of infectious ds&sagives the means to discover the likely
outcomes of epidemics or helps manage them by vaccinatioraede of large populations deterministic
approach using differential equations can be employed.eNecently, individual-based methodology
has been applied to study the epidemic dynamics. Althoughpatationally quite expensive, it has an
ambition to account for stochastic effects characterisungh dynamics in small populations. Individual-
based models, thanks to their similarity to systems of ftiing agents, allow benefitting from analysis
methods originally developed in computer science.

In this work we attempt to apply such a technique, probatilimodel checkingl]10], to study com-
partmental population models. These are utilised for mamproon childhood diseases that confer
long-lasting immunity.

In particular, we start by presenting a modelling languaagléed sync-programs [3] originally de-
veloped for description of biological systems such as digigapathways. It can well serve as agent
description language, where each individual is modelled ipite-state automaton. To represent in-
teractions, synchronisation is utilised. The approacingsermulti-way synchronisation if needed. For
the purpose of the application to epidemiology, the languiags been stochastically extended: each
interaction is enriched with rates determining the likelgt of the related event.

We present the framework on two models. The firstis a compartah modeSIRfrom the literature
and where only hosts are modelled — each individual by onensaton. This model describes well the
progress of infectious diseases with droplet contact rofiteansmission such as measles, mumps and
rubella [12]. The other modeWlectSIR demonstrates the dynamic aspect of the description |lgegua
namely of creation of new automata in the runtime. This apgincserves for investigating epidemics of
diseases with vector-borne transmission. Vectors aren@ge that do not cause disease themselves but
that transmit infection by conveying pathogens from ond tmanother. Even though not supported by
exact data from field studies, we believe these models ctriitly be employed for studying tick-borne
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encephalitis, Chikungunya (vector mosquitoes), Pappé&aer (vector sandfly) and diseases caused
by Rickettsia bacteria like rickettsialpox, Boutonneuseef and various spotted fevers (transmitted by
ticks, fleas and lice).

The analysis is done via probabilistic model checking, enfdrverification technique for analysis of
systems that exhibit stochastic behaviour. It consistsiifization, based on exhaustive exploration of
the constructed model, of quantitative properties specifigorobabilistic logic.

We are able to check properties regarding the behaviourabf papulation over time, as for instance
to identify conditions for the outbreak of the infection ordemonstrate the retreat of the epidemic. Note
than in contrast to simulation approaches with a limited benof traces we obtain exact results based
on inspection of all possible behaviours of the systempgigtrong formal guarantees.

2 Stochastic dynamic sync-programs

First we describe dynamic sync-prograrnis [3]. Then, for thepse of modelling the progress of an
epidemic in a population, we introduce a stochastic extensf these programs.

2.1 Dynamic sync-programs

In order to model an epidemic in a population, we use a comudgsed approach. Each component
represents an individual, e.g. a host (human, animal) octre

We assume a finiteet of component types CWith every component typea setAR of atomic
propositionsis associated, encoding the state of component of that Tpesets of atomic propositions
are pairwise disjoint for all the types, i.e.iift j thenAR N AP, = 0. We assume a functidype: AP —
CT that for an atomic proposition frolAR gives its typd. We override the function with its lifting to a
set of atomic propositions.

A component is modelled by a finite-state machine called-syriomaton.

Definition 1. A sync-automaton Awherei is a type, is a tuple
(5,9, SG,CC,R) where:
e S C Z(AR) is the set obtates
e § C S is the set ofnitial states
e SGis a set of labels of the formye Ux:Vk whereLl C N and for everyk € L there is aj such that
Uy, Vk are sets of atomic propositions drawn fré, or their negations. A label froi8G is called
asynchronisation condition
e CG is a set of labels of the formyxW whereK C N and for everyk’ € K there is aj € 1 (i)
such thawy; is a set of atomic propositions drawn frohf; or their negations. A label frol68G
is called acreation condition
e R C S xSGxCG x § are themovedetween states.

Each state of a sync-automatshis a truth value assignment to atomic propositions of corepbn
typei. Each move is labelled by a synchronisation condiorand by a creation conditionc. We
denote a move from stat to statet; with labelsscandcc by s =% . This move intuitively means

cC

that automatord can move froms to t; if there are concurrently performed moves of sync-automata
satisfying conditiorsc Note that in this way multi-way synchronisation can be oletd. Moreover, by
performing the move, automata describedcbyre created.

The synchronisation condition is a label in the form/qf Ux:Vk and specifies requirements for
automata to synchronise with. For evérin L, the sets of propositionidy andV are to be satisfied in
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the starting and ending state, respectively, of the coratlyr performed move of a sync-automaton of
typetype(Uy).

We remark that in the synchronisation condition of a move sfrc-automaton of typethere can
be multiple references to the components of a typeeferring to different instances of sync-automata
of such a type. References to other instances of the same &ypealso allowed. Moreover, note that
it is possible forL to be empty. Intuitively, this means that the sync-automatpdoes not have any

requirements on other sync-automata. We write a synclatarscondition of this form, i.enjcoUx:Vk,

asNOSYNC Move s NOSYNG ti represents an autonomous moveAbf We use an abbreviatiddy O

for a condition of the forntJy:Uy.

The creation condition is a label in formcxWk that specifies sync-automata that are to be created.
For everyk in K, the set of atomic propositions (or negatiohd) encodes an initial state of sync-
automatoné\'j for somej € (i) which will be created having this initial state. In case thaltisetK is
empty, the creation condition is not displayed.

By running in parallel sync-automata, we obtain a sync-faog Note that a program can contain
multiple sync-automata of the same type.

Definition 2. A sync-programis a tupleP = (s,||...]|s,), where eachs is an initial state of sync-
automatonA; with type j =typgs) € |. The creation conditions on the moves of all sync-automata
are well formed, i.e. for every creation condition kW everyW describes a unique stageof sync-
automaton with type ih ands' is initial.

Now we define the semantics of dynamic sync-programs. Herdesgeribe it intuitively, formal
definitions can be found in]3].

The semantics of a dynamic sync-program can be given in teflm$abelled transition system. The
states are multisets of states of all automata types, lisitides correspond to multisets of initial states
admissible by automata in the program.

Transition between two statesindt with labell in the semantics corresponds to a synchronisation of
a minimal sel of automata such that the synchronisation is composed oésholvautomata from their
local states described Bito their local states described tin Moreover the synchronisation conditions
of all the moves are satisfied, in that each preconditiontisfea ins and each postcondition in All
automata not participating on the synchronisation stay. iditate also includes initial states of newly
created automata described in creation conditions of sgning moves.

2.2 Stochastic extension

The standard way of extending a formalism to model quantitatspectd |5] of systems is by incorporat-
ing a collision-based stochastic framework on the linesefdne presented by Gillesplée [4]. The idea is
that a rate constant is associated with each consideretiorea€ollowing the law of mass action, such a
constant is obtained by multiplying the kinetic constanthef reaction by the number of possible combi-
nations of reactants that may occur in the system. The megulite is then used as the parameter of an
exponential distribution modelling the time spent betwiem occurrences of the considered reaction.

The use of exponential distributions to represent the Kststic) time spent between two occurrences
of chemical reactions allows describing the system as aianis Time Markov Chain (CTMC), and
consequently allows verifying properties of the describgstem by probabilistic model checking.

In the case of stochastic sync-programs, the transitioménsemantics represents a reaction and

automata moves the reactants. Hence stochastic ratesombedassociated with every move. A move

S —> ti with rater is denoted as ﬁ» ti.
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In the semantics, the exact rate of a transition is equalggtbduct of the rates of all participating
moves multiplied by the number of possible combinationsutbaata moves. More precisely rate of a
transitiontr is ry, = Mmetr (rm * #m) Where for each moven participating on the transitiony, is the rate
of mand #, is the number of automata able and ready to perform this move.

In order to make sure that the rate of a synchronised transiti meaningful, a common technique
is to make one move active, which actually defines the ratthiBosynchronised transition, and the other
moves passive, with rates 1.

3 Probabilistic model checking

Model checking is a fully automatic verification method lzhee the exhaustive search of the state space
of the system. Probabilistic model checking enables chegoluantitative properties regarding time and
probabilities.

Traditional model checking aims at checking the validityaofemporal logic formulap (in LTL,
CTL, CTL*, or the like) on a given Kripke structund, i.e., it checks whethavl = @. Kripke structures
are transition systems, where states are labeled with pitapts, and the transition relation is total. In
the probabilistic setting, however, different models £xasd their appropriateness is mainly determined
by the application, e.g., is continuous time needed, isthareed for nondeterminism, and so forth.

In setting of the present work, as our stochastic semargie Continuous Time Markov Chain
(CTMC), we are interested in model checking of these modetg. logic used is Probabilistic Compu-
tation Tree Logic (PCTL)6]. PCTL is a quantitative variaftCTL where the path quantifielsandE
are replaced by a probabilistic operakthat allows querying the probability of a path formula. Amext
logic, Continuous Stochastic Logic (CSL)[1] extends PGIpath operators with time bounds.

Efficient probabilistic model checking tools exist and haeen applied by a large number of users
from different areas. We concentrate on the model check&8RH{/]. PRISM supports model checking
of CTMCs and Markov decision processes for the logics PCTd @8L. Other probabilistic model
checkers include MRMC, LiQuor and YMER.

4 Application

4.1 Compartmental models in epidemiology

In order to represent the development of an epidemic a maagisto just the characteristic aspects that
are relevant to the infection in consideration. In case 8 @bdel (fig[1), the population is divided into
three compartments: those who are susceptible (S) to teagdisthose who are infected (I) and those
who have recovered and are immune (R). In the diseases umdlgideration a single epidemic outbreak
is far more rapid than the vital dynamic, we might neglectliltth/death processes.

The typical progress of each host is S to | to R. We model thtk wisync-automaton represent-
ing each individual. Atomic propositions used are th&¢ andR. Each automaton has three states:
{S-1,-R}, {-S1,-R} and {=S —I,R}. We display only the atomic propositions that are true in a
state.

The move from S to | occurs by getting an infection from anvidiial that is infected. This is
modelled by a synchronisation, where this move can only bewoently with a move of another sync-
automaton that goes from state satisfylnip state satisfying (denoted a$ 9). The rate of this move
r, represents which the probability of getting the disease @om@tact between a susceptible and an
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Figure 3: Reach(l =0) vs. time.  Figure 4: Reach(R> S). Figure 5: Reach(R > §) vs. time.

infectious subject. The synchronising partner loop movetatel is passive and thus has rate 1. The
recovery from the disease occurs autonomously for eachithdil, hence thNOSY NOmnove. Its rate

is in general dependent on the recovery timen particularr, = 1/D. The key role in determining the
dynamic of our model plays the ratio of to r».

In the second model we consider disease with vector-boamsrmission. The hosts are modelled by
using the SIR approach (figJ2a), the change is that the infectcurs by a vector (fif_2b). By feeding
on blood of an infected host the vector gets infected (mowadtein f ectivewith rater;) transmits the
infection to all successive hosts. We consider a fixed poipalaf hosts. On the other hand, since the
reproduction cycle of most vectors (mainly insects) teralbd considerably shorter, we model it by
creating new individualsNOSY Ndoops in states 0 anith fectiveat ratersz). Moreover, vectors, not
depending, on their infectiveness die at nate

In order to be able to perform the analysis described in theviing subsection, we perform an ad
hoc translation of the stochastic sync-program to the PRigMt language. The translation preserves
the CTMC semantics of stochastic sync-programs.

Note that for obtaining a model that is amenable to probstlilimodel checking, that is a finite-state
model, we need to restrict the number of instances of autmfatach type. Thus, we set a limit of
number of individuals to 10, both for hosts and vectors.

4.2 Analysis via probabilistic model checking

We performed probabilistic model checking of the two modelrying rates related to the infection
process.
The first model, SIR, is represented by progratR=1{|5|S|9|5|S |S|S||S |S with one automaton
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Figure 6: SIR: probability distribution of | vs. time

in statel and nine in staté&s. In this model we expected different behaviour dependinghenratio
Ro = r1/r2. From the deterministic model analysis,R§ > 1/S(0) then there is an outbreak with an
increase of infectious population;f# < 1 then no epidemic outbreak occurs, independently of thialini
population in S. This conjecture is checked by fixing ratand varyingr1. We check the PCTL formula
P=7[((R>9))] representing that the population of recovered individimlgigger that population of
susceptibles. Since before a susceptible becomes redpveseessarily spends some time as infected,
the property means that at least half of the population wiied. On fig[4, result of plotting the
evaluation of the above formula with different values pit can be seen, thatif is small, the probability
of reaching a point, where at least half of the population méscted, is low. When increasing,
probability of such event increases towards 1. On figuréJfibibprogress is plotted against time as the
evaluation of CSL formuld& =?[F <=t((R > S))] again varying .

Probability of the retreat of the epidemic, or reachingestat= 0) is 1. On fig[B it is shown how the
retreat is likely to happen in time

That the epidemic with small does not occur is clear from fig.J6a in which the probabilitypeing
in a statel = X at timeY is expressed by colour intensity. With higher values;ohumber of infected
individuals is likely to increase and then due to constamiutation size decrease to 0. The highers,
the more rapidly the epidemic occurs (figl 6b 6C).

In the second model VectSIR vector-borne transmissionrisidered. The prograiWectSIRconsists
of nine susceptible hosts, one infected and five non infeetetbrs. The decisive rate for the speed of
epidemic outbreak is the creation rate of new vectors. Thigiinessed in fig8 and figl 9 wherg
is varying withrq, ro andry4 fixed. Similarly as in the previous model, the retreat of thiedtion is
unavoidable (probability of reachinig = 0) is 1) and fig[¥ details is progress over time. The probability
distributions of values of | in time forz equal to 001, 1 and 2 are shown in figures_10a,110b 10c,
respectively.

5 Discussion

In this work we presented modelling of a progress of an epidena an stochastic individual-based
approach. Moreover, analysis technique called probébilisodel checking was applied to study the
properties of the model and sensitivity to parameters.

Stochastic approach, as opposed to the classical detstimione, considers all possible evolutions
of the system and thus provides exact results. In case of popallations the model can witness presence
of stochastic effects in the system.
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Figure 10: VectSIR: probability distribution of | vs. time

We used an automata based formalism to model individualsyevbach agent is represented by an
finite-state automaton. The formalism seems to be a suitaBkns for description of these systems,
also because of the powerful possibility of specifying tiat¢ions of individuals as synchronisation.
Another necessary aspect that allows for dynamicity is tidime automata creation. Since arbitrarily
complex behaviour of one agent is expressible by a finite>statomaton, large scale of epidemics can
be modelled.

As for the analysis method, probabilistic model checkingvfites useful insight into the dynamics
of the modelled system. Complex queries can be evaluatadiuzenodels considering probabilities of
values of variables in question and, in turn, plot the resuligraphs.

A serious drawback, however, are the computational cogstsegfrocedure. In particular, in order to
evaluate the queries in reasonable time (in the order olowe needed to limit the analysis to the order
of tens of individuals. A possible resolution of this impaeint is to use approximate model checking
that admits errors as long as they can be bouhd [9].

As regards related work, probabilistic model checking legemntly been applied to study epidemio-
logical models by Huand [8] who focuses the analysis to prat&re and controlling measures to limit
the effects of the diseases. Ciocchetta and Hilston [2]yatig@ formalism and toolkit Bio-PEPA to
modelling and analysis of avian influenza. More often, séstic models in epidemiology are used in
connection with analysis by simulatian [11].

Probabilistic model checking shows signs of being an ugehilin analysis of dynamics of ecolog-
ical models, and is worth further investigation.
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