
An Executable Formal Framework for
Safety-Critical Human Multitasking

Giovanna Broccia1, Paolo Milazzo1, and Peter Csaba Ölveczky2

1 Department of Computer Science, University of Pisa, Pisa, Italy
{giovanna.broccia,milazzo}@di.unipi.it

2 University of Oslo, Oslo, Norway

Abstract. When a person is concurrently interacting with different sys-
tems, the amount of cognitive resources required (cognitive load) could
be too high and might prevent some tasks from being completed. When
such human multitasking involves safety-critical tasks, for example in an
airplane, a spacecraft, or a car, failure to devote sufficient attention to the
different tasks could have serious consequences. To study this problem,
we define an executable formal model of human attention and multitask-
ing in Real-Time Maude. It includes a description of the human working
memory and the cognitive processes involved in the interaction with a de-
vice. Our framework enables us to analyze human multitasking through
simulation, reachability analysis, and LTL and timed CTL model check-
ing, and we show how a number of prototypical multitasking problems
can be analyzed in Real-Time Maude. We illustrate our modeling and
analysis framework by studying the interaction with a GPS navigation
system while driving, and apply model checking to show that in some
cases the cognitive load of the navigation system could cause the driver
to keep the focus away from driving for too long.

1 Introduction

These days we often interact with multiple devices or computer systems at the
same time. Such human multitasking requires us to repeatedly shift attention
from task to task. If some tasks are safety-critical, then failure to perform the
tasks correctly and timely—for example due to cognitive overload or giving too
much attention to other tasks—could have catastrophic consequences.

A typical scenario of safety-critical human multitasking is when a person in-
teracts with a safety-critical device/system while using other less critical devices.
For example, pilots have to reprogram the flight management system while han-
dling radio communications and monitoring flight instruments [11]. Operators of
critical medical devices, such as infusion pumps, often have to retrieve patient-
specific parameters by accessing the hospital database on a different device while
configuring the safety-critical device. Finally, a driver often interacts with the
GPS navigation system and/or the infotainment system while driving.

Human multitasking could lead to cognitive overload (too much informa-
tion to process/remember), resulting in forgetting/mistaking critical tasks. For

example, [16] reports that during a routine surgery, the ventilator helping the
patient to breathe was turned off to quickly take an X-ray without blurring the
picture. However, the X-ray jammed, the anesthesiologist went to fix the X-ray
but forgot to turn on the ventilator, leading to the patient’s death. In another
example, [8] analyzes the cause of 139 deaths when using an infusion pump, and
finds that operator distraction caused 67 deaths, whereas problems with the de-
vice itself only caused 10 deaths. Similar figures and examples can be found in
the context of aviation [3] and car driving [29, 10].

In addition to cognitive overload, human multitasking could also lead to
ignoring the critical tasks for too long while focusing attention on less critical
tasks. For instance, while reprogramming the flight management system, the
pilot could miss something important on the flight instruments. If the interface
of the virtual clinical folder requires the user’s attention for too long, it can cause
the operator to make some mistake in the infusion pump setup. An infotainment
system that attracts the driver’s attention for too long could cause a car accident.

There is therefore a clear need to analyze not only the functionality of single
devices (or networks of devices), but also to analyze whether a human can safely
use multiple devices/systems at the same time. Such study requires understand-
ing how the human cognitive processes work when interacting with multiple
systems and how human attention is directed at the different tasks at hand.
In particular, the main cognitive resource to be shared among concurrent tasks
is the human working memory, which is responsible for storing and processing
pieces of information necessary to perform all the concurrent tasks.

In this paper we propose a formal executable model of human multitasking
in safety-critical contexts. The model is specified in Real-Time Maude [20]. It is
a significant modification and extension of the cognitive framework proposed by
Cerone for the analysis of interactive systems [7]. As in that work, our model
includes the description of the human working memory and of the other cog-
nitive processes involved in the interaction with a device. The main difference
is that Cerone only considered the interaction with a single device, whereas we
focus on analyzing human multitasking. In contrast to [7], our framework also
captures the limitations of a human’s working memory (to enabling reasoning
about hazards caused by cognitive overload) and includes timing features (to
analyze, e.g., whether a critical task is ignored for too long).

After providing some background on human attention and multitasking and
Real-Time Maude in Section 2, we present our Real-Time Maude model of safety-
critical human multitasking in Section 3. Section 4 explains how Real-Time
Maude can be used to analyze prototypical properties in human multitasking. We
illustrate our formal modeling and analysis framework in Section 5 by studying
the use of a GPS navigator while driving. We apply model checking to show
that in some cases: (i) the cognitive load of the navigator interface could cause
the driver to keep the focus away from driving for too long, and (ii) the working
memory sharing between concurrent tasks can lead to overloading situations
causing failures in one of the tasks. Finally, Section 6 discusses related work,
and Section 7 gives some concluding remarks.

2 Preliminaries

2.1 Human Selective Attention and Multitasking

Human memory encodes, stores, and holds information, and is one of the cog-
nitive resources most involved in interactions with computers [19, 2]. It can be
differentiated into three separate components [2]: a sensory memory, where in-
formation detected by the senses is temporarily stored; a short-term store, where
sensory information that is given attention is saved; and a long-term store, where
information that has been rehearsed through attention in the short-term store
is held indefinitely. The short-term store is the component that is most involved
in interaction with computers, and is then called the working memory (WM).

WM is a cognitive system with a limited capacity responsible for the tran-
sient holding, processing, and manipulation of information. Although different
hypotheses about the WM have been proposed, they all agree on two impor-
tant aspects: it can store a limited amount of items, which, furthermore, decay
over time, and it is responsible for both processing and storage activities. The
amount of information—which can be, e.g., digits, letters, words, or other mean-
ingful units—that can be held in WM is 7 ± 2 items [18].

Maintaining items in the WM requires human attention. Memory items are
remembered longer if they are periodically refreshed by focusing on them. Even
when performing a single task, in order not to forget something stored in the
WM, the task has to be interleaved with memory refreshment. This has been
the subject of several psychological theories. The most successful in explaining
experimental data is the Time-Based Resource Sharing Model [4]. It introduces
the notion of cognitive load (CL) as the temporal density of attentional demands
of the task being performed. The higher the CL of a task, the more it distracts
from refreshing memory items. According to [4], when the frequency of basic
activities in a task is constant, the CL of the task equals

∑
aini/T , where ni is

the number of task basic activities of type i, ai represents the difficulty of such
activities, and T is the total duration of the task.

Several studies show that the attentional mechanisms involved in WM re-
freshment are also the basis of multitasking [22, 14, 25, 12]. In particular, [12]
describes the roles of the WM, the CL, and attention when executing a “main”
task concurrently with a “distractor” task. It is shown that when the CL of the
distractor task increases, the interaction with the main task could be impeded.

In [5] we use the cognitive load and two other factors, the task’s criticality
level and waiting time (the time the task has been ignored by the user) to define a
measure of task attractiveness that we call task rank. The higher the task rank,
the more likely the user will focus on it. Modeling attention switching based
on parameters like CL, criticality level, and waiting time agrees with current
understanding of human attention. In [5] we used this task rank to define an
algorithm for simulating human attention. We studied the case of two concurrent
tasks by varying the task parameters, and found that the task that more likely
completes first is the one with the highest cognitive load, which is consistent
with relevant literature (e.g., [4, 12]).

2.2 Real-Time Maude

Real-Time Maude [20] extends Maude [9] to support the formal specification
and analysis of real-time systems in rewriting logic. Real-Time Maude specifica-
tions are executable, and the tool provides a range of formal analysis methods,
including simulation, reachability analysis, and temporal logic model checking.

Specification. A Real-Time Maude module specifies a real-time rewrite the-
ory [21] (Σ,E ∪A, IR,TR), where:

– Σ is an algebraic signature; that is, declarations of sorts, subsorts, and func-
tion symbols, including a data type for time, which can be discrete or dense.

– (Σ,E ∪ A) is a membership equational logic theory [17], with E a set of
(possibly conditional) equations, and A a set of equational axioms such as
associativity, commutativity, and identity. (Σ,E ∪ A) specifies the system’s
state space as an algebraic data type.

– IR is a set of labeled conditional rewrite rules specifying the system’s local
transitions, each of which has the form3 [l] : t −→ t′ if

∧m
j=1 uj = vj , where

l is a label. Such a rule specifies an instantaneous transition from an instance
of t to the corresponding instance of t′, provided the condition holds, i.e., ui
and vj have the same normal form.

– TR is a set of tick rewrite rules l : {t} −→ {t′} in time τ if cond , which
specify that going from the entire state t to state t′ takes τ time units.

We summarize the syntax of Real-Time Maude and refer to [9] for more de-
tails. Operators are declared op f : s1 . . . sn -> s, and can have user-definable
syntax, with underbars ‘_’ marking the argument positions. Some operators can
have equational attributes, such as assoc, comm, and id, stating, respectively,
that the operator is associative and commutative and has a certain identity ele-
ment, so that rewriting is performed modulo the declared axioms. Equations and
rewrite rules are introduced with, respectively, keywords eq, or ceq for condi-
tional equations, and rl and crl. The mathematical variables in such statements
are declared with the keywords var and vars, or are introduced on-the-fly, in
which case they have the form var:sort An equation f(t1, . . . , tn) = t with the
owise (for “otherwise”) attribute can be applied to a term f(. . .) only if no other
equation with left-hand side f(u1, . . . , un) can be applied.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An object of class C in a given
state is represented as a term <O : C | att1 : val1, ..., attn : valn > of sort Object,
where O, of sort Oid, is the object’s identifier, and where val1 to valn are the
current values of the attributes att1 to attn. A message is a term of sort Msg. The
state of an object-oriented specification is a term of sort Configuration, and is
a multiset of objects and messages. Multiset union is denoted by an associative
and commutative juxtaposition operator. For example, the rewrite rule

3 An equational condition ui = vi can also be a matching equation, written ui:= vi,
which instantiates the variables in ui to the values that make ui = vi hold, if any.

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z, a4 : y >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z, a4 : y >

dly(m’(O’,x), y) .

defines a family of transitions in which a message m, with parameters O and w,
is read and consumed by an object O of class C, the attribute a1 of object O is
changed to x + w, and a new message m’(O’,x) is generated; this message has a
message delay y, and will become the “ripe” message m’(O’,x) in y time units.
Attributes whose values do not change and do not affect the next state of other
attributes or messages, such as a3, need not be mentioned in a rule. Attributes
that are unchanged, such as a2, can be omitted from right-hand sides of rules.

Formal Analysis. Real-Time Maude’s timed rewrite command simulates one of
the many possible system behaviors from the initial state by rewriting the initial
state up to a certain duration. The search command

(utsearch [[n]] t =>* pattern [such that cond] .)

uses a breadth-first strategy to search for (at most n) states that are reachable
from the initial state t, match the search pattern, and satisfy cond . If the arrow
=>! is used instead of =>*, then Real-Time Maude searches for reachable final
states, that is, states that cannot be further rewritten.

The command (find latest t0 =>* pattern [such that cond] in time <= limit .)

explores all behaviors from the initial state t0 and finds the longest time needed
to reach the desired state (for the first time in a behavior).

Real-Time Maude is also equipped with unbounded and time-bounded linear
temporal logic model checker which analyzes whether each behavior (possible up
to some duration) satisfies a linear temporal logic formula, and with a timed
CTL model checker [15] to analyze timed temporal logic properties.

3 A Formal Model of Human Multitasking

This section presents our Real-Time Maude model of human multitasking. We
only show parts of the specification, and refer to the full executable specification
available at http://www.di.unipi.it/msvbio/software/HumanMultitasking.
html for more detail.

We model human multitasking in an object-oriented style, where the state
consists of a number of Interface objects, representing the interfaces of the de-
vices/systems with which the user interacts, and an object of class WorkingMemory
representing the user’s working memory. Each interface object contains a Task

object defining the task that the user wants to perform on that interface.

3.1 Classes

Interfaces. We model an interface as a transition system. Since we follow a user-
centric approach, the state of the interface/system is given by what the human
perceives it to be. For example, I may perceive that an ATM is ready to accept
my debit card by seeing a friendly welcoming message on the ATM display, and
I can perceive that the machine is not ready for me by seeing chewing gum in
the card slot or an “Out of Order” message on the ATM display.

The human’s perception of the state of an interface can be represented as a
term of the following sort InterfaceState:

sorts InterfaceState Perception ExpPerception .

subsort Perception < ExpPerception < InterfaceState .

op _for time_ : Perception TimeInf -> InterfaceState [right id: INF] .

op expired : Perception -> ExpPerception .

A perception/state may not last forever: after entering my card in the slot, I
will only perceive that the ATM is waiting for my PIN code for 8 minutes, after
which the ATM will display a message that the transaction is cancelled. The
term p for time t denotes that the user will perceive p for time t, after which
the perception becomes expired(p). The transitions of an interface have the
form p1 -- action --> p2. For example, if I perceive that the machine is ready
to receive my card, I can perform an action enterCardInSlot, and as a result
the ATM will display that I should type my PIN code: ATMready -- enterCard

--> typePIN for time 480. The set of interface transitions are represented as
a ;-separated set of single interface transitions:

sorts InterfaceTransition InterfaceTransitions .

subsort InterfaceTransition < InterfaceTransitions .

--- single transition:

op _--_-->_ : Perception DefAction InterfaceState -> InterfaceTransition .

--- sets of transitions:

op noTransition : -> InterfaceTransitions .

op _;_ : InterfaceTransitions InterfaceTransitions ->

InterfaceTransitions [assoc comm id: noTransition] .

An interface is represented as an object instance of the following class:

class Interface | task : Object, transitions : InterfaceTransitions,

previousAction : DefAction, currentState : InterfaceState .

where the attribute transitions denotes the transitions of the interface; task
denotes the task object (see below) representing the task that the user wants to
perform with the interface; previousAction is the previous action performed
on the interface (useful for analysis purposes); and currentState is (the user’s
perception of) the state of the device.

Tasks. Instead of seeing a task as a sequence of basic tasks that cannot be
further decomposed, we find it more natural to consider a task to be a sequence
of subtasks, where each subtask is a sequence of basic tasks. For example, the
task of withdrawing money at an ATM may consist of the following sequence of
subtasks: insert card; type PIN code; type amount; retrieve card; and, finally,
retrieve cash. Some of these subtasks consist of a sequence of basic tasks: the
subtask “type PIN code” consists of typing 4 digits and then “OK,” and so
does the subtask “type amount.” We therefore model a task as a ‘::’-separated
sequence of subtasks, where each subtask is modeled as a sequence of basic tasks:

sorts BasicTask Subtask Task . subsort BasicTask < Subtask < Task .

--- Subtask is a list of BasicTasks:

op nil : -> Subtask .

op __ : Subtask Subtask -> Subtask [assoc id: nil] .

--- Task is a list of subTasks:

op emptyTask : -> Task .

op _::_ : Task Task -> Task [assoc id: emptyTask] .

In a basic task inf 1 | p1 ==> action | inf 2 duration τ difficulty d delay δ,
inf 1 is some knowledge, p1 is a perception (state) of the interface, τ is the time
needed to execute the task, and d is a measure of the difficulty of the basic task.
If the working memory contains inf 1 and I perceive p1, then I can perform the
interface transition labeled action, and as a result my working memory forgets
inf 1 and stores inf 2. A basic task may not be enabled immediately: you cannot
type your PIN code immediately after inserting your card. The ATM first reads
your card and does some other processing. The (minimum) time needed before
the basic task can be executed is given by the delay δ. This delay could also be
the time needed to switch from one task to another. A basic task could be

needCash | ATMready ==> enterCard | cardInMachine

duration 3 difficulty 1/8 delay 0.

That is, after performing the action enterCard you “forget” that you need cash,
and instead store in working memory that the card is in the machine.

Basic tasks are therefore declared

op _|_==>_|_duration_difficulty_delay_ : Information Perception DefAction

Information Time PosRat Time -> BasicTask .

As mentioned in Section 2.1, the next task that is given a person’s attention
is a function of: the cognitive loads of the current subtasks4, the criticality level

4 Since we now consider structured tasks and add delays to basic tasks, we redefine the
cognitive load of a task to be

∑ diti
ti+dlyi

, where di, ti and dlyi denote the difficulty,
duration and delay of each basic task i of the current subtask. The cognitive load
of a task therefore changes every time a new subtask begins, and remains the same
throughout the execution of the subtask.

of each task (we focus on safety-critical systems, and the user tends to focus
more frequently on safety-critical tasks than on other tasks), and the time that
an enabled task has waited to be executed. For example, driving a car has a
higher criticality level than finding out where to go, which has higher criticality
level than finding a good radio station. To compute at each step the “rank” of
each task, a task object should contain these values, and is therefore represented
as an object instance of the following class Task:

class Task | subtask : Task, waitTime : Time, status : TaskStatus,

cognitiveLoad : Rat, criticalityLevel : PosRat .

The subtasks attribute denotes the remaining sequence of subtasks to be per-
formed; waitTime denotes how long the next basic task has been enabled;
cognitiveLoad is the cognitive load of the subtask currently executing; and
criticalityLevel is the task’s criticality level. For analysis purposes, we also
add an attribute status denoting the “status” of the task, which is either
notStarted, ongoing, abandoned, or completed.

Working Memory. The working memory is used when interacting with the in-
terfaces, and can only store a limited number of information items. We model
the working memory as an object of the following class:

class WorkingMemory | memory : Memory, capacity : NzNat .

where capacity denotes the maximal number of elements that can be stored
in memory at any time. The attribute memory stores the content of the work-
ing memory as a map I1 |-> mem1 ; ... ; In |-> memn, assigning to each
interface Ij the set memj of items in the memory associated to interface Ij .
An element in memj is either a cognition, a basic piece of information, such as
cardInMachine, or a desired goal goal(action). The goal defines the goal of the
interaction with the interface, which is to end up performing some final action,
such as takeCash. Cognitions are more of a mental state (want to withdraw
money, or do want to do so?), and can change without interacting with an in-
terface, whereas basic information cannot. The data type Memory specifying this
map is defined as follows:

sorts Goal Information . subsorts Cognition Goal BasicInfo < Information .

op goal : Action -> Goal .

sort InfoSet . subsort Information < InfoSet .

op noInfo : -> Information .

op __ : InfoSet InfoSet -> InfoSet [assoc comm id: noInfo] .

sort Memory .

op noMemory : -> Memory .

op _|->_ : InterfaceId InfoSet -> Memory .

op _;_ : Memory Memory -> Memory [assoc comm id: noMemory] .

For example, the working memory of a person p who wants to drive to X and
likes to listen to NPR could be:

< p : WorkingMemory | capacity : 7,

memory : car |-> goal(parkAtX) ;

gps |-> XlivesInaddr goal(pushFindWay) ;

radio |-> NPRIsButton3 goal(pushButton(3)) >

3.2 Dynamic Behavior

We formalize human multitasking with rewrite rules that specify how attention is
directed at the different tasks, and how this affects the working memory. In short,
whenever a basic task is enabled, attention is directed toward the task/interface
with the highest task rank, and a basic task/action is performed on that interface.

The rank of each task is a function of:

– the cognitive load of the “current” subtask, which is a function of the dura-
tions and difficulty levels the basic tasks in the subtask;

– the criticality level of the task; and
– the time that the task has been waiting (i.e., enabled being executed).

This rank of a task is defined as follows5:

op rank : NEConfiguration Memory -> PosRat .

eq rank(< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration

NZT difficulty PR delay T2) BTL)

:: OTHER-SUB-TASKS,

waitTime : T, cognitiveLoad : CL,

criticalityLevel : PR2 > >,

(I |-> goal(ACT) INF-SET) ; MEMORY)

= if T2 == 0 then PR2 * CL * (T + 1) else 0 fi .

eq rank(< I : Interface | >, MEMORY) = 0 [owise] .

As the definition shows, a task without a goal, or one which is not yet enabled
(the remaining delay T2 of the first basic task is greater than 0) is 0. This rank
function refines the task rank function in [5], and should therefore be consistent
with results in psychology.

The following tick rewrite rule models the user performing a basic task (if it
does not cause memory overload, and the action performed is not the goal action)
with the interface with the highest rank of all interfaces (bestRank(...)):

crl [interacting] :

{OTHER-INTERFACES

< I : Interface | task :

5 We do not show the variable declarations, but follow the convention that variables
are written in all capital letters.

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration NZT

difficulty PR delay 0) BASIC-TASKS)

:: OTHER-SUB-TASKS,

waitTime : T1, cognitiveLoad : CL,

criticalityLevel : PR2, status : TS >,

transitions : (P1 -- DACT --> (P2 for time TI2)) ; TRANSES,

currentState : (P1 for time TI), previousAction : DACT2 >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF1 goal(ACT) INF-SET),

capacity : CAP >}

=>

{idle(OTHER-INTERFACES, NZT)

< I : Interface | task :

< TASK : Task | subtasks : (if BASIC-TASKS =/= nil

then (BASIC-TASKS :: OTHER-SUB-TASKS)

else OTHER-SUB-TASKS fi),

waitTime : 0,

status : (if TS == notStarted then ongoing else TS fi),

cognitiveLoad : (if BASIC-TASKS =/= nil then CL else

cogLoad(first(OTHER-SUB-TASKS)) fi) >,

currentState : (P2 for time TI2), previousAction : DACT >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF2 goal(ACT) INF-SET) >}

in time NZT

if assess(DACT2, P1) =/= danger /\ (DACT =/= ACT)

/\ card(MEMORY ; (I |-> INF2 goal(ACT) INF-SET)) <= CAP

/\ rank(< I : Interface | >,

(MEMORY ; (I |-> INF1 goal(ACT) INF-SET)))

== bestRank(< I : Interface | > OTHER-INTERFACES,

(MEMORY ; (I |-> INF1 goal(ACT) INF-SET))) .

The user perceives that the state of interface I is P1. The next basic task can
be performed if information INF1 is associated with this interface in the user’s
working memory, and the interface is (perceived to be) in state P1. The user
then performs the basic task labeled DACT, which leads to a new item INF2

stored in working memory, while INF1 is forgotten. This rule is only enabled if
the remaining delay of the basic task is 0 and the user has a goal associated with
this interface. If the basic task performed is the last basic task in the subtask,
we must also recompute the value of cognitiveLoad to be the cognitive load of
the next subtask.

The first conjuncts in the condition say that the rule can only be applied
when the user does not assess a danger in the current situation and when the
action performed is not the goal action. Since INF1 and/or INF2 could be the
empty element noInfo, the rule may increase the number of items stored in
working memory (when INF1 is noInfo, but INF2 is not). The third conjunct in
the condition ensures that the resulting knowledge does not exceed the capacity
of the working memory. The last conjunct ensures that the current interface
should be given attention: it has the highest rank among all the interfaces.

The rule is a tick rule; its duration is the duration NZT of the basic task being
executed. During that time, every other task idles: its “perception timer” and

remaining delay of the first basic task are decreased according to elapsed time,
and its waiting time is increased if the basic task is enabled:

op idle : Configuration Time -> Configuration [frozen (1)] .

eq idle(none, T) = none .

eq idle(< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration NZT

difficulty PR delay T2) BASIC-TASKS)

:: OTHER-SUB-TASKS,

waitTime : T3 >,

currentState : IS > REST, T)

= < I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration NZT

difficulty PR delay (T2 monus T)) BASIC-TASKS)

:: OTHER-SUB-TASKS,

waitTime : T3 + (T monus T2) >,

currentState : idle(IS, T) > idle(REST, T) .

eq idle(< I : Interface | task : < TASK : Task | subtasks : emptyTask,

waitTime : T3 >,

currentState : IS > REST, T)

= < I : Interface | task : < TASK : Task | waitTime : 0 >,

currentState : idle(IS, T) > idle(REST, T) .

eq idle(< WM : WorkingMemory | > REST, T)

= < WM : WorkingMemory | > idle(REST, T) .

op idle : InterfaceState TimeInf -> InterfaceState .

eq idle(P1 for time TI, T)

= if T < TI then P1 for time (TI monus T) else expired(P1) fi .

eq idle(expired(P1), T) = expired(P1) .

If performing the basic task would exceed the capacity of the memory, some
other item in the memory is nondeterministically forgotten, so that items asso-
ciated to the current interface are only forgotten if there are no items associated
to other interfaces. (This is because maintaining information in working memory
requires the user’s attention, and user attention is on the current task, so it is
more natural that items of the other tasks are forgotten first.) The following
rule shows the case when an item for a different interface is erased from mem-
ory. Since a mapping is associative and commutative, any memory item INF3

associated with any interface I2 different from I could be forgotten. This rule
is very similar to the rule above, and we only show the differences:

crl [interactingForgetSomethingOtherInterface] :

{ ... < I : Interface | task : < TASK : Task | ... > ... >

< WM : WorkingMemory | memory : (I |-> INF1 goal(ACT) INF-SET) ;

(I2 |-> INF3 INF-SET2) ; MEMORY,

capacity : CAP >}

=>

{ ... < I : Interface | task : < TASK : Task | ... > ... >

< WM : WorkingMemory | memory : (I |-> INF2 goal(ACT) INF-SET) ;

(I2 |-> INF-SET2) ; MEMORY >}

in time NZT

if ... /\ card((I |-> INF2 goal(ACT) INF-SET)

; (I2 |-> INF3 INF-SET2) ; MEMORY) > CAP /\ ...

A third very similar rule removes an arbitrary item from the working memory
associated with the current interface if the memory does not store any item for
any other interface (see our online executable specification for details).

If each “next” basic task has a remaining delay, then time advances until the
earliest time when the delay of some basic task reaches 0:

crl [tickAllIdling] :

{ALL-INTERFACES

< WM : WorkingMemory | memory : MEMORY ; (I |-> goal(ACT) INF-SET) >}

=>

{idle(ALL-INTERFACES, MIN-DELAY)

< WM : WorkingMemory | >} in time MIN-DELAY

if MIN-DELAY := minDelay(ALL-INTERFACES) .

where MIN-DELAY is a variable of a sort NzTime of non-zero time values.
In the above rules, we did not reach our goal with the interface. The following

rule treats the case then the action ACT performed is our goal action. Again, this
rule is quite similar to the above rules, so some parts are replaced by ‘...’:

crl [closure] :

{OTHER-INTERFACES

< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> ACT | INF2 duration NZT

difficulty PR delay 0) BASIC-TASKS)

:: OTHER-SUB-TASKS >,

transitions : (P1 -- ACT --> (P2 for time TI2)) ; TRANSES,

currentState : (P1 for time TI) >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF-SET INF1 goal(ACT)) >}

=>

{idle(OTHER-INTERFACES, NZT)

< I : Interface | task :

< TASK : Task | subtasks : emptyTask, waitTime : 0,

cognitiveLoad : 0, status : completed >, ... >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF2) >}

in time NZT if ...

The rules interacting could only be applied when the user’s assessment
of her current situation was different from danger; if (s)he assesses that (s)he
is in danger, (s)he abandons the current task for the interface. We refer to the
executable specification for the description of this rule.

As mentioned, a person may change cognition (“mental state”) without in-
teracting with a device, or may acquire knowledge through a cognitive process:

crl [cognitive] :

{OTHER-INTERFACES

< I : Interface | task :

< TASK : Task | subtasks : ((COG1 | P1 ==> DACT | COG2 duration NZT

difficulty PR delay 0)

BASIC-TASKS) :: OTHER-SUB-TASKS,

cognitiveLoad : CL, status : TS > >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF-SET COG1 goal(ACT)),

capacity : CAP >}

=>

{idle(OTHER-INTERFACES, NZT)

< I : Interface | task : < TASK : Task | ... > >

< WM : WorkingMemory |

memory : MEMORY ; (I |-> INF-SET COG2 goal(ACT, GT)) >}

in time NZT if

Our last rule concerns only the interface. As mentioned, sometimes the inter-
face state comes with a timer (e.g., the ATM only waits for a PIN code for eight
minutes). When this timer expires, an instantaneous rule changes the interface
state (e.g., display “Ready” when the machine has waited too long for the PIN):

rl [timeout] :

{REST

< I : Interface | transitions : (expired(P1) -- DACT --> IS) ; TRANSES,

currentState : expired(P1) >}

=>

{REST < I : Interface | currentState : IS, previousAction : DACT >} .

4 Analyzing Safety-Critical Human Multitasking

This section explains how Real-Time Maude can be used to analyze whether a
human is able to perform a given set of tasks successfully. In particular, we focus
on the following potential problems that could happen when multitasking:

1. A critical task may be ignored for too long because attention is given to
other tasks. For example, it is not good if a driver does not give attention to
driving for 15 seconds because (s)he is focusing on the infotainment system.

2. A task, or a crucial action in a task, is not completed on time, since too
much attention has been given to other tasks. For example, a pilot should
finish all pre-flight tasks before taking off, and a driver should have entered
the destination in the GPS before the first major intersection is reached.

3. Other tasks’ concurrent use of working memory may cause the user to for-
get/misremember memory items that are crucial to complete a given task.

The initial state should have the form

{initializeCognLoad(

< wm : WorkingMemory | memory : interface1 |-> goal(action1) otherItems1 ; ... ;

interfacen |-> goal(actionn) otherItemsn,

capacity : capacity >

< interface1 : Interface | task :

< task1 : Task | subtasks : (b111 ... b11l
) :: ... :: (b1m1

... b1mj
),

waitTime : 0, cognitiveLoad : 0, criticalityLevel : cl1,
status : notStarted >

transitions : trans1, previousAction : noAction, currentState : perc1 >

...

< interfacen : Interface | task :

< taskn : Task | subtasks : ..., waitTime : 0, cognitiveLoad : 0,

criticalityLevel : cln, status : notStarted >

transitions : transn, previousAction : noAction, currentState : percn >)}

where: interfacek is the name of the k-th interface; taskk is the task to be per-
formed with/on interfacek; bkij

is the j-th basic task of the i-th subtask of taskk;

clk is the criticality level of taskk; transk are the transitions of interfacek; actionk

is the goal action to be achieved with interfacek; otherItemsk are other items
initially in the memory for interfacek; perck is the initial perception (“state”)
of interfacek; and capacity is the number of items that can be stored in work-
ing memory. The function initializeCognLoad initializes the cognitiveLoad

attributes by computing the cognitive load of the first subtask of each task.
The first key property to analyze is: Is it possible that an (enabled) task t

is ignored continuously for at least time ∆? This property can be analyzed in
Real-Time Maude as follows, by checking whether it is possible to reach a “bad”
state where the waitTime attribute of task t is at least ∆:6

(utsearch [1] initialState =>*

{REST:Configuration < I:InterfaceId : Interface | task :

< t : Task | waitTime : T:Time, A:AttributeSet > >}

such that T:Time >= ∆ .

where the variable REST:Configuration matches the other objects in the state.
The second key property is checking whether a certain task t is guaranteed

to finish before time T . This can be analyzed using Real-Time Maude’s find

latest command, by finding the longest time needed to reach status completed:

(find latest initialState =>*

{REST:Configuration < I:InterfaceId : Interface | task :

< t : Task | status : completed, A:AttributeSet > >}

with no time limit .)

We can also use the find latest command to find out the longest time
needed for a task t to complete the specific action act :

(find latest initialState =>*

{REST:Configuration < I:InterfaceId : Interface | previousAction : act >}

with no time limit .)

We can analyze whether it is guaranteed that a task t will be completed by
searching for a “bad” final state where the status of the task is not completed:

6 The variable A:AttributeSet captures the other attributes in inner objects.

(utsearch [1] initialState =>!

{REST:Configuration < I:InterfaceId : Interface | task :

< t : Task | status : TS:TaskStatus, A:AttributeSet > >}

such that TS:TaskStatus =/= completed .)

If we want to analyze whether it is guaranteed that all tasks can be completed,
we just replace t in this command with a variable I2:TaskId.

If a safety-critical task cannot be completed, or completed in time, we can
check whether this is due to the task itself, or the presence of concurrent “dis-
tractor” tasks, by analyzing an initial state without the distractor tasks.

5 Example: Interacting with a GPS Device while Driving

This section illustrates the use of our modeling and analysis framework with an
example of a person who interacts with a GPS navigation device while driving.

We have two interfaces: the car and the navigation system. The task of driving
consists of the three subtasks (i) start driving, (ii) drive to destination, and (iii)
park and leave the car. The first subtask consists of the basic tasks of inserting
the car key, turning on the ignition, and start driving; subtask (ii) describes a
short trip during which the driver wants to perform a basic driving action at
most every three time units; and subtask (iii) consists of stopping the car and
remove the key when we have arrived at the destination. The driving task can
be formalized by the following Task object:

< driving : Task | subtasks :

((noInfo | carOff ==> insertKey | keyInserted duration 1 difficulty 3/10 delay 0)

(noInfo | carOn ==> turnKey | noInfo duration 1 difficulty 2/10 delay 0)

(noInfo | carReady ==> startDrive | noInfo duration 1 difficulty 2/10 delay 2)) ::

((noInfo | straightRoad ==> straight | noInfo duration 1 difficulty 1/10 delay 3)

(noInfo | straightRoad2 ==> straight | noInfo duration 1 difficulty 1/10 delay 3)

(noInfo | curveLeft ==> turnLeft | noInfo duration 1 difficulty 4/10 delay 3)

(noInfo | curveRight ==> turnRight | noInfo duration 1 difficulty 2/10 delay 3)

(noInfo | straightRoad3 ==> straight | noInfo duration 1 difficulty 1/10 delay 3)

(noInfo | straightRoad4 ==> straight | noInfo duration 1 difficulty 1/10 delay 3)) ::

((noInfo | destination ==> stopCar | noInfo duration 2 difficulty 2/10 delay 2)

(keyInserted | carStopped ==> pickKey | noInfo duration 2 difficulty 1/10 delay 0)),

waitTime : 0, status : notStarted, criticalityLevel : 6/10, cognitiveLoad : 0 >

The interface of the car is formalized by the following Interface object:

< car : Interface | transitions :

(carOff -- insertKey --> carOn) ; (carReady -- startDrive --> straightRoad) ;

(carOn -- turnKey --> carReady) ; (straightRoad -- straight --> straightRoad2) ;

(straightRoad2 -- straight --> curveLeft) ; (curveLeft -- turnLeft --> curveRight) ;

(curveRight -- turnRight --> straightRoad3) ;

(straightRoad3 -- straight --> straightRoad4) ;

(straightRoad4 -- straight --> destination) ; (destination -- stopCar --> carStopped) ;

(carStopped -- pickKey --> carOff) ; (carReady -- noAction --> carOff),

task : ... , previousAction : noAction, currentState : carOff >

For the GPS navigator, we assume that to enter the destination the user
has to type at least partially the address. The navigator then suggests a list of
possible destinations, among which the user has to select the right one. Therefore,
the GPS task consists of three subtasks: (i) start and choose city; (ii) type the
initial k letters of the desired destination; and (iii) choose the right destination
among the options given by the GPS.

If the user types the entire address of the destination, the navigator returns
a short list of possible matches; if (s)he types fewer characters, the navigator
returns a longer list, making it harder for the user to find the right destination.
We consider two alternatives: (1) the driver types 13 characters and then searches
for the destination in a short list; and (2) the driver types just four characters
and then searches for the destination in a longer list. The GPS task for case (1)
is modeled by the following Task object:

< findDestination : Task | subtasks :

((noInfo | gpsReady ==> typeSearchMode | noInfo duration 1 difficulty 1/10 delay 0)) ::

((noInfo | chooseCity ==> selectCity | noInfo duration 2 difficulty 5/10 delay 2)) ::

((noInfo | typing1 ==> typeSomething | noInfo duration 1 difficulty 3/10 delay 3)

(noInfo | typing2 ==> typeSomething | noInfo duration 1 difficulty 3/10 delay 0)

...

(noInfo | typing13 ==> pushSearchBtn | noInfo duration 1 difficulty 3/10 delay 0)) ::

((noInfo | searching ==> chooseAddress | noInfo duration 2 difficulty 2/10 delay 0)),

waitTime : 0, status : notStarted, criticalityLevel : 3/10, cognitiveLoad : 0 >

Case (2) is modeled similarly, but with only four typing actions before pushing
the search button. In that case, the last basic task (choosing destination from a
larger list) has duration 5 and difficulty 6

10 .
The GPS interface in case (1) is defined by the following Interface object:

< gps : Interface | transitions :

(gpsReady -- typeSearchMode --> chooseCity) ; (chooseCity -- selectCity --> typing1) ;

(typing1 -- typeSomething --> typing2) ; (typing2 -- typeSomething --> typing3) ;

...

(typing13 -- pushSearchBtn --> searching) ; (searching -- chooseAddress --> gpsReady),

task : ... , previousAction : noAction, currentState : gpsReady >

The initial state of the working memory is

< wm : WorkingMemory | capacity : 5, memory : (car |-> goal(pickKey)) ;

(gps |-> goal(chooseAddress)) >

We use the techniques in Section 4 to analyze our models, and first analyze
whether an enabled driving task can be ignored for more than six seconds:

Maude> (utsearch [1] {initState} =>* {< car : Interface | task :

< driving : Task | waitTime : T:Time, A:AttributeSet > >

REST:Configuration} such that T:Time > 6 .)

Real-Time Maude finds no such bad state when the driver types 13 characters.
However, when the driver only types four characters, the command returns a

bad state: the driver types the last two characters and finds the destination in
the long list without turning his attention to driving in-between.

Sometimes even a brief distraction can be dangerous. For example, when the
road turns, a delay of three time units in making the turn could be dangerous.
We check the longest time needed for driver to complete the turnLeft action:

Maude> (find latest {initState} =>*

{REST:Configuration < car : Interface | previousAction : turnLeft >}

with no time limit .)

Real-Time Maude shows that the left turn is completed at time 21. However,
the same analysis with an initial state without the GPS interface object and task
shows that an undistracted driver finishes the left turn at time 17.

Finally, to analyze potential memory overload, we modify the GPS task so
that the driver must remember the portion of address already written: a new
item is added to the working memory after each three characters typed.

We then check whether all tasks are guaranteed to be completed in this
setting, by searching for a final state in which some task is not completed:

Maude> (utsearch [1] {initState2} =>! {< I:InterfaceId : Interface | task :

< T:TaskId : Task | status : TS:TaskStatus, A:AttributeSet > >}

REST:Configuration} such that TS:TaskStatus =/= completed .)

This command finds such an undesired state: keyInserted could be forgotten
when the driver must remember typing; in that case, the goal action pickKey

cannot be performed, and we leave the key in the car. The same command with
our “standard” model of GPS interaction does not return any final state with
an uncompleted task pending.

6 Related work

There has been some work on applying “computational models” to study human
attention and multitasking. In [23] the ACT-R architecture, an executable rule-
based framework for modeling cognitive processes, is applied to study the effects
of distraction by phone dialing while driving. However, when the study was
undertaken, ACT-R did not include a model of human attention. To let the
two tasks interleave, the authors had to explicitly define in each task when
the attention has to move to the other task. In [6] the ACT-R architecture
was used to study sources of aviation errors, again without taking multitasking
properly into account. The authors of [23] later developed a theory of concurrent
multitasking [24] and consequently extended the ACT-R architecture. The new
theory describes concurrent tasks that can interleave and compete for resources.
Cognition balances task execution by favoring least recently processed tasks [13].

Other computational models for human multitasking include the salience,
expectancy, effort and value (SEEV) model [27] and the strategic task overload
management (STOM) model [28, 26]. Both have been validated against data

collected by performing experiments with real users using simulators. Although
dealing with human multitasking, the SEEV and STOM models are specifically
designed to describe (sequential) visual scanning of an instrument panel, where
each instrument may serve different tasks. The multitasking paradigms under-
lying SEEV and STOM are different from the one we consider in this paper,
which is not sequential scanning but voluntary task switching [1].

The above systems (and other similar approaches) have all been developed
in the context of cognitive psychology and neuroscience research. They do not
provide what computer scientists would call a formal model, but are typically
based on some mathematical formulas and an implementation (in Lisp in the case
of ACT-R) that supports only simulation. In contrast, we provide a formal model
that can be not only simulated, but also subjected to a range of formal analyses,
including reachability analysis and timed temporal logic model checking.

On the formal methods side, we discuss the differences with the formal cog-
nitive framework proposed in [7] in the introduction.

Finally, as mentioned in Section 2.1, in [5] we propose a task switching algo-
rithm for non-structured tasks that we extend in the current paper. That work
does not provide a formal model, but is used to demonstrate the agreement of
our modeling approach with relevant psychological literature.

7 Concluding Remarks

In this paper we have presented for the first time a formal executable framework
for safety-critical human multitasking. The framework enables the simulation
and model checking in Real-Time Maude of a person concurrently interacting
with multiple devices of different degrees of safety-criticality. Task switching is
modeled trough a task ranking procedure which is consistent with studies in
psychology. We have shown how Real-Time Maude can be used to automatically
analyze prototypical properties in safety-critical human multitasking, and have
illustrated our framework with a simple example.

As part of future work, we will in the near future perform experiments in
collaboration with psychologists to refine our model. We should also apply our
framework on real safety-critical case studies.

References

1. Arrington, C.M., Logan, G.D.: Voluntary task switching: chasing the elusive ho-
munculus. Journal of Experimental Psychology: Learning, Memory, and Cognition
31(4), 683–702 (2005)

2. Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its con-
trol processes. In: Spence, K.W., Spence, J.T. (eds.) Psychology of Learning and
Motivation, vol. 2, pp. 89–195. Academic Press (1968)

3. Australian Transport Safety Bureau: Dangerous distraction. Safety Investigation
Report B2004/0324 (2005)

4. Barrouillet, P., Bernardin, S., Camos, V.: Time constraints and resource sharing
in adults’ working memory spans. Journal of Experimental Psychology: General
133(1), 83–100 (2004)

5. Broccia, G., Milazzo, P., Ölveczky, P.C.: An algorithm for simulating human se-
lective attention. In: DataMod 2017. LNCS (2017), in press

6. Byrne, M.D., Kirlik, A.: Using computational cognitive modeling to diagnose pos-
sible sources of aviation error. The International Journal of Aviation Psychology
15(2), 135–155 (2005)

7. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of
interactive systems. In: SEFM 2016. LNCS, vol. 9763, pp. 287–303. Springer (2016)

8. Clark, T., David, Y., Baretich, M., Bauld, T., Dickey, D., Gieras, I., et al.: Im-
pact of clinical alarms on patient safety. Tech. rep., ACCE Healthcare Technology
Foundation (2006)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude, LNCS, vol. 4350. Springer (2007)

10. Dingus, T.A., Guo, F., Lee, S., Antin, J.F., Perez, M., Buchanan-King, M., Hankey,
J.: Driver crash risk factors and prevalence evaluation using naturalistic driving
data. Proceedings of the National Academy of Sciences 113(10), 2636–2641 (2016)

11. Dismukes, R., Nowinski, J.: Prospective memory, concurrent task management, and
pilot error. In: Attention: From Theory to Practice, pp. 225–236. Oxford University
Press Great Britain (2007)

12. de Fockert, J.W., Rees, G., Frith, C.D., Lavie, N.: The role of working memory in
visual selective attention. Science 291(5509), 1803–1806 (2001)

13. Kushleyeva, Y., Salvucci, D.D., Lee, F.J.: Deciding when to switch tasks in time-
critical multitasking. Cognitive Systems Research 6(1), 41–49 (2005)

14. Lavie, N., Hirst, A., De Fockert, J.W., Viding, E.: Load theory of selective attention
and cognitive control. Journal of Experimental Psychology: General 133(3), 339–
354 (2004)

15. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Sound and complete timed CTL model
checking of timed Kripke structures and real-time rewrite theories. Science of Com-
puter Programming 99, 128–192 (2015)

16. Lofsky, A.S.: Turn your alarms on! APSF Newsletter: The Official Journal of the
Anesthesia Patient Safety Foundation 19(4), 43 (2005)

17. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Proc. WADT’97, LNCS, vol. 1376, pp. 18–61. Springer (1998)

18. Miller, G.A.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological Review 63(2), 81–97 (1956)

19. Miller, G.A., Galanter, E., Pribram, K.H.: Plans and the Structure of Behavior.
Adams Bannister Cox (1986)

20. Ölveczky, P.C.: Real-Time Maude and its applications. In: WRLA 2014. LNCS,
vol. 8663. Springer (2014)

21. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

22. Pashler, H.: Dual-task interference in simple tasks: data and theory. Psychological
Bulletin 116(2), 220–244 (1994)

23. Salvucci, D.D.: Predicting the effects of in-car interface use on driver performance:
An integrated model approach. International Journal of Human-Computer Studies
55(1), 85–107 (2001)

24. Salvucci, D.D., Taatgen, N.A.: Threaded cognition: an integrated theory of con-
current multitasking. Psychological Review 115(1), 101–130 (2008)

25. Wickens, C.D.: Processing resources and attention. In: Multiple-task Performance,
pp. 3–34. Taylor & Francis (1991)

26. Wickens, C.D., Gutzwiller, R.S.: The status of the strategic task overload model
(STOM) for predicting multi-task management. In: Proceedings of the Human
Factors and Ergonomics Society Annual Meeting. vol. 61, pp. 757–761. SAGE
Publications (2017)

27. Wickens, C.D., Sebok, A., Li, H., Sarter, N., Gacy, A.M.: Using modeling and
simulation to predict operator performance and automation-induced complacency
with robotic automation: a case study and empirical validation. Human factors
57(6), 959–975 (2015)

28. Wickens, C.D., Gutzwiller, R.S., Vieane, A., Clegg, B.A., Sebok, A., Janes, J.:
Time sharing between robotics and process control: Validating a model of attention
switching. Human factors 58(2), 322–343 (2016)

29. Young, K.L., Salmon, P.M.: Examining the relationship between driver distraction
and driving errors: A discussion of theory, studies and methods. Safety science
50(2), 165–174 (2012)

