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Abstract

The aim of the paper is to give a formal compositional semantics for Spiking
Neural P systems (SNP systems) by following the Structural Operational Se-
mantics (SOS) approach. A process algebra is introduced whose terms represent
SNP systems. The algebra is equipped with a semantics, given as a labelled
transition system. This semantics allows notions of behavioural equivalences
over SNP systems to be studied. Some known equivalences are considered and
their definition based on the given semantics is provided. Such equivalences are
proved to be congruences.

Keywords: Spiking Neural P systems, Structural Operational Semantics,
Behavioural equivalence, Congruence.

1. Introduction

Research in membrane computing was initiated by Paun with the definition
of membrane systems. A membrane system (or P system, see [1] for an
introduction) is a parallel computing device inspired by the structure and the
functioning of a living cell. It consists of a hierarchy of membranes, each of
them containing a multiset of objects, representing molecules, a set of evolution
rules, representing chemical reactions, and possibly other membranes. Evolution
rules are applied with maximal parallelism, namely it cannot happen that an
evolution rule is not applied when the objects it consumes are available.

Many membrane computing models have been defined (see e.g. [2, 3, 4, 5,
6]) based on abstractions of different biological mechanisms. Recently, a new
model called spiking neural P systems (SNP systems) was defined inspired by
the natural processes of spiking neurons in brain [7]. An SNP system consists
of a set of neurons connected by synapses. The structure is represented by
a directed graph where nodes represent the neurons and edges represent the
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synapses. A neuron may contain a number of spikes, each represented by an
occurrence of symbol a, and some rules. When a neuron fires (because one
of its rules is applied), it sends, after some delay, a spike along each outgoing
synapse to neighboring neurons, which then process the received spikes. One of
the neurons can also send spikes to the environment, so to produce an output.

The semantics of SNP systems is usually given by means of a precise, but
not formal, description of the possible computation steps of a system. The aim
of this paper is to provide a formal compositional semantics for SNP systems.
Following the SOS approach [8], we introduce a process algebra, called SNP
algebra, whose terms represent either neuron contents, namely multisets of spikes
and sets of rules, or neurons, or juxrtaposition of neurons, namely sets of neurons
that can be connected to each other by means of synapses. We equip the SNP
algebra with a Labelled Transition System (LTS), obtained by means of a set
of transition rules. To describe the observable part of neuron behaviour, LTS
transition labels contain information on input and output spikes, namely spikes
that are received and sent by each neuron in the described computation step.

The given semantics allows us to study some notions of behavioural equiva-
lences over SNP systems, by formalizing the idea of neural systems having the
same behaviour and being substitutable to each other. We shall prove that the
considered equivalences are congruences, meaning that the equivalences are pre-
served when two equivalent systems are put in the same context. Our semantics
could be also used for the construction of formal analysis and verification tools.

As regards related work, to our knowledge there are no papers dealing with
operational semantics of SNP systems. Operational semantics have been defined
for membrane systems in [9, 10, 11, 12, 13, 14]. The definition of the semantics
of SNP systems given in this paper follows the lines of the definition of the
semantics of membrane systems given in [13].

2. Spiking Neural P Systems

A spiking neural P system [7] is essentially a directed graph in which nodes
represent (and are called) neurons and edges represent (and are called) synapses
among neurons. Neurons may contain a number of spikes, each represented by
an occurrence of symbol a, and a number of rules of two kinds:

o spiking rules, having the form F/a™ — a;t, where E is a regular expression
on the singleton alphabet {a}, n € IN with n > 0, and ¢t € IN with ¢ > 0;

o forgetting rules, having the form a™ — A where n € IN with n > 0.

In the following, we do not write E in a spiking rule when E equals a”, and we
do not write ¢ when it is 0. Let us denote with R the infinite set of all possible
spiking and forgetting rules, and let us write L(E) for the language denoted by
the regular expression F.

Rules contained in a neuron have to be applied to spikes contained in that
neuron. The application of a spiking rule F/a™ — a;t may involve more than
one computation step. We say that E/a™ — a;t fires when its application



begins, and that it spikes in the last step of its application. The number of
steps between firing and spiking is given by the value of t. When ¢t = 0 we
have that firing and spiking are performed simultaneously, when ¢t = 1 they are
performed in two subsequent steps, and so on. A spiking rule E/a™ — a;t can
be applied only if in the neuron there is a number of spikes that is described
by the regular expression E. When this happens, a™ spikes are removed from
the neuron content at firing time, whereas at spiking time one spike a is sent
to each neuron of the system that can be reached immediately by following
the outgoing synapses. The spikes sent at spiking time will be available in the
content of the recipients neurons in the computation step immediately after the
spiking. During the application of a spiking rule, the neuron containing the
rule cannot receive any spike from other neurons, and it is said to be closed
(i.e. in the refractory period). Actually, the neuron is closed during the firing
step (if ¢ > 0), but it is not closed during the spiking step, in which spikes
can be received. Spikes sent by a neuron to a closed neuron are discarded. A
neuron that is not closed is said to be open. At each computation step one
rule is applied in each open neuron having some applicable rules. A forgetting
rule a™ — X can be applied only if in the neuron there are exactly n spikes.
Application of a forgetting rule is done in a single computation step, and the
result of the application is that the n spikes of the neuron are deleted. It is
usually assumed (also in [7] and here) that a neuron does not contain a spiking
rule and a forgetting rule that can be applied at the same time. This means
that the left hand side of each forgetting rule must not be described by any of
the regular expressions of the spiking rules of the neuron. This means also that
non-determinism can be introduced only by spiking rules of the same neuron
whose regular expressions describe languages with non-empty intersection.

A computation of a spiking neural P system is a sequence of steps in which
rules are applied, by starting from a given initial configuration. One of the neu-
rons of the system has to be chosen as the output neuron. We consider spiking
neural P systems generating natural numbers as in [7]: in a valid computation
the output neuron applies spiking rules only twice and the number of steps ex-
ecuted between the first and the second spike gives the generated number. All
the other computations in which the output neuron does not spike exactly twice
are considered invalid and are discarded.

Spiking neural P systems are formally defined as follows.

Definition 1 (SNP System). A spiking neural P system (SNP system) is a
tuple IT = (V, 01, ..., 0m, Syn, ig) where:

- V = {a} is the singleton alphabet;

- 01,...,0m, are pairs o; = (n;, R;),1 < i < m, called neurons, such that
n; € IN, n; >0, R; CR, and R; is finite;

- syn, called synapses, is an irreflexive relation on {1,...,m} x {1,...,m};

- ip € {1,...,m} indicates the output neuron.



Figure 1: A SNP system computing the l.c.m. of n; and nsa, with ny > 2 and ng > 2.

Example 1. In Fig. 1 we give an example of SNP system computing the least
common multiple of n; and ns, with n; > 2 and ny > 2. Let m be such a value.
The output neuron [5 is depicted with a dangling outgoing arrow. It spikes at
time 1, when aa triggers the spiking rule aa/a — a. Then, neuron l; (resp. ly)
receives from [5 the spike a at time 1 and enters a loop. Starting with k£ = 0, it
fires at time 2 + nik (resp. 2 + nok), spikes at time 2 + n1k + (ng — 2) (resp.
2+ ngk + (n2 —2)) sending a to both 5 and 2 (resp. l3), receives the spike from
Iy (resp. l3) at time 2+ n1k + (n; — 1) (resp. 2+ nok + (ne — 1)) and fires once
more at time 2+ ni(k + 1) (resp. 2+ na(k + 1)). These loops are kept until {4
and [y do not spike together, so that [5 receives only a spike, either from [ or
from l4, and removes it with forgetting rule a — A. But, at time m, both [; and
l4 spike, l5 receives two spikes, one from [; and one from Iy, which are exploited
by 5 to spike at time m + 1 with rule aa/a — a. Since l; (resp. ls) receives a
spike also from Iy (resp. l3), at time m + 1 it performs the firing rule aa — A so
that all spikes are removed.

3. The SNP Algebra

Let us denote with £ the set of all possible neuron labels. Moreover, let us
omit the U operator from set and multiset unions, namely given two sets (or
multisets) s; and so we will write s152 for s1 U so. The abstract syntax of the
SNP algebra is defined as follows.

Definition 2 (SNP algebra). The abstract syntax of neuron contents ¢ and
spiking neural systems sns is given by the following grammar:

c == (9,9,0) ’ (2,a,0) ’ (E/a™ — a;t,@,t) ‘ (a"™ — X\, 2,0) ’ cUc
sns == [c]F | sns|sns | (I)sns

where t and t’ range over IN, ¢ < t, [ ranges over £ and L ranges over 2.



A neuron content ¢ represents the computation state of a neuron, which
consists of a triple (R,u,t), where R is the finite set of spiking and forgetting
rules, u is a multiset of spikes (actually, u = a™ for some n > 0), and ¢t € IN is
a timer. The intuition is that u represents the spikes inside the neuron and ¢
is the waiting time for the next spiking. Therefore, the timer is 0 in the initial
computation state, the timer becomes ¢ when a rule E/a"™ — a;t with ¢ > 0
fires, and a timer ¢ > 0 is set to t — 1 when the clock ticks.

A neuron content ¢ is obtained through the union operator - U _ from
constants representing single rules and single spikes. Actually, we have that
(Ri,u1,t1) U (Ra,us,ts) represents the triple (R1R2,ujug, max(t1,ts)). The
semantic rules of the SNP algebra will ensure that by starting from a correct
representation of the initial computation state of a spiking neural P system,
namely, with all timers equal to zero, at most one of the timers in each neuron
content will be greater than zero. Hence, max(t,t2) is the non-zero timer, if
any, between t; and t5. We shall say that a neuron content (R, u,t) is open (i.e.
not in refractory period) if ¢ = 0, and that it is closed (i.e. in refractory period)
ift>0.

A neuron can be obtained from a neuron content ¢ by applying the operation
[_]F. Here, [ is the label of the neuron and L is the set of labels of the neurons
that might send a spike to [. In other words, L represents the incoming edges of
neuron [ in the graph representing the spiking neural P system. Operation _ | -
represents the juxtaposition of neurons. Since each neuron contains information
on its incoming edges, the result of a juxtaposition operation can be seen as a
graph. A spiking neural P system of degree n can hence be represented as a term
[cl]ﬁl [...] [cn]i", where each L;, with 1 <4 < n, is a subset of {l1,...,l,}.

Finally, the restriction operation (I)sns makes neuron [ of system sns in-
visible to other neurons in further juxtapositions. This means that neuron [
will be allowed to have outgoing synapses only towards other neurons in sns
(i.e. in the scope of ). The restriction operator has no corresponding notion
in the standard definition of SNP systems, but permits us to develop systems
in a modular way. In fact, since outgoing synapses are the only way for SNP
systems to send information, they represent the output interfaces of the sys-
tems. The restriction operation permits us to select which interfaces we want to
keep visible from the external world. Notice that input interfaces are selected

by choosing the set L in neuron [c]F.

Example 2. Terms of the SNP algebra, namely spiking neural systems, rep-
resent SNP systems. For example, let us consider the SNP system in Fig.1.
Neuron I; can be represented by the following term of the algebra:

[(aa - )\7 g’ 0) U (a’ - a;nl - 23 @a 0) ];EIIZJS} .
In the examples we shall give, let us slightly simplify the notation as follows:

[aa = N, a—a;ny — 2, T, O]i{llQJS}



where & is the multiset of available spikes and 0 is the sum of the timers asso-
ciated with the rules. Neuron /5 can be represented by the following term:

[a—a,d, 0]{l1}

l2
and neuron [5 by the following term:

{l1,l4} _

[aa/a — a,a— X, aa, 0]}

Neurons I3 and l4 are similar to I3 and [y, respectively. The whole SNP system
can be represented by the following term:

Siem n=laa— A, a—a;n —2, T, O]I{llz’l5} |[a —a, T, O]I{le}|

[a—a,d, 0];314} |[aa — X, a—a;ng —2, &, O]i{jS’ZS} |
[aa/a — a,a — A, aa, O]Z{;l’l4} )

Note that we might compose Si.,,, with further neurons which receive spikes
from any of the neurons ly,...,l5. For instance, Siem | [@,@,O]I{;Z} would
represent an SNP system in which /5 sends spikes also to the new neuron Ig.
However, system Sj.,, might be a component of a larger system we are specifying
in a modular way. Hence, we might desire only the output neuron (or a few key
neurons) to be visible from other components of the system. Restriction can be
used to this purpose, and we might rewrite Si.,, as follows:

Sllcm L= (ll)(l4)(
() ([aa — X, a = azmy = 2,2, 0" [ [a ~a, 2, 0] |
)

l2
(t3)([a—a, 2,01 |[aa — X, a— a;na —2, @, 0] |
{l1,l4}

[aa/a —a,a— X, aa, 0]}
We have that only spikes sent by l5 can be received by neurons in the context.

Restriction allows us to distinguish the labels of the neurons of a system
between bound, namely in the scope of some restriction operation, and free,
namely not in the scope of any restriction operation. Moreover, we say that a
label [ is pending if no neuron in the system is labeled [, and there is a neuron
in the system willing to receive spikes from some neuron labeled .

Definition 3 (Bound, free and pending labels). The set of bound labels of
a spiking neural system sns, denoted BL(sns) C L, is recursively defined as
follows:

%) if sns = [c]F
BL(sns) = ¢ BL(sns1) U BL(sns2) if sns = snsy | snsa
{l}U BL(sns") if sns = (I)sns’



The set of free labels of a spiking neural system sns, denoted FL(sns) C L, is
recursively defined as follows:

{1} if sns=[c]F
FL(sns) =< FL(sns1) U FL(snsg) if sns = snsy | snsa
FL(sns")\ {l} if sns = ()sns’

The set of pending labels of a spiking neural system sns, denoted PL(sns) C L,
is recursively defined as follows:

L if sns = [c]F
PL(sns) = PL(sns1) \ FL(snsy) U PL(sns2) \ FL(snsy) if sns = sns; | snsa
PL(sns') if sns = (I)sns’

We say that a spiking neural system sns is complete if and only if PL(sns) =
@. Note that only complete spiking neural systems have corresponding SNP
systems, since in non-complete ones synapses are not properly specified.

The following constraints are mandatory to represent spiking neural P sys-
tems as defined in [7]:

e for a neuron content (E/a™ — a;t,@,t’) it holds that n > 1 and o™ C u
for every u € L(E);

e for a neuron content (R, u,t), given any E/a" — a;t and a® — X\ in R, it
holds that a" ¢ L(E);

e for a neuron [c]F, it holds that [ ¢ L;
e for a juxtaposition snsy | snss it holds that FL(snsy) N FL(snsy) = &.

Now, in order to give the semantics of the SNP algebra, let us recall the model
of labeled transition systems [15, 8].

Definition 4 (LTS). A labeled transition system (LTS for short) is a triple
(S, Lab, {L |¢ € Lab}), where S is a set of states, Lab is a set of labels, and

Lg S x S is a transition relation for each ¢ € Lab.

As usual, we write s £ ¢ for (s,8) et

The semantics of the SNP algebra is given in terms of an LTS, with a state
for each syntactically correct term and a labeled transition for each computation
step. LTS labels can be of the following forms:

e (U, E,u,v,v',I,0), describing a computation step performed by an open
neuron content ¢, where:

— U is a set of regular expressions corresponding to application condi-
tions of the rules in ¢. Namely, for each spiking rule E/a™ — a;t in
c it holds that £ € U. Moreover, for each forgetting rule a™ — X in
c it holds that a™ € U.



— F is either the regular expression corresponding to the application
conditions of the rule fired in the described computation step, or the
empty regular expression if no rule is fired in such a step. Note that
if E is non-empty then F is in U.

— w is either the multiset of spikes in ¢ that are consumed by the spiking
or forgetting rule fired in the described computation step, or the
empty multiset if no rule is fired in such a step. The multiset u will
be obtained from the semantic rules describing the behaviour of the
individual spiking and forgetting rules in c.

— v is the same as wu, but it is obtained from the semantic rules of
the individual spikes in ¢. When c is inserted into a neuron [c]F,
condition v = v will be checked and transitions having a label with
u # v are discarded, to ensure that spikes consumed by spiking or
forgetting rules are available inside [c]¥ and are removed from [c]F.

— v/ is the multiset of spikes in ¢ that are not consumed in the de-

scribed computation step. When c is inserted into a neuron [c]F, if
E is empty then it is checked that v’ does not satisfy any regular
expression in U, namely that the available objects do not trigger any
spiking or forgetting rule.

— I is either the multiset of spikes received from other neurons in the
described computation step, or L, which describes that the neuron is
closed and, therefore, it cannot receive objects from other neurons.

— O is the multiset of spikes sent to other neurons in the described com-
putation step. Since at most one spike (possibly to several neurons)
can be sent at each step, we have that either O = @ or O = {a}.

e (1,1,0), describing a computation step performed by a closed neuron
content ¢, where:

— 1 is a label used just to emphasize that the transition describes a
computation step in which timers are decreased by one.

— I and O are as in the previous case.

e (Z,0), describing a computation step performed by a spiking neural sys-
tem sns, where:

— T is a set of pairs (I, ) describing the multiset of spikes I (actually,
with either I = @ or I = {a}) that is expected to be received in the
described step by some neurons in sns from a neuron [ not in sns.

— O is aset of pairs (I, 0) describing the multiset of spikes O (actually,
with either O = @ or O = {a}) that is sent by neuron ! in sns to all
neurons willing to receive it.

Components I and O in labels of the first two forms, and components 7
and O in labels of the third form, describe the input/output behaviour of SNP
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Figure 2: Rules for open neuron contents.

algebra terms, namely what is usually considered to be the observable behaviour.
Labels of the first form are more complex since U, E,u,v and v’ are needed to
infer the behaviour of neuron contents compositionally.

For the sake of legibility, in transitions with labels of the first form we shall
write the first five elements of the label (namely, U, E,u,v and v') under the
arrow denoting the transition and the other two elements (namely, I, O) over
the arrow. Similarly, in transitions with labels of the second form we shall write
1 under the arrow and I, O over the arrow.

Now, LTS transitions are defined through SOS transition rules [8] of the
form %, where the premises are a set of transitions, and the conclusion
is a transition. Intuitively, SOS transition rules permit us to infer moves of SNP
algebra terms from moves of their subterms. We assume the standard way to
associate a set of transitions with a set of transition rules [16].

In Fig. 2 we introduce the inference rules for open neuron contents. Rule
(c1) states that an empty neuron content can only receive a multiset of spikes
I from other neurons. These spikes will be available at the next computation
step. Also the other inference rules in the figure, but rule (¢5), describe the
reception of a multiset of spikes I from other neurons.
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Figure 3: Rules for closed neuron contents.

Rules (¢2) and (¢3) describe the computation steps that can be performed by a
neuron content representing an individual spike. Rule (¢2) deals with the case
in which the spike is consumed by some spiking or forgetting rule, whereas rule
(¢3) deals with the case in which the spike is not consumed. In the former case,
the spike is no longer present in the next computation state, and it appears in
the fourth component of the label that collects all consumed spikes. In the latter
case, the spike is still present in the next computation state, and it also appears
in the fifth component of the label that collects all non-consumed spikes.
Rules (c4) and (c5) describe the firing of a spiking rule E/a™ — a;t. In the
first case ¢ is 0, whereas in the second case t is positive and, therefore, firing
the rule implies the closure of the neuron. In both cases the regular expression
FE, representing application requirements on the available spikes, appears in the
first two elements of the transition label. Moreover, the multiset a™ of the
consumed objects appears in the third element of the label. Notice that in rule
(c4) the spike a appears as the output of this computation step, whereas in rule
(¢5) no output is produced and the timer is set to t. Moreover, in rule (¢5) the
input is L, since a neuron cannot receive any input when it is becoming closed.
Rule (¢6) describes a spiking rule that is not firing. This happens when either
the application requirements E are not satisfied by the available spikes, or when
another spiking rule is non-deterministically chosen for firing, or when in the
current computation step the neuron is closed. In these cases the state is left
unchanged and E appears in the first transition label element.

Rules (¢7) and (¢8) describe the application and non-application, respectively,
of a forgetting rule a™ — A. These rules are analogous to rules (¢4) and (c6),
respectively, with F replaced by a”.

In Fig. 3 we give the inference rules for closed neuron contents consisting of a
spiking rule that has already fired but that has not yet spiked, namely a spiking
rule whose timer is not 0. If the timer is greater than 1 then the inference rule
(t1) is applied just to decrement the timer, whereas if the timer is 1 then the
neuron content is opening, which is described by rule (¢2), in which the spike a
appears as output of the computation step and an input can be received.

In Fig. 4 we give the inference rules for the union of neuron contents c¢; U cs.
A computation step of ¢; Ucs is obtained from a computation step of each of the
two components. Rules (ul), (u2), (u3), (u4) deal with the case in which both ¢;
and cq are open. The inference rule (u1) is used when neither in ¢; nor in co any

10
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Figure 4: Rules for unions of neuron contents.

spiking or forgetting rule fires. In this case the computation steps by ¢; and ¢y
are described by labels with some empty components, namely those containing
the regular expression E associated with the firing rule and the consumed and
output spikes u and O. Note that there might be some spikes in ¢; and cs,
namely v; and vy, that may be consumed in a neuron content to be further
composed. The label of the transition of ¢; U ¢y is simply the union, element by
element, of the labels of the two composed transitions.

The inference rules (u2), (u3), (u4) are exploited when in ¢; there is either a
spiking or a forgetting rule that is firing. The dual cases in which the firing
or forgetting rule is in ¢y is implicitly assumed. Since it cannot happen that
more than one rule, either spiking or forgetting, fires, the case with firing rules
in both ¢; and cs is not considered. Notice that the rule that fires is a spiking
rule that immediatly spikes in (u2), a spiking rules with delay in (u3) and a
forgetting rule in (u4).

Rules (u5) and (u6) deal with the case in which ¢ contains a spiking rule that
has been already fired in a previous step but has not yet spiked, so that cs is

11



closed, and c¢; is open. Dual rules with ¢; closed and ¢y open are implicitely
assumed, whereas rules with both ¢; and ¢y closed do not exist since no more
than one rule waiting for spiking is admitted. Notice that also ¢; U co results
to be closed. Since no spiking or forgetting rule can fire in ¢;, the components
of its transition label containing the regular expression E associated with the
firing rule, the consumed and output spikes u, v and O must be empty. If ¢y
remains closed, then also ¢; Uce remains closed and, therefore, ¢; cannot receive
any input, as it is described by (u5). Otherwise, if ¢3 is opening then also ¢ Ucy
opens and, therefore, ¢; can receive any input I;.

Let us say that a neuron content ¢ = (R, u,t') is well formed iff either ¢’ = 0
or there exist two neuron contents ¢; = (E/a™ — a;t,9,t') and c2 = (R, u,0)
such that ¢ = ¢; U co.

Proposition 1. Given a well formed neuron content c, if ¢ L for some label
£ and neuron content ¢, then ¢’ is well formed.

PRrROOF. By induction over the syntactical structure of c. If ¢ represents either
the empty neuron content, or a single spike, or a spiking rule or a forgetting

rule then the transition ¢ - ¢’ is infered from some rule in Fig. 2 or Fig. 3, and
the thesis is immediate. Assume that ¢ = ¢; U ¢o. In this case, since c is well
formed then both ¢; and ¢y are well formed and by induction hypothesis we can

assume that the thesis holds for them. Transition ¢ — ¢’ is inferred from two
transitions ¢; — i and ¢y L, ¢4, through some transition rule in Fig. 4, and ¢/
is g Uch. Let ¢; = (R, ug,t;) and ¢ = (R}, ul,t}), for 1 <i < 2. If both t{ =0
and #, = 0 then the thesis is immediate. If either ¢ =0 and ¢, > 0 or t{ > 0
and t, = 0 then the thesis holds from the inductive hypothesis over ¢} and c.
The form of the transition rules in Fig. 4 ensures that it cannot happen that

both t; > 0 and ¢}, > 0.

In Fig. 5 we give the inference rules for spiking neural systems. Rule (snsl)
describes a computation step performed by an open neuron that is not closing.
The transition of the neuron is obtained from an acceptable transition of its con-
tent, namely a transition in which the third and the fourth label components are
equal. Recall that such components represent the spikes consumed by a firing
rule as it results from the transition performed by the individual firing rule and
the transitions performed by the individual spikes. The fact that these two label
components are equal ensures that individual transitions have been coherently
chosen during the composition. Rule (snsl) also checks that the conditions on
available spikes that determined the firing or non-firing of rules in ¢ are satisfied.
In particular, if in the transition performed by ¢ no rule fires (i.e. E = &, that
implies u = v = &), then the multiset of available spikes v" must be such that
no regular expression in U is satisfied (to this aim, let - be defined as follows:
ub U <= 3E € Uu € L(E)). This means that there was no applicable rule
in ¢. If in the transition performed by c there is a rule firing (i.e. E # @), then
the multiset of available spikes vv’ must satisfy E. This means that the firing
rule was actually applicable. The input spikes I expected by the neuron content
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Figure 5: Rules for spiking neural systems.

are non-deterministically partitioned into different multisets (I» for each I’ € L)
of spikes to be received from each neuron mentioned in L. Note that the neuron
can receive at most one spike from each neuron in L, hence I;; C {a}.

Rule (sns2) differs from (snsl) since it describes the case of an open neuron
that is closing and, therefore, cannot receive any input.

Rules (sns3) and (sns4) describe a computation step performed by a closed
neuron, which is opening in the case of (sns3). In these cases the output sent
out by the neuron content c is reported in the label of the neuron transition.
Rule (sns5) describes a computation step performed by a juxtaposition of neu-
rons snsy and snsy. Ouput spikes of the two neurons are simply combined.
More complex is the handling of input spikes: first of all it has to be checked
whether some neurons in sns; (snssz, respectively) might receive some spikes
from neurons in snsy (snsi, respectively). This amounts in checking whether
in the input of one component and in the output of the other there are spikes
associated with the same label I’. If this is the case, then the input and the
output spikes must coincide, namely they are both {a} or &. If this condition is
satisfied, then the information on the input from !’ can be forgotten (since there
is no longer the need to look for such a neuron in the context) and therefore it
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can be omitted in the label of the transition.

Finally, rule (sns6) deals with the restriction operation. In this inference rule
the transition performed by a system with a restriction is obtained from the
transition performed by the system in which the restriction has been omitted,
by removing from the label information on the spikes sent by the neuron whose
label is restricted. This avoids other neurons added by further juxtapositions
to receive spikes from the neuron whose label is restricted.

Proposition 2. Given a complete spiking neural system sns and a transition

(@] . .
sns 22, sns’, it holds that T = & and that also sns’ is complete.

PROOF. The fact that sns’ is complete is immediate. If, by contraddiction,
T # o, then T contains at least a pair (I, ;). In this case the rules in Fig. 5
ensure that @ does not contain any pair (I,0), for any O, and that sns has
not any spiking neural system with label [ as a subterm. Therefore, sns is not
complete, which leads to a contraddiction.

Example 3. As an example of transition derivation let us consider again the
term S, defined above and corresponding to the SNP system in Fig. 1. Let
us show how the transition corresponding to the first computation step of the
system is derived. A transition for neuron l; is derived by applying inference
rules (c6), (¢8), (ul) and (snsl), and it is the following:

(2,05} {(12,2).05.0)}.{(11.2)}
I [

Iyl
[aa — X\, a — a;n—2, &, 0 aa — X\, a — a;n;—2, a70]l{12 s}

The transition of neuron I3 is derived by applying inference rules (¢6) and (snsl)
and it is the following:

{11} {(1,2)}.{(2,2)}
l2

[a—a,o,0] la—a, 2,0

Transitions of neurons l3 and [4 are similar to those of neurons Il and [y, re-

spectively. Now, the transition of (l2)([aa — A, a — a;n1 — 2, &, O]I{llz’l5} |

[a —a, T, 0]2{211}) (let us call this subterm S 2) is obtained from transitions
of neurons {; and ls by applying (snsb), which removes (I, @) and (l2, @) from
the input, and (sns6), which removes (I3, @) from the output. The result is the
following transition:

ls,a)},{(l1,
Si s {U5,0)},{(11,9)}

s

(l2)([aa — X, a—a;m =2, a, 012" | [a —a, &, 0]{1)

Subterm (I3)([aa — A, a — a;ng — 2, &, O]gBJS} |[a = a, T, O]Z{sl“}) (let us
call it S5 4) performs a transition similar to that of Sj .

Neuron [5 performs a transition derived by applying (¢2), (c4), (¢8), (u2) and
(snsl). The transition is as follows:

14} {(1,9),(10.9)} {(5,a)} 14}

[aa/a—>a7a—>)\,aa70]l{;1’ [aa/a—>a,a—>)\7a70]l{;1’

Finally, the transition of the whole term can be derived from that of neuron 5
and of subterms S7 2 and Ss4 by applying inference rules (sns5) and (sns6),
with the following result:
s 7,{(s5,a)} s
lem

lem
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where S},

is the following term:

1) (L) (
12)([(1@% A,a—an —2,a, O]i{llz’l‘r’} [[a —a, T, 0]2{211}) |
) {13715}) |

la

S//

I3 ([a—>a,®,0]g4} | [aa = A, a— a;na—2,a,0]

1,0
aaja — a,a — A, a, O]i{rl"‘}

o= (
(
(
[
)-

4. Behavioural preorders and equivalences

In this section we introduce some notions of behavioural equivalence for
SNP algebra terms. The concept of equivalence of systems we consider here is
well established in the literature on reactive and interactive systems, and on
concurrency theory. In these fields, systems are assumed to be placed in some
environment and to be able to interact with such an environment. The equiva-
lence is hence based on the interactions with the environment that are performed
step-by-step by the considered systems. Two systems are hence equivalent when
they are able to interact in the same way with the environment they are placed
in at each step of the computation. Moreover, it is usually required that if two
equivalent systems are plugged in the same context then we obtain two bigger
systems being, in turn, equivalent.

We remark that all SOS rules in Figs. 2-5 respect the well known de Simone
format [17], namely that they are in the form:

f(-rla---axar(f)) St

where f is an operation with arity ar(f), z1,...,%q.5) and {y; |7 € I} are vari-
ables that can be instantiated with any term, I is any subset of {1,...,ar(f)},
the variables z; and y; are all distinct and the only variables that occur in the
rule, and, finally, ¢ is any term that does not contain any variable x;, for ¢ € I,
and has no multiple occurrence of variables.

In this section we consider some well known notions of behavioural preorder
and equivalence defined in the literature over the LTS model (see [16] for a
survey). Let us recall that a preorder is a reflexive and transitive relation,
and an equivalence is a symmetric preorder. Moreover, the largest equivalence
contained in a preorder is called the kernel of the preorder. As usual, given an

LTS, we shall write s 7@ if s £ s holds for no s',and s 4 if s ﬁ» for all £ € L.
Moreover, for a state s € S, we denote by Initials(s) the set {¢ € £|3s'. s LN s’}

Definition 5. Let (S, L, {L |£ € L}) be an LTS. A relation RC S x S

. . .. . . ¢ . ..
e is a simulation if, for each pair s; R s, if s; — s then there is a transition

¢
s — sh such that s} R sh;
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Figure 6: Relations between preorders.

e is a ready simulation if it is a simulation and, for each pair s1 R s3, if s1 7é>
then so #;

e is a ready trace preorder if, for each pair s; Rsa, any ready trace of s is a
ready trace of sy (a sequence Lol1Ly ... L, L, with L; C L and ¢; € Lis a

. ¢ ¢ € .
ready trace of a state sq if sg — $1 — ... 8,1 — s, and Initials(s;) = L;
fori=0,...,n);

e is a failure preorder if, for each pair sy Rso, any failure of s; is a failure of
so (apair (01 ...4,,L) with ¢1...¢, € L and L C L is a failure of a state

ol £ .
sif s = ... = &' for some state s’ such that Initials(s’) N L = @);

e is a trace preorder if, for each pair sy Rse, any trace of s; is a trace of sq

. . . £ Ln
(a sequence /1 ... ¢, with £; € L is a trace of a state sq if sp — ... == s,

for some state s,).

The relations in Def. 5 are preorders. Intuitively, two states s and t are
related by a preorder (resp. an equivalence that is the kernel of a preorder) if the
behaviour of s is step-by-step simulated by (resp. equivalent to) the behaviour
of t, provided that some details of the behaviours of s and ¢ are abstracted
away. These details depend on the considered preorder (resp. equivalence) and
correspond to the part of behaviour that is not visible to an external observer.

As usual, we denote with Crg (resp.: Cg) the union of all ready simulations
(resp.: simulations), which, in turn, is a ready simulation (resp. simulation).
The kernel of Crg and the kernel of Cg coincide, is called bisimulation, and is
denoted by ~. We denote by Cgr (resp.: T, Cr) the union of all ready trace
preorders (resp.: failure preorders, trace preorders), which, in turn, is a ready
trace preorder (resp.: failure preorder, trace preorder), and by ~gr (resp.: =p,
/) its kernel. It is well known (see, e.g., [16]) that the preorders in Def. 5 are
structured by the hierarchy of inclusions shown in Fig. 6 (where — stands for
<),

A usual requirement for a preorder (resp. equivalence) is to be a precon-
gruence (resp. congruence). This is essential for substitution of programs with
equivalent ones and to develop an axiomatic framework.

Definition 6. A preorder (resp. equivalence) R C S x S is called a precon-
gruence (resp. congruence) iff, for each operation f with arity n and pairs
s1Rsy,...spRs), it holds that f(s1,...,8,)Rf(s],...,5,).

n? ’r n
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Figure 7: Example of equivalent SNP systems.

We show that SNP algebra operations preserve the relations in Def. 5.
Theorem 3. All preorders in Def. 5 are precongruences.

PrOOF. In [18] it is proved that trace preorder and failure preorder are pre-
congruences for all calculi defined with SOS rules in de Simone format. In [19]
some formats are given which ensure that simulation preorder, ready simulation
preorder and ready trace preorder are precongruences. All these formats are
less restrictive than de Simone format. (I

Corollary 4. The kernels of all preorders in Def. 5 are congruences.
Let us consider now an example of equivalent spiking neural systems.

Example 4. Take the SNP systems in Figure 7. Actually, they should be in-
tended as portions of a bigger SNP system, with neurons /; and Iy of both
systems receiving spikes from an external neuron /; and sending spikes to ex-
ternal neurons, respectively. When receiving the spike a from neuron I; at time
t, each of the two systems sends out the spike a at time ¢ + 3, unless a spike
leading to an output at time ¢ 4+ 2 was already received at time ¢ — 1. In other
words, if two spikes are received subsequently, only the first one will lead to an
output after three time units; if three (or four) spikes are received subsequently,
only the first and the third will lead to an output, and so on.

The two SNP systems can be represented by the following SNP algebra
terms: the system on the left corresponds to

S1 w= (Lh)([a—a, @70]1{1“} [[a —a;1, @7011{;1})7
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whereas that on the right corresponds to

Sy u= (L) (z1)(z2)([a —a, @, 01" |[a—a, @, 0]
l x1,T
[a—a, @,O]i;} |[aa/a — a,a — X, aaa — X, @70]1{21 2}).
Now, let us introduce the following notations:
SEVE = () (la—a, X, 0{7 [ [a— a1, ¥, ¢]f)

Sy AW = () (1) (z2) ([a — @, X, O]l{lli} [a—a,Y,0]{} |
[a—a, Z, O]Q{clzl} | [aa/a — a, a — X, aaa — X, W, 0]{11,12})

la

namely Sf(’y’t denotes a system with the same structure as S, but with X and
Y as multisets of spikes in I3 and Iy, respectively, and with ¢ as timer of Is.
Similarly, 8’2X YZW- Jenotes a system with the same structure as S, but with
X,Y, Z and W as multisets of spikes in l1, z1, x2 and lo, respectively. Note that
Sy =872 and S = 85722,

From the semantic rules, we infer the following transitions:

Sf{,z,o {6, D)} {(12,9)} S{,X,O
Slx,a,o {(:,1)},{(12,9)} SlXI,a,l
SlX,a,l {0} {(l2,a)} S{,X,O

for every X, I € {&,a}. We infer also the following transitions:

S;(,Y,Y,z {0, D} {(2,2)} SQI,X,X,YY

aa liJ ’ l, a
S2X,Y,Y, {(:,D)}{(l2,a)} S2I,X,X,YY

a lial ) l7
S2X,Y,Y, {0} {(2,2)} S2I,X,X,YY

S;(,Y,Y,aaa {(l:, D)} {(12,9)} S2I,X,X,YY

for every X, Y, I € {@,a}.
Let R be the least relation on terms satisfying the following axioms:

GXY0 p gX.Y.Y.2 gX.al p gX.Y.Yaa
1 2 1 2
GX Y0 p gXY.Y.a GX Y0 p XYY a0a
1 2 1 2
for every X, Y € {&,a}. It holds that R is a bisimulation, namely R C~s.

In principle, the considered equivalences (and preorders) could be used also to
compare the behaviour of neuron contents. However, the semantics of neuron
contents we have defined does not allow, at the moment, the equivalences to
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work as expected. For example, let us consider the following neuron contents:

¢ == (aa+aaa/a — a, &, 0)
¢ == (aaa+aa/a — a, &, 0)
cs == (aa/a — a, aaa/a — a, d,0)

Any reasonable behavioural equivalence on neuron contents should consider c1,
co and c3 as equivalent. However, transitions performed by ¢, co and c3 have
syntactically different labels, since labels contain the regular expressions asso-
ciated with the rules that are, in this case, syntactically different.

In order to solve this problem we should slightly modify the definition of
the semantics as follows: label component U, namely the set of all regular
expressions associated with rules, should be replaced by a language that is the
union of the languages denoted by such regular expressions. Similarly, label
component F, namely the regular expression associated with the applied rule,
should be replaced by L(E).

By replacing regular expressions with languages in the transition labels,
we obtain that neuron contents with a different number of rules or with rules
having syntactically different regular expressions perform the same transitions
if the regular expressions denote the same languages. This would be the case,
for instance, of ¢1, co and c3. However, the use of languages in place of regular
expressions in transition labels is less intuitive and gives some advantages only
when dealing with behavioural equivalences. This motivates our choice of not
using languages in the definition of the semantics. Moreover, note that the
current definition of the semantics is such that neurons [¢; Uc]F,[c2 Uc]F and
[es U c]lL, for any c¢,l and L, are equivalent with respect to any behavioural
equivalence, even if c¢1, co and c3 are not. In other words, the current semantics
ensures that c1, co and c3, when inserted in the same context constituting a
neuron, turn out to be equivalent, as it was the intuition.

5. Conclusions

In the paper we have given a formal compositional semantics for SNP systems
by following a Structural Operational Semantics approach. We have introduced
a process algebra, the SNP algebra, whose terms represent either neuron con-
tents, or neurons, or juxtaposition of neurons. The algebra is equipped with
a semantics, given as a labelled transition system. We have considered some
known behavioural equivalences and provided their definition based on the given
semantics. We have also proved that such equivalences are congruences.

A further step would be the development of axiomatic semantics character-
izing equivalent SNP systems. Moreover, the given semantics could be easily
adapted to described the behaviour of variants of SNP systems such as SNP
systems with extended rules [20] and asynchronous SNP systems [21].
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