
Compositional Semantics and

Behavioral Equivalences for P Systems

Roberto Barbuti, Andrea Maggiolo–Schettini, Paolo Milazzo

Dipartimento di Informatica
Università di Pisa

Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

Simone Tini

Dipartimento di Scienze della Cultura, Politiche e dell’Informazione
Università dell’Insubria

Via Valleggio 11, 22100 Como, Italy

Abstract

The aim of the paper is to give a compositional semantics in the style of the Struc-
tural Operational Semantics (SOS) and to study behavioral equivalence notions for
P Systems. Firstly, we consider P Systems with maximal parallelism and without
priorities. We define a process algebra, called P Algebra, whose terms model mem-
branes, we equip the algebra with a Labeled Transition System (LTS) obtained
through SOS transition rules, and we study how some equivalence notions defined
over the LTS model apply in our case. Then, we consider P Systems with priori-
ties and extend the introduced framework to deal with them. We prove that our
compositional semantics reflects correctly maximal parallelism and priorities.

Key words: P Systems, Structural Operational Semantics, Behavioral equivalence,
Congruence.

1 Introduction

P Systems were introduced by Pǎun in [16,17] as distributed parallel comput-
ing devices inspired by the structure and the functioning of a living cell. The

Email addresses: barbuti@di.unipi.it (Roberto Barbuti),
maggiolo@di.unipi.it (Andrea Maggiolo–Schettini), milazzo@di.unipi.it
(Paolo Milazzo), simone.tini@uninsubria.it (Simone Tini).

Preprint submitted to Theoretical Computer Science 4 January 2008

cell is considered as a set of compartments enclosed by membranes. A P Sys-
tem consists of a hierarchy of membranes, each of them containing a multiset
of objects, representing molecules, a set of evolution rules, representing chem-
ical reactions, and possibly other membranes. For each evolution rule there
are two multisets of objects, describing the reactants and the products of the
chemical reaction. A rule in a membrane can be applied only to objects in
the same membrane. Some objects produced by the rule remain in the same
membrane, others are sent out of the membrane, others are sent into the inner
membranes, which are identified by their labels. Evolution rules are applied
with maximal parallelism, meaning that it cannot happen that some evolution
rule is not applied when the objects needed for its triggering are available.
Some rules cause dissolution of the membrane. In this case, the objects are
put in the membrane containing the dissolved one, and the rules disappear.
The outmost membrane, called skin membrane, can never dissolve. Finally,
evolution rules can be endowed with a priority relation: a rule can be applied
only if no rule with higher priority is applicable.

The aim of this paper is to study some notions of behavioral equivalence over
P Systems, formalizing the idea of membranes having the same behavior and
being substitutable to each other. Often, two computation systems are consid-
ered to be equivalent when they have the same input/output behavior with
respect to the external world. In the P System setting, the external world of
a membrane m is formed by the membranes contained by m and by either
the membrane containing m, if m is not the skin, or the external environ-
ment, otherwise. Hence, it seems to be reasonable to consider as equivalent
two membranes that, at each computation step, can receive the same objects
from outer and inner membranes, can send the same objects to the outer mem-
brane or to the external world, and can send the same objects to the same inner
membranes. Objects obtained as input and objects produced as output are,
therefore, what in the field of concurrency theory is usually considered to be
the observable part of the behavior of the membrane. Of course, a reasonable
notion of equivalence should be a congruence, meaning that the equivalence
should be preserved when two equivalent membranes are put in the same con-
text, namely when they are inserted into the same outer membrane and host
the same inner membranes.

Structural operational semantics (SOS) [18,19] has been demonstrated to be
a solid framework for defining equivalence notions over process algebras (see
[3] for a survey). The idea is to give the operational semantics of the process
algebra in terms of a labeled transition system (LTS) [12,19], having a state
for each process and a labeled transition for each computation step leading
from a process to another process. Transition labels describe what happens in
the considered step at a suitable level of detail. The LTS is obtained by means
of transition rules of the form premises

conclusion
, describing how a computation step

of a process (instance of the conclusion) is derived from computation steps of

2

other processes (instances of premises). Finally, an equivalence relation over
the LTS states is defined, so that two processes s1 and s2 are equated if and
only if the portions of LTS rooted in s1 and s2 are the same, provided that
some details of the branching structure of the LTS are abstracted away. By
changing these details, one has different notions of equivalence.

Following the SOS approach, in this paper we firstly introduce a process al-
gebra, called P algebra, whose terms (processes) represent either membrane
contents, namely multisets of objects and sets of evolution rules that can be
composed with other membrane contents to form a membrane, or membranes,
or juxtaposition of membranes, namely sets of membranes that can be in-
serted into the same outer membrane. For readability, the P Algebra does not
consider, in a first phase, priority relations among evolution rules. We equip
the P Algebra with an LTS, obtained by means of a set of transition rules.
To describe the observable part of membrane behavior, LTS transition labels
contain information on input objects and output objects that are received and
sent in the computation step. We shall argue that the price we have to pay to
build the LTS in an inductive way, i.e. through the transition rules, is that the
LTS labels must contain other details on the computation steps that are not
related to the input/output behavior. In particular, part of this information
is needed to model in a compositional way the maximal parallelism on the
application of the evolution rules, which is a global property.

Then, we consider five different notions of behavioral preorder that have been
defined in the literature over the LTS model, and the equivalences obtained
by considering their kernels. Each of these preorders has a proper abstraction
of the LTS branching structure, and gives a proper abstraction on the way
in which processes compute. These preorders are structured in a hierarchy of
inclusion, meaning that, given two of these preorders, one is (not necessarily
strictly) stronger than the other. In general, one can provide LTSs for which
these inclusions are strict. What is not obvious at all is whether these inclusions
are strict in the LTS inferred from the P Algebra. Actually, we give examples
showing that all these inclusions are strict also in our LTS. In some sense,
this demonstrates the expressivity of the P System model. We shall prove
that all the equivalences obtained from the preorders enjoy the congruence
property with respect to all the operations of the P Algebra. This demonstrates
the solidity of our proposal, and, moreover, it can supply the basis for the
development of axiomatic frameworks in which the equivalences can fit.

Finally, we consider another process algebra, called Priority P Algebra (PP
Algebra), which extends the P Algebra to deal with priority. Also in this case
the inclusions over the preorders are strict and the equivalences enjoy the
congruence property.

Related work. A paper dealing with SOS for P Systems is [5] (whose prelim-

3

inary version is [4]). In [5] three auxiliary transition relations between process
algebra terms are considered, describing application of evolution rules, object
communication between membranes, and membrane dissolution, respectively.
Transitions describing the whole computation step of the membrane are ob-
tained by applying, in a given order, one transition for each relation. Our
approach is different, since we have one only transition relation, represent-
ing the whole computation step. This allows us to have a stronger notion of
compositionality, since in [5] compositionality is achieved for each of the three
auxiliary relations, but not for the main relation. In [5] the LTS describing
the evolution steps of the membranes have no label, whereas our labels carry
information over inputs and outputs. This permits us to have a notion of
observable, and, therefore, notions of equivalence taking into account the ob-
servable behavior of membranes. By removing labels from our LTS we could
easily obtain the LTS of [5].

Operational semantics for P Systems have been proposed in [8,9,11]. In [8]
Catalytic P Systems without priorities are considered and their semantics
is given as a Well–Structured Transition System. A step of a system is not
constructed compositionally, but by means of an additional transition relation
describing the application of single evolution rules. The main purpose of the
paper is to prove decidability of the divergence problem for the considered
variant of P Systems. The semantics of [8] is extended in [9] to describe the
causal dependencies occurring between reactions of a P System. In [11] a
formal framework is proposed to describe a large number of variants of P
Systems. The framework consists of an operational semantics parameterized
by the type of parallelism and halting conditions, and so on. All the semantics
in [8,9,11] are not compositional and have no notion of observable behavior.

It is worth to note that the literature offers other formalisms in which the
input/output behavior of programs can be defined compositionally only by
taking into account additional information, namely by using as transition la-
bels not only the information on the observable part of the behavior. For
instance, [13,14,20–22] argue that the input/output behavior of synchronous
languages [7] can be described compositionally only by exploiting information
on the causality relations among single inputs and single outputs.

2 P Systems

A P System consists of a hierarchy of membranes that do not intersect, with a
distinguishable membrane, called the skin membrane, surrounding them all. As
usual, we assume membranes to be labeled by natural numbers. Given a set of
objects V , a membrane m contains a multiset of objects in V ∗, a set of evolution
rules, and possibly other membranes, called child membranes (m is also called

4

the parent of its child membranes). Objects represent molecules swimming
in a chemical solution, and evolution rules represent chemical reactions that
may occur inside the membrane containing them. For each evolution rule there
is a multiset of objects representing the reactants, and a multiset of objects
representing the products of the chemical reaction. A rule in a membrane m
can be applied only to objects in m, meaning that the reactants should be
precisely in m, and not in its child membranes. The rule must contain target
indications, specifying the membranes where the new objects produced by
applying the rule are sent. The new objects either remain in m, or can be sent
out of m, or can be sent into one of its child membranes, precisely identified
by its label. Formally, the products of a rule are denoted with a multiset of
messages of the following forms:

• (v, here), meaning that the multiset of objects v produced by the rule remain
in the same membrane m;

• (v, out), meaning that the multiset of objects v produced by the rule are
sent out of m;

• (v, inl), meaning that the multiset of objects v produced by the rule are
sent into the child membrane l.

We can assume that all evolution rules have the following form, where {l1, . . . , ln}
is a set of membrane labels in IN.

u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)

An evolution rule in a membrane m is called dissolving if its application causes
the disappearance of m. In this case, the objects in m and the child membranes
of m remain free in the parent membrane of m, and the evolution rules of m
are lost. The skin membrane cannot be dissolved. A dissolving evolution rule
is denoted by adding to the products the special message δ such that δ 6∈ V :

u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)δ

Application of evolution rules is done in parallel, and it could be regulated by
priority relations between rules. Parallelism is maximal; namely at each evolu-
tion step a multiset of instances of evolution rules is chosen non–deterministi-
cally such that no other rule can be applied to the system obtained by re-
moving all the objects necessary to apply all the chosen rules. The priority
relations are such that a rule with a priority smaller than another cannot be
chosen for application if the one with greater priority is applicable. The lower–
priority rule cannot be chosen even if the high–priority one is not chosen for
application: what really matters is the fact that the latter is applicable. The
application of rules consists of removing all the reactants of the chosen rules
from the system, adding the products of the rules by taking into account the
target indications, and dissolving all the membranes in which a δ message has

5

�

	

�

�

	

�1

2

a→ (aa, here)

c

a→ (a, here)

ac→ (a, out)δ

a→ (cd, out)

e→ (a, in2)

e

Fig. 1. An example of P System that may send out of the skin membrane a multiset
of objects cndn for any n ∈ IN.

been produced.

Now, we formally define P Systems.

Definition 1 A P System Π is given by

Π = (V, µ, w1, . . . , wn, (R1, ρ1), . . . , (Rn, ρn))

where:

• V is an alphabet whose elements are called objects;
• µ ⊂ IN× IN is a membrane structure, such that (i, j) ∈ µ denotes that the

membrane labeled by j is contained in the membrane labeled by i;
• wi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V asso-

ciated with the membranes 1, 2, . . . , n of µ;
• Ri with 1 ≤ i ≤ n are finite sets of evolution rules associated with the

membranes 1, 2, . . . , n of µ;
• ρi is a partial order relation over Ri, specifying a priority relation between

rules: (r1, r2) ∈ ρ1 iff r1 > r2 (i.e. r1 has a higher priority than r2).

We show in Fig. 1 an example of P System in which all the main features of
the formalism are used.

3 The P Algebra

In this section we define an algebra of P Systems, called P Algebra. Constants
of the P Algebra correspond to single objects or single evolution rules, and
they can be composed into membrane systems by using operations of union,
containment in a membrane, juxtaposition of membranes, and so on.

A formal semantics is given to the P Algebra in terms of a labeled transition
system whose states correspond to P Systems and whose transitions corre-
spond to P System computation steps in which evolution rules are applied
with maximal parallelism. We remark that our semantics is compositional,

6

namely the semantics of a system is inferred from the semantics of its compo-
nents. Compositionality allows component–wise reasoning and verification of
properties, but it is not easily achievable, in general, in formalisms with global
behavioral constraints such as the maximal parallelism of P Systems.

3.1 Syntax

We assume the usual string notation to represent multisets. For instance,
to represent {a, a, b, b, c} we may write either aabbc, or a2b2c, or (ab)2c. We
denote multiset (and set) union as string concatenation, hence we write u1u2

for u1 ∪ u2.

For the sake of readability, we shall write u → vhvo{vli} for the generic
non–dissolving evolution rule u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln), and
u → vhvo{vli}δ for the similar generic dissolving evolution rule. Moreover, in
examples we shall often write u → vhvovl1 . . . vln , where l1, . . . , ln are the child
membranes with li < li+1 and vli = ∅ if no multiset is sent by the evolution
rule into child membrane li. Similarly for dissolving rules. For instance, we
will write a → ∅bc∅d to denote the rule a → (∅, here)(bc, out)(∅, in1)(d, in2)
if the child membranes of the membrane containing the rule are labeled by 1
and 2.

The abstract syntax of the P Algebra is defined as follows.

Definition 2 (P Algebra) The abstract syntax of membrane contents c,
membranes m, and membrane systems ms is given by the following gram-
mar, where l ranges over IN and a over V :

c ::= (∅,∅)
∣∣∣ (u → vhvo{vli},∅)

∣∣∣ (u → vhvo{vli}δ,∅)
∣∣∣ (∅, a)

∣∣∣ c ∪ c

m ::= [lc]l

ms ::= m
∣∣∣ ms | ms

∣∣∣ µ(m,ms)
∣∣∣ v

A membrane content c represents a pair (R, u), where R is a set of evolution
rules and u is a multiset of objects. A membrane content is obtained trough
the union operation ∪ from constants representing single evolution rules and
constants representing single objects, and can be plugged into a membrane l
by means of the operation [l]l. Formally:

• (∅,∅) represents the empty membrane content;
• (u → vhvo{vli},∅), for all u, vh, vo, vli ∈ V ∗, represents the membrane con-

tent with a single non-dissolving evolution rule and no object;
• (u → vhvo{vli}δ,∅), for all u, vh, vo, vli ∈ V ∗, represents the membrane

content with a single dissolving evolution rule and no object;

7

• (∅, a), for all a ∈ V , represents the membrane content with no evolution
rule and a single object;

• c1 ∪ c2: given c1 representing (R1, u1) and c2 representing (R2, u2), c1 ∪ c2

represents the union of these membrane contents, namely (R1 ∪R2, u1u2).

Membrane systems have the following meaning:

• [lc]l: given a membrane content c representing the pair (R, u) and l ∈ IN,
[lc]l represents the membrane having l as label, R as evolution rules and u
as objects;

• ms1 | ms2: represents the juxtaposition of ms1 and ms2;
• µ(m, ms): represents the hierarchical composition of m and ms, namely the

containment of ms in m;
• v represents the dissolved membrane.

Example 3 Let us consider Fig. 1. The membranes labeled 1 and 2 are rep-
resented by the following terms t1 and t2, respectively:

t1 ≡ [1 (a → ∅cd∅,∅) ∪ (e → ∅∅a,∅) ∪ (∅, e)]1

t2 ≡ [2 (a → aa∅,∅) ∪ (a → a∅,∅) ∪ (ac → ∅aδ,∅) ∪ (∅, c)]2

Moreover, µ(t1, t2) represents the containment of membrane 2 in membrane 1.

Notice that Def. 2 includes membrane systems that have no corresponding P
System. In particular, we need v to model the state reached after application
of a dissolving evolution rule, and we need juxtaposition to use only one binary
hierarchical composition operation instead of an (n + 1)-ary operation µn, for
all n ≥ 1, to represent the containment of n membranes in another one.

Notice also that the definition of µ excludes that the first argument is a jux-
taposition ms1 | ms2 of two membrane systems, or a hierarchical composition
µ(ms1,ms2) of two membrane systems. Hence, it cannot happen that two jux-
taposed membranes have a common child, and that a parent and its child have
a common child.

3.2 Maximally Parallel Semantics

Let us recall the model of labeled transition systems [12,19].

Definition 4 (LTS) A labeled transition system (LTS for short) is a triple

(S,L, { `−→ | ` ∈ L}), where S is a set of states, L is a set of labels, and
`−→⊆ S × S is a transition relation for each ` ∈ L.

8

As usual, we write s
`−→ s′ for (s, s′) ∈ `−→.

The semantics of the P Algebra is given in terms of an LTS, with a state for
each syntactically correct term. LTS labels can be of the following forms:

• (u, U, v, v′,M, I, O↑, O↓), describing a computation step performed by a mem-
brane content c, where:
· u is the multiset of objects consumed by the application of evolution rules

in c, as it results from the composition, by means of ∪ , of the constants
representing these evolution rules.

· U is the set of multisets of objects corresponding to the left hand sides of
the evolution rules in c.

· v is the multiset of objects in c offered for the application of the evolution
rules, as it results from the composition, by means of ∪ , of the constants
representing these objects. When operation [l]l is applied to c, it is
required that v and u coincide.

· v′ is the multiset of objects in c that are not used to apply any evolution
rule and, therefore, are not consumed, as it results from the composition,
by means of ∪ , of the constants representing these objects. When oper-
ation [l]l is applied to c, it is required that no multiset in U is contained
in v′, thus implying that no evolution rule in c can be furtherly applied by
exploiting the available objects. This constraint is mandatory to ensure
maximal parallelism.

· M contains a membrane label l if some evolution rule in c is not applied
since its firing would imply sending objects to some child membrane la-
beled l, but no child membrane labeled l exists. When the operation µ is
applied to ([l′c]l′ ,ms), for any membrane system ms and membrane label
l′, it is required that l is not a membrane in ms.

· I is the multiset of objects received as inputs from the parent membrane
and from the child membranes.

· O↑ is the multiset of objects sent as an output to the parent membrane.
· O↓ is a set of pairs (li, vli) describing the multiset of objects sent as an

output to each child membrane li.
• (M, I, O↑, O↓), describing a computation step performed by a membrane

system ms, where: I is a set of pairs (li, vli) describing the multiset of
objects received as an input by each membrane li in ms, and M , O↑ and
O↓ are as in the previous case.

Components I, O↓, O↑ in labels of the first form, and components I, O↓, O↑

in labels of the second form, describe the input/output behavior of P Algebra
terms, namely what is usually considered to be the observable behavior. Labels
of the first form are more complex since u, U, v, v′ are needed to infer the
behavior of membrane contents compositionally. For the same reason M is
used in both forms of labels. Notice that in the literature there are other
formalisms in which the input/output behavior of programs can be defined

9

I ∈ V ∗ n ∈ IN

(u → vhvo{vli},∅)
∅,I,vn

o ,{(li,vn
li

)}
−−−−−−−−−−−−→

un,{u},∅,∅
(u → vhvo{vli}, Ivn

h
)

(mc1n)

I ∈ V ∗ n ∈ IN n > 0

(u → vhvo{vli}δ,∅)
∅,I,Ivn

o vn
h

δ,{(li,vn
li

)}
−−−−−−−−−−−−−−−→

un,{u},∅,∅
v

(mc2n)

I ∈ V ∗

(u → vhvo{vli}δ,∅)
∅,I,∅,∅−−−−−−→
∅,{u},∅,∅

(u → vhvo{vli}δ, I)
(mc3)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅
(u → vhvo{vli},∅)

M,I,∅,∅−−−−−−→
∅,∅,∅,∅

(u → vhvo{vli}, I)
(mc4)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅
(u → vhvo{vli}δ,∅)

M,I,∅,∅−−−−−−→
∅,∅,∅,∅

(u → vhvo{vli}δ, I)
(mc5)

I ∈ V ∗

(∅, a)
∅,I,∅,∅−−−−−−→
∅,∅,a,∅

(∅, I)
(mc6)

I ∈ V ∗

(∅, a)
∅,I,∅,∅−−−−−−→
∅,∅,∅,a

(∅, Ia)
(mc7)

I ∈ V ∗

(∅,∅)
∅,I,∅,∅−−−−−−→
∅,∅,∅,∅

(∅, I)
(mc8)

Fig. 2. Rules for membrane contents.

compositionally only by taking into account more information than input and
output themselves [13,14,20–22].

For the sake of legibility, in transitions with labels of the first form we shall
write the first four elements of the label below the arrow denoting the transi-
tion and the other four elements over the arrow.

Now, LTS transitions are defined through SOS transition rules [19] of the form
premises

conclusion
, where the premises are a set of transitions, and the conclusion is a

transition. Intuitively, SOS transition rules permits us to infer moves of P
Algebra terms from moves of their subterms. We assume the standard way to
associate a set of transitions with a set of transition rules [3].

In Fig. 2 we introduce the rules for membrane contents. For each n ≥ 0,
rule (mc1n) describes n simultaneous applications of the evolution rule u →
vhvo{vli}. In the label, un means that n occurrences of the multiset of objects
u are consumed, {u} means that there is an evolution rule able to consume u,
I are the objects received from child membranes and the parent membrane, vn

o

means that n occurrences of vo are sent to the parent membrane, and (li, v
n
li
)

means that n occurrences of vli are sent to each child membrane li. In the
target state, I and vn

h mean that the objects received as inputs and the n
occurrences of vh produced by the n applications of the evolution rule will be

10

available at the next computation step.

The dissolving evolution rule u → vhvo{vli}δ requires two types of semantic
rules. For each n ≥ 1, rule (mc2n) describes n simultaneous applications of
the dissolving rule, leading to dissolution. Note that in this case all I, vn

o , and
vn

h are sent as an output to the parent membrane, and that the target state
is v. Moreover, also δ appears among the outputs, so that also the label car-
ries information about dissolution. The second semantic rule is (mc3), which
describes the case in which the dissolving rule is not applied. In this case δ
does not appear in the label and the objects in I will be available at the next
computation step.

In rules (mc4) and (mc5) we assume a function Labels from sets of pairs
{(v1, inl1), . . . , (vn, inln)}, sets usually denoted {vli}, into sets of labels. The
function Labels({vli}) extracts all the membrane labels from the given set
of pairs, namely it returns {l1, . . . , ln}. Rule (mc4) states that the evolution
rule u → vhvo{vli} is not applied because it requires sending objects to child
membranes in M that are assumed not to exist. Rule (mc5) is analogous to
(mc4), but deals with dissolving evolution rules.

Rules (mc6) and (mc7) describe the behavior of the objects inside the mem-
brane content. Rule (mc6) states that object a is offered for the application
of some evolution rule. Rule (mc7) states that object a is not used to apply
any evolution rule. In this second case, a appears in the target state and will
be available at the next computation step. Finally, (mc8) expresses that the
empty membrane can only receive input.

In Fig. 3 we introduce the transition rules allowing to infer behavior of unions
of membrane contents from the behavior of the individual membrane contents.
Given a multiset of objects u and a set of multisets of objects U , we write u ` U
if there exists some u′ ⊆ u such that u′ ∈ U , and we write u 0 U otherwise.
Intuitively, if for each u′ ∈ U there is an evolution rule having u′ in the left side,
then u ` U means that u can let at least one of these transitions fire. Moreover,
we assume a function Objects from membrane contents to multisets of objects
such that Objects((R, u)) = u. Then, given two sets of multisets U1 and U2, we
write U1⊕U2 to denote the set {u ∈ U1U2| 6 ∃u′ ∈ U1U2.u

′ ⊂ u}. Finally, given
two sets O↓

1 and O↓
2 representing two outputs to inner membranes, we write

O↓
1∪IN O↓

2 to denote the set {(l, uv) | (l, u) ∈ O↓
1∧ (l, v) ∈ O↓

2} ∪ {(l, u) | (l, u) ∈
O↓

1∧ 6 ∃v.(l, v) ∈ O↓
2} ∪ {(l, v) | (l, v) ∈ O↓

2∧ 6 ∃u.(l, u) ∈ O↓
1}.

Rule (u1) describes the move of x1∪x2 when no dissolving rule is applied (δ 6∈
O↑

1O
↑
2). Rule (u2) describes the case in which x1 is dissolved due to a dissolving

rule, and x2 is not (δ ∈ O↑
1 and δ 6∈ O↑

2). Since x1 and x2 will be plugged
into the same membrane, also x2 has to dissolve and all its objects, denoted
Objects(y2), are sent to the parent membrane. We assume a rule analogous to

11

x1

M1,I1,O
↑
1 ,O

↓
1−−−−−−−−−→

u1,U1,v1,v′1
y1 x2

M2,I2,O
↑
2 ,O

↓
2−−−−−−−−−→

u2,U2,v2,v′2
y2

M1M2 ∩ Labels(O↓1 ∪IN O↓2) = ∅

v′1v′2 0 U1 ⊕ U2 δ 6∈ O↑1O↑2

x1 ∪ x2

M1M2,I1I2,O
↑
1O

↑
2 ,O

↓
1∪INO

↓
2−−−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′1v′2
y1 ∪ y2

(u1)

x1

M1,I1,O
↑
1 ,O

↓
1−−−−−−−−−→

u1,U1,v1,v′1
y1 x2

M2,I2,O
↑
2 ,O

↓
2−−−−−−−−−→

u2,U2,v2,v′2
y2

M1M2 ∩ Labels(O↓1 ∪IN O↓2) = ∅

v′1v′2 0 U1 ⊕ U2 δ ∈ O↑1 δ 6∈ O↑2

x1 ∪ x2

M1M2,I1I2,O
↑
1O

↑
2Objects(y2),O

↓
1∪INO

↓
2−−−−−−−−−−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′1v′2
v

(u2)

x1

M1,I1,O
↑
1 ,O

↓
1−−−−−−−−−→

u1,U1,v1,v′1
y1 x2

M2,I2,O
↑
2 ,O

↓
2−−−−−−−−−→

u2,U2,v2,v′2
y2

M1M2 ∩ Labels(O↓1 ∪IN O↓2) = ∅

v′1v′2 0 U1 ⊕ U2 δ ∈ O↑1 ∩O↑2

x1 ∪ x2

M1M2,I1I2,O
↑
1O

↑
2 ,O

↓
1∪INO

↓
2−−−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′1v′2
v

(u3)

Fig. 3. Rules for union of membrane contents.

(u2) to deal with the symmetric case, namely x2 is dissolved and x1 is not. Rule
(u3) describes the case in which both x1 and x2 are dissolved (δ ∈ O↑

1 ∩O↑
2).

In all the three rules it is required that M1M2∩Labels(O↓
1∪INO↓

2) = ∅, namely
that the set of child membranes x1 (resp. x2) assumes to be absent has a null
intersection with the set of child membranes to which objects should be sent
by x2 (resp. x1). Moreover, it is required that v′1v

′
2 0 U1 ⊕ U2, namely that

objects that are not consumed by x1 and x2 cannot trigger any evolution
rule in x1 and x2. Both these requirements are needed to guarantee maximal
parallelism of evolution rules. Note that U1⊕U2 does not contain any multiset
u if it contains some multiset u′ ⊂ u, since objects triggering u would trigger
also u′. We anticipate that this allows considering as equivalent systems such
as (a → ∅b∅,∅)∪(a → ∅c∅,∅)∪(aa → ∅bc∅,∅) and (a → ∅b∅,∅)∪(a →
∅c∅,∅), which represent the contents of the membranes shown in Fig. 4. If we
replace U1⊕U2 with U1U2 in (u1), (u2), (u3), we obtain that the two systems
perform transitions which differ only in the element of the label corresponding
to U1U2. In particular, the first system would perform transitions in which such
an element is {a} while the second system would perform transitions in which
such an element is {a, aa}. This unwanted situation is avoided by the use of
U1 ⊕ U2.

Among the transitions performed by membrane contents, we call acceptable
those corresponding to actual evolution rule applications, namely those in
which the multiset of objects consumed by evolution rules and the multiset of
objects offered for their application, do coincide.

12

�

	

�

�

	

�
a→ (b, out)

a→ (c, out)

aa→ (bc, out)

(a)

1 1

(b)

a→ (b, out)

a→ (c, out)

Fig. 4. An example of equivalent systems.

x
M,I,O↑,O↓−−−−−−−−→

u,U,u,v′
y δ 6∈ O↑

[lx]l
M,{(l,I)},O↑,O↓−−−−−−−−−−−−→ [ly]l

(m1)

x
M,I,O↑,O↓−−−−−−−−→

u,U,u,v′
y δ ∈ O↑

[lx]l
M,{(l,I)},O↑,O↓−−−−−−−−−−−−→ v

(m2)

x1

M1,I1,O
↑
1 ,∅

−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅

−−−−−−−−−→ y2 δ 6∈ O↑1O↑2

x1|x2

∅,I1I2,O
↑
1O

↑
2 ,∅

−−−−−−−−−−−−→ y1|y2

(jux1)

x1

M1,I1,O
↑
1 ,∅

−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅

−−−−−−−−−→ y2 δ ∈ O↑1 , δ 6∈ O↑2

x1|x2

∅,I1I2,(O
↑
1O

↑
2)−δ,∅

−−−−−−−−−−−−−−−→ y2

(jux2)

x1

M1,I1,O
↑
1 ,∅

−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅

−−−−−−−−−→ y2 δ ∈ O↑1 ∩O↑2

x1|x2

∅,I1I2,(O
↑
1O

↑
2),∅

−−−−−−−−−−−−−→ v

(jux3)

Fig. 5. Rules for single membranes and juxtaposition of membranes.

Lemma 5 Operation ∪ on membrane contents is associative and commuta-
tive.

PROOF. Operation ∪ on membrane contents is commutative because the
two transition rules (u1) and (u3) are completely symmetric, while rule (u2),
which is not symmetric, has a dual version, omitted in Figure 3. Moreover,
operation ∪ on membrane contents is also associative because the labels of the
transitions in the conclusions of (u1), (u2) and (u3) are constructed by using
associative operations, namely set and multiset unions, and because the tran-
sition rules (mc1n), . . . , (mc5) describe both the cases of application and non–
application of any evolution rule, and the transition rules (mc5), . . . , (mc8)
describe both the cases in which the objects are consumed and are not con-
sumed. 2

In Fig. 5 we give the transition rules for single membranes and for juxtaposition
of membranes. We write u − δ to denote the multiset of objects obtained by
removing from u all the occurrences of δ.

Rule (m1) describes the transition in a membrane with content x and when
only non–dissolving evolution rules are applied. Among the transitions x may

13

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅

−−−−−−−−−→ y2

O↓1 l I2 O↑2 ⊆ I1

M1 ∩ Labels(I2) = ∅ δ 6∈ O↑1O↑2

µ(x1, x2)
∅,(l1,I1\O

↑
2),O

↑
1 ,∅

−−−−−−−−−−−−−→ µ(y1, y2)

(h1)

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅

−−−−−−−−−→ y2

O↓1 l I2 O↑2 ⊆ I1 δ ∈ O↑1

M1 ∩ Labels(I2) = ∅ δ 6∈ O↑2

µ(x1, x2)
∅,{(l1,I1\O

↑
2)},O

↑
1−δ,∅

−−−−−−−−−−−−−−−−−→ y2

(h2)

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅

−−−−−−−−−→ y2

O↓1 l I2 O↑2 − δ ⊆ I1 δ 6∈ O↑1

M1 ∩ Labels(I2) = ∅ δ ∈ O↑2

µ(x1, x2)
∅,{(l1,I1\O

↑
2)},O

↑
1 ,∅

−−−−−−−−−−−−−−−→ y1

(h3)

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅

−−−−−−−−−→ y2

O↓1 l I2 O↑2 − δ ⊆ I1

M1 ∩ Labels(I2) = ∅ δ ∈ O↑1 ∩O↑2

µ(x1, x2)
∅,{(l1,I1\O

↑
2)},O

↑
1 ,∅

−−−−−−−−−−−−−−−→ v

(h4)

Fig. 6. Rules for hierarchy of membranes.

perform, only the acceptable ones are considered (the first and the third com-
ponents of the label below the arrow coincide). This condition, together with
constraint v′1v

′
2 0 U1 ⊕ U2 in rules (u1), (u2) and (u3), allows describing max-

imal parallelism compositionally. The input I to the content x becomes the
input (l, I) to the membrane l. Rule (m2) describes the case in which dissolving
evolution rules are applied.

Rule (jux1) describes the juxtaposition of two membranes that do not dissolve.
Since Def. 2 ensures that x1 | x2 cannot appear as the first argument of
operation µ, namely x1 and x2 cannot have any common child, we are sure that
the set of children of x1 and x2 cannot furtherly change. Hence, we can assume
that both x1 and x2 have delivered all outputs to their child membranes,
namely that the set of remaining outputs to be delivered to inner membranes
is empty, as it appears from the fourth component of the label of both premises,
which is empty. For the same reason, information in M1 and M2 is needless,
and, therefore, the first component of the label of the conclusion is set to
∅. Rules (jux2) and (jux3) describe the juxtaposition when one or both of
the two component membranes dissolve. We assume also a rule symmetric to
(jux2).

14

In Fig. 6 we introduce the transition rules concerning hierarchical composition
of membranes. We assume l to be an equivalence relation on sets of pairs (l, u)
with l ∈ IN and u ∈ V ∗, such that, given two such sets I1 and I2, then I1 l I2

holds if and only if (I1 \ {(l,∅) | l ∈ IN}) = (I2 \ {(l,∅) | l ∈ IN}).

All these rules describe the case in which the membrane system x2 is contained
in the membrane x1. The fact that x1 is a single membrane emerges by looking
at the second element of the label of the transitions that x1 performs (namely
{(l1, I1)}), which represents inputs x1 expects and is a single pair. To handle
correctly object exchange between parent membrane and child membranes,
we require that the multisets of objects O↓

1 sent from parent to children is
equivalent to the multisets of objects I2 expected as input by the children.
We also require that the objects O↑

2 sent from children to parent are contained
in the objects I1 expected as input by the parent. Moreover, to check that the
children expected to be absent by x1 are really absent, we require that the
labels in M1 do not appear in I2. Objects in O↑

2 are removed from I1 in the
label of the transition of the hierarchical composition, hence the input objects
in the composition are only those expected as input from outside the resulting
membrane. Rules (h1), (h2), (h3), and (h4) handle the cases in which either no
membrane, or only the the parent membrane, or only all the child membranes,
or all of them dissolve, respectively.

3.3 Properties of the Semantics

First of all let us note that all SOS rules respect the well known de Simone
format [10], i.e. they have the form

{xi
αi−→ yi |i ∈ I}

f(x1, . . . , xar(f))
α−→ t

where f is an operation with arity ar(f), x1, . . . , xar(f) and {yi | i ∈ I} are vari-
ables that can be instantiated with any term, I is any subset of {1, . . . , ar(f)},
the variables xi and yj are all distinct and the only variables that occur in
the rule, and, finally, t is any term that does not contain any variable xi, for
i ∈ I, and has no multiple occurrence of variables.

To prove that our SOS style semantics reflects maximal parallelism, we show
that if a membrane content (R, u) performs an arbitrary acceptable transition

(R, u)
M,I,O↑1 ,O↓1−−−−−−→
u′,U,u′,v′

x, then the multiset of objects v′ that are not consumed in

the transition is such that none of the evolution rules in R can be applied
to its objects, i.e. the membrane content (R, v′) is not able to perform any

15

acceptable transition (R, v′)
M,I′,O↑2 ,O↓2−−−−−−→
u′′,U ′,u′′,v′′

with u′′ 6= ∅, for any U ′, v′′, I ′, O↑
2, O

↓
2.

Theorem 6 If (R, u)
M,I,O↑1 ,O↓1−−−−−−→
u′,U,u′,v′

x, then (R, v′)
M,I′,O↑2 ,O↓2−−−−−−−→
u′′,U ′,u′′,v′′

/ for any u′′ 6= ∅

and any U ′, v′′, I ′, O↑
2, O

↓
2.

PROOF. We prove the following stronger implication:

(R, u)
M,I,O↑1 ,O↓1−−−−−−→

u′,U,v,v′
x =⇒ (R, v′)

M,I′,O↑2 ,O↓2−−−−−−−→
u′′,U ′,u′′,v′′

/ for any u′′ 6= ∅ (1)

in which the assumption is a transition non necessarily acceptable (i.e. with v
non necessarily equal to u′).

The proof of (1) is by induction on the cardinality of R.

• Base cases:

· If R = ∅ then all transitions from (R, v′) are inferred from rules (mc6),
(mc7), (mc8) and (u1). Hence, those that are acceptable have the form

(R, v′)
∅,I,∅,∅−−−−→
∅,∅,∅,v′

, and (1) is trivially satisfied.

· If R contains a single non–dissolving rule, namely R = {u1 → vhvo{vli}},
we can assume, by Lemma 5, that

(u1 → vhvo{vli}, u) = (u1 → vhvo{vli},∅) ∪ (∅, u) .

The premise of (1) can be rewritten as

(u1 → vhvo{vli},∅) ∪ (∅, u)
M,I,O↑1 ,O↓1−−−−−−→

u′,U,v,v′
x .

The only way to derive this transition is by applying rule (u1) with (∅, u)
as x1 and (u1 → vhvo{vli},∅) as x2 (or vice–versa). All the transitions
that can be performed by (∅, u) are inferred through rules (mc6), (mc7)
and (u1), and have the form

(∅, u)
∅,I2,∅,∅−−−−−→
∅,∅,u1,u2

(∅, I2u2)

for I2 ∈ V ∗ and u1, u2 such that u1u2 = u. The transition performed by
(u1 → vhvo{vli},∅) is obtained by applying either rule (mc1n) or rule
(mc4). Let us distinguish these two cases.

In the case of (mc1n), the premise of (1) is obtained by applying rule

16

(u1) to the transitions

(u1 → vhvo{vli},∅)
∅,I1,O↑1 ,O↓1−−−−−−→
un
1 ,{u1},∅,∅

(u1 → vhvo{vli},∅), (∅, u)
∅,I2,∅,∅−−−−−→
∅,∅,v,v′

(∅, I2v
′)

Hence, in the premise of (1) we have that M is ∅, I is I1I2, O↑
1 and O↑

2

depend only on the transition of (u1 → vhvo{vli},∅), u′ is un
1 , for some

n > 0, U is {u1}, and v and v′ are such that vv′ = u. By the premises
of rule (u1) we are sure that v′ 0 {u1}, which implies that u1 6⊆ v′.
Now, by contradiction, let us assume that there is a y such that we can

infer a transition (u1 → vhvo{vli}, v′)
M,I′,O↑2 ,O↓2−−−−−−→
u′′,U ′,u′′,v′′

y with u′′ 6= ∅. This

transition should be inferred from rule (u1). Moreover, the move of (u1 →
vhvo{vli},∅) used in the premise of (u1) is inferred from (mc1m), for some
m > 0, since, if it was inferred from (mc4) we would have that u′′ = ∅.
This implies that u′′ is equal to um

1 , for some m > 0. Finally, the move
of (∅, v′) used in the premise of (u1) determines the value of v′′, which is
such that u′′v′′ = v′. Summarizing, we have that u′′ = um

1 , for some m > 0,
u′′v′′ = v′ and u1 6⊆ v′, which is a contradiction. Hence, the conclusion of
implication (1) follows.

In the case of (mc4), the premise of (1) is obtained by applying rule
(u1) to the transitions

(u1 → vhvo{vli},∅)
M,I1,∅,∅−−−−−→
∅,∅,∅,∅

(u1 → vhvo{vli},∅), (∅, u)
∅,I2,∅,∅−−−−−→
∅,∅,v,v′

(∅, I2v
′)

Hence, in the premise of (1) we have that M is determined by the move
of (u1 → vhvo{vli},∅), I is I1I2, O↑

1, O↓
1, u′ and U are ∅, and v and

v′ are such that vv′ = u. By the premises of rule (mc4) we have that
M is a non empty subset of the labels appearing in {vli}. The same M
is assumed in the label of the transition appearing in the conclusion of
(1). Now, by contradiction let us assume that there is a y such that we

can infer a transition (u1 → vhvo{vli}, v′)
M,I′,O↑2 ,O↓2−−−−−−→
u′′,U ′,u′′,v′′

y with u′′ 6= ∅.

This transition should be inferred from rule (u1). Moreover, the move of
(u1 → vhvo{vli},∅) used in the premise of (u1) is inferred from (mc4),
since, if it was inferred from (mc1n), we would have that M = ∅. This
implies that u′′ = ∅, which is a contradiction. Hence, the conclusion of
(1) follows.

· The case in which R contains a single dissolving rule is similar to the
previous case.

• Induction cases:

· If R = {u1 → vhvo{vli}}∪R′, with R′ 6= ∅, we can assume, by Lemma 5,

17

that

(R, u) = ({u1 → vhvo{vli}},∅) ∪ (R′, u) .

The premise of (1) can be rewritten as

({u1 → vhvo{vli}},∅) ∪ (R′, u)
M,I,O↑1 ,O↓1−−−−−−→

u′,U,v,v′
x .

This transition can be derived by applying either rule (u1) or rule (u2).
We consider only the case of (u1), as the case of (u2) is analogous. Rule
(u1) can be applied with (u1 → vhvo{vli},∅) as x1 and (R′, u) as x2 (or
vice–versa), where the transition performed by (u1 → vhvo{vli},∅) and
used in the premise of (u1) is obtained by applying either rule (mc1n) or
rule (mc4). Let us distinguish these two cases.

In the case of (mc1n), the premise of (1) is obtained by applying rule
(u1) to the transitions

(u1 → vhvo{vli},∅)
∅,I1,O↑a,O↓a−−−−−−→
un
1 ,{u1},∅,∅

(u1 → vhvo{vli},∅), (R′, u)
M,I2,O↑b ,O↓b−−−−−−−→

u,U,v,v′
x′′

for some x′′ such that x = (u1 → vhvo{vli},∅)∪x′′. Hence, in the premise
of (1) we have that M , v and v′ are determined by the move of (R′, u),
I = I1I2, O↑

1 = O↑
aO

↑
b , O↓

1 = O↓
a ∪IN O↓

b , u′ = un
1 , for some n ≥ 0, and

U = {u1} ⊕ U . By the premises of rule (u1) we have that v′ 0 U ⊕ {u1},
which implies that u1 6⊆ v′. By the induction hypothesis we have that the
transition on the right above implies that

(R′, v′)
M,Ĩ,Õ↑,Õ↓−−−−−−−→

ũ,Ũ ,ũ,ṽ′
/ for any ũ 6= ∅

and this implies that with ũ 6= ∅ we have only transitions from (R′, v′) of
the form

(R′, v′)
M,Ĩ,Õ↑,Õ↓−−−−−−→

ũ,Ũ ,ṽ,ṽ′
y (2)

with ũ 6= ṽ. These transitions are obtained by applying either rule (u1)
or rule (u2), and, by Lemma 5, we can assume that the premises of these
rules are a move by (R′,∅) and a move by (∅, v′). Moreover, the values
of ṽ and ṽ′ are determined by the move of (∅, v′), and there is a move
for each each pair ṽ, ṽ′ such that ṽṽ′ = v′. We are sure that ũ 6⊆ v′. In
fact, if ũ ⊆ v′, we could choose as premise of (u1) the move by (∅, v′)
with ṽ = ũ, which contradicts that ṽ 6= ũ. Summarizing, we have proved
up to now that u1 6⊆ v′ and, if there is a transition like that in (2), either
ũ = ∅, or ũ 6⊆ v′. We note that all the transitions performed by (u1 →
vhvo{vli},∅) ∪ (R′, v′), that is (R, v′), are inferred by rule (u1) or (u2),
where the premises of these rules are both a move by (u1 → vhvo{vli},∅)
and a move by (R′, v′). The first of these two moves is inferred by either

18

(mc1n) or (mc4). Hence we have two subcases.
In the first subcase, the transition by (R, v′) has the form

(u1 → vhvo{vli},∅) ∪ (R′, v′)
M,Ĩ,Õ↑,Õ↓−−−−−−→
ũum

1 ,Ũ ,ṽ,ṽ′
x

for some m ≥ 0, and is inferred from

(u1 → vhvo{vli},∅)
∅,Ia,O↑a,O↓a−−−−−−→
um
1 ,{u1},∅,∅

(u1 → vhvo{vli},∅), (R′, v′)
M,Ib,O

↑
b
,O↓

b−−−−−−→
ũ,Ũ ′,ṽ,ṽ′

z

where Ĩ = Ia ∪ Ib, Õ↑ = O↑
a ∪ O↑

b , Õ↓ = O↓
a ∪IN O↓

b and Ũ = {u1} ⊕ Ũ ′.
We have already proved that either ũ = ∅ or ũ 6⊆ v′, and that u1 6⊆ v′.
Morevoer, we know that ṽ ⊆ v′. As a consequence, ũum

1 6= ṽ.
In the second subcase, the transition by (R, v′) has the form

(u1 → vhvo{vli},∅) ∪ (R′, v′)
M,Ĩ,Õ↑,Õ↓−−−−−−→

ũ,Ũ ,ṽ,ṽ′
x

and is inferred from

(u1 → vhvo{vli},∅)
M ′,Ia,∅,∅−−−−−−→
∅,∅,∅,∅

(u1 → vhvo{vli},∅), (R′, v′)
M ′′,Ib,Õ↑,Õ↓−−−−−−−→

ũ,Ũ ,ṽ,ṽ′
z

where Ĩ = Ia ∪ Ib, and M = M ′ ∪ M ′′. Now, if we have the transition

(R′, v′)
M ′′,Ib,Õ↑,Õ↓−−−−−−−→

ũ,Ũ ,ṽ,ṽ′
z then we have also the transition (R′, v′)

M,Ib,Õ↑,Õ↓−−−−−−→
ũ,Ũ ,ṽ,ṽ′

z.

This follows from the fact that transition (R′, u)
M,I2,O↑

b
,O↓

b−−−−−−−→
u,U,v,v′

x′′ assumed

at the beginning of the proof, ensures that all labels in M are mentioned
by the rules in R′, and rules (mc4) and (mc5) permit to choose an arbi-
trary subset of the labels mentioned in the evolution rules. If we have the

transition (R′, v′)
M,Ib,Õ↑,Õ↓−−−−−−→

ũ,Ũ ,ṽ,ṽ′
z, we have already proved that ũ 6⊆ v′. Since

we know also that ṽ ⊆ v′, we infer that ũ 6= ṽ.
In the case of (mc4) the premise of (1) is obtained by applying rule (u1)

to the transitions

(u1 → vhvo{vli},∅)
M1,I1,∅,∅−−−−−−→
∅,∅,∅,∅

(u1 → vhvo{vli},∅), (R′, u)
M2,I2,O↑1 ,O↓1−−−−−−−→

u′,U,v,v′
x′′

for some x′′ such that x = (u1 → vhvo{vli},∅)∪x′′. Hence, in the premise
of (1) we have that M = M1M2, I = I1I2, and O↑

1, O↓
1, u′, U , v and

v′ are determined by the move by (R′, u). Without loss of generality, we
can assume that no evolution rule in R′ mentions membrane labels in
M1 \M2. In fact, if some membrane label l is in M1 \M2 and is mentioned
by some evolution rule in R′, then we can replace M2 with M2 ∪ {l} in

19

the transition in the right side. This property holds since rules (mc4) and
(mc5) permit to choose an arbitrary subset of the labels mentioned in
the evolution rules. By the definition of rule (mc4) we have that M1 ∩
Labels({vli}) 6= ∅. Since M = M1M2, it follows that M ∩ Labels({vli}) 6=
∅. By contradiction, let us assume that there is a y such that we can infer

a transition (R, v′)
M,I′,O↑2 ,O↓2−−−−−−→
u′′,U,u′′,v′′

y with u′′ 6= ∅. Since M∩Labels({vli}) 6= ∅,

we are sure that this transition can be inferred only by composing through
(u1) or (u2) a transition by (u1 → vhvo{vli},∅) inferred from rule (mc4)

of the form (u1 → vhvo{vli},∅)
M ′,I′,∅,∅,−−−−−−→
∅,∅,∅,∅

with M ′ ⊆ M ∩ Labels({vli}),

and a transition by (R′, v′) of the form (R′, v′)
M ′

2,I′,O↑2 ,O↓2−−−−−−−→
u′′,U,u′′,v′′

y′, where M ′
2

is such that M = M ′M ′
2. Since we have assumed that the evolution rules

in R′ mention membrane labels in M1 \ M2, if we have the transition

(R′, v′)
M ′

2,I′,O↑2 ,O↓2−−−−−−−→
u′′,U,u′′,v′′

y′ we have also the transition (R′, v′)
M2,I′,O↑2 ,O↓2−−−−−−−→
u′′,U,u′′,v′′

y′.

But, by the induction hypothesis, we have that (R′, v′)
M2,I′,O↑2 ,O↓2−−−−−−−−→
u′′,U,u′′,v′′

/ for

any u′′ 6= ∅. Hence, the conclusion of (1) follows.
· The case in which R = {u1 → vhvo{vli}δ} ∪ R′ is similar to the previous

case. 2

4 Behavioral Preorders and Equivalences

In this section we consider some well known notions of behavioral preorder
and equivalence defined in the literature over the LTS model (see [3] for a
survey). Let us recall that a preorder is a reflexive and transitive relation,
and an equivalence is a symmetric preorder. Moreover, the largest equivalence
contained in a preorder is called the kernel of the preorder.

As usual, given an LTS, we shall write s 6 `−→ if s
`−→ s′ holds for no s′, and s 6−→

if s 6 `−→ for all ` ∈ L. Moreover, for a state s ∈ S, we denote by Initials(s) the

set {` ∈ L | ∃s′. s
`−→ s′}.

Definition 7 Let (S,L, { `−→ | ` ∈ L}) be an LTS. A relation R ⊆ S × S

• is a simulation if, for each pair s1 R s2, if s1
`−→ s′1 then there is a transition

s2
`−→ s′2 such that s′1 R s′2;

• is a ready simulation if it is a simulation and, for each pair s1 R s2, if s1 6 `−→
then s2 6 `−→;

• is a ready trace preorder if, for each pair s1Rs2, any ready trace of s1 is a
ready trace of s2 (a sequence L0`1L1 . . . `nLn with Li ⊆ L and `i ∈ L is a

20

ready trace of a state s0 if s0
`1−→ s1

`2−→ . . . sn−1
`n−→ sn and Initials(si) = Li

for i = 0, . . . , n);
• is a failure preorder if, for each pair s1Rs2, any failure of s1 is a failure of

s2 (a pair (`1 . . . `n, L) with `1 . . . `n ∈ L and L ⊆ L is a failure of a state s

if s
`1−→ . . .

`n−→ s′ for some state s′ such that Initials(s′) ∩ L = ∅);
• is a trace preorder if, for each pair s1Rs2, any trace of s1 is a trace of s2

(a sequence `1 . . . `n with `i ∈ L is a trace of a state s0 if s0
`1−→ . . .

`n−→ sn

for some state sn).

All the relations in Def. 7 are preorders. Intuitively, two states s and t are
related by some preorder (resp. by an equivalence obtained as kernel of some
preorder) if the behavior of s is simulated by (resp. equivalent to) the behavior
of t, provided that some details of the behaviors of s and t are abstracted away.
These details depend on the considered preorder (resp. equivalence).

As usual, we denote with vRS (resp.: vS) the union of all ready simulations
(resp.: simulations), which, in turn, is a ready simulation (resp. simulation).
The kernel of vRS and the kernel of vS coincide, is called bisimulation, and is
denoted by ≈. We denote by vRT (resp.: vF , vT) the union of all ready trace
preorders (resp.: failure preorders, trace preorders), which, in turn, is a ready
trace preorder (resp.: failure preorder, trace preorder), and by ≈RT (resp.: ≈F ,
≈T) its kernel.

Example 8 Let us consider the membranes in Fig. 4, which are modeled by
the following P Algebra terms:
s ≡ [1 (a → ∅b,∅) ∪ (a → ∅c,∅) ∪ (aa → ∅bc,∅)]1
t ≡ [1 (a → ∅b,∅) ∪ (a → ∅c,∅)]1.
LTS transitions take into account that membrane 1 can be inserted into a
parent membrane, from which membrane 1 can receive objects a, b, and c.
For each p, q, r ∈ IN there exist an LTS state sp,q,r, and an LTS state tp,q,r,
representing membrane 1 in the left side and membrane 1 in the right side,
containing the multiset of objects apbqcr. Then, for each p′, q′, r′, and for
each pair of values pb and pc such that pb + pc = p, there are transitions

sp,q,r
∅,(1,ap′bq′cr′),bpbcpc ,∅−−−−−−−−−−−−−→ sp′,q+q′,r+r′ and tp,q,r

∅,(1,ap′bq′cr′),bpbcpc ,∅−−−−−−−−−−−−−→ tp′,q+q′,r+r′

modeling that the membrane exploits the p objects a to send out pb objects b and
pc objects c, and that the input from the parent membrane is ap′bq′cr′. Finally,

we have transitions s
∅,(1,ap′bq′cr′),b0c0,∅−−−−−−−−−−−−→ sp′,q′,r′ and t

∅,(1,ap′bq′cr′),b0c0,∅−−−−−−−−−−−−→ tp′,q′,r′.
It turns out that s and t are equated by the stronger equivalence we have con-
sidered, namely ≈, which reflects the intuition that the membranes in Fig. 4
have the same behavior.

The previous example shows a case in which one of the evolution rules in a
membrane is useless. In Fig. 7 we show other pairs of membranes whose corre-
sponding P Algebra terms are equated by ≈. Let us consider the membranes

21

in Fig. 7.a and Fig. 7.b. They have different structure, but have the same ob-
servable behavior. Both membranes labeled 1 can receive occurrences of d and
a, provided that they are inserted in a parent membrane. Each occurrence of
d is send out at the next step. Each occurrence of a is sent inside membrane
2. Now, both membranes labeled 2 are able to sent out one occurrence of d for
each occurrence of a they receive from 1, with a delay of three computation
steps. Such occurrences of d are sent out by 1 after one more computation
step.

Let us consider the membranes in Fig. 7.c and Fig. 7.d. Both membranes
labeled 1 can receive occurrences of d and a, provided that they are inserted
in a parent membrane. Each occurrence of d is sent out at the next step.
For each occurrence of a, the membrane 1 in the left side sends either one
occurrence of b inside 2, or an occurrence of c inside 3, whereas the membrane
2 in the right side sends an occurrence of e inside 2. At the next step, the
membrane 1 in the left side receives one d for each b sent to 2 and one d for
each c sent to 3, whereas the membrane 2 in the right side receives one d for
each e sent to 2. These d’s are sent out by 1 one step later.

Let us consider the membranes in Fig. 7.e and Fig. 7.f. Both membranes
labeled 1 can receive occurrences of b and a, provided that they are inserted
in a parent membrane. Each occurrence of b is sent out at the next step. For
each occurrence of a, the membrane 1 in the left side sends two occurrences
of a inside 2, whereas the membrane 1 in the right side sends two occurrences
of a inside 3. Hence, 2 and 3 always receive 2k occurrences of a, for some k,
and send out to 1 2k occurrences of b at the next step. These b’s are sent out
by 1 at the next step.

4.1 Congruence Property

A classical requirement over a preorder (resp. equivalence) notion is to be a
precongruence (resp. congruence), namely that it is preserved by all opera-
tions. This is essential to allow substitution of programs with equivalent ones
and to develop an axiomatic framework.

Definition 9 A preorder (resp. equivalence) R ⊆ S × S is called a precon-
gruence (resp. congruence) iff, for each operation f with arity n and pairs
s1Rs′1, . . . snRs′n, it holds that f(s1, . . . , sn)Rf(s′1, . . . , s

′
n).

All P Algebra operations behave well w.r.t. preorders and equivalences in
Def. 7.

Theorem 10 All preorders in Def. 7 are precongruences.

22

�

	

�

�

	

�

�

	

�

�

	

�

�

	

�

1 1

2 2
d→ (d, out) a→ (a, in2) d→ (d, out)

a→ (b, here)

b→ (c, here)

c→ (d, out)

3

(a) (b)

a→ (a, in2)

a→ (b, in3)

c→ (d, out)
b→ (c, out)

�

	

�

�

	

�

�

	

�

�

	

�

�

	

�

1 1

d→ (d, out) a→ (e, in2) d→ (d, out)

(d)

a→ (b, in2)

(c)

2 3

b→ (d, out) c→ (d, out) e→ (d, out)

2
a→ (c, in3)

�

	

�

�

	

�

�

	

�

�

	

�

1 1

b→ (b, out) a→ (aa, in3) b→ (b, out)

(f)

a→ (aa, in2)

(e)

aa→ (bb, out)

2

a→ (b, out)

3

Fig. 7. Examples of bisimilar systems.

PROOF. In [23] it is proved that trace preorder and failure preorder are
precongruences for all calculi defined with SOS rules in de Simone format.
In [24] some formats are given which ensure that simulation preorder, ready
simulation preorder and ready trace preorder are precongruences. All these
formats are less restrictive than de Simone format. 2

Corollary 11 The kernels of all preorders in Def. 7 are congruences.

4.2 Hierarchy of Preorders

It is well known that the preorders in Def. 7 are structured by the hierarchy
of inclusions shown in Fig. 8 (where → stands for ⊆). In general, one can
provide LTSs such that all inclusions in Fig. 8 are strict. What is not obvious
at all is whether these inclusions are strict also in the LTS inferred from the
P Algebra.

First of all we can show that in our LTS the inclusion of vRS in vS is strict.

23

vRT

vRS

vS

vF

vT

@@R
©©©©©©©*

-

XXXXz»»»»:

Fig. 8. Relations between preorders

Example 12 Let us consider the following P Algebra terms:
s ≡ [1 (∅, a) ∪ (a → ∅bδ,∅)]1
t ≡ [1 (∅, a) ∪ (a → ∅bδ,∅) ∪ (a → ∅cδ,∅)]1.
Term s represents a membrane that can send out b and dissolve, whereas term t
represents a membrane that can send out either b, or c, and dissolve. Formally,

for each p, q, r ∈ IN, s
lp,q,r
b−−−→ v, and t

lp,q,r
b−−−→ v and t

lp,q,r
c−−−→ v are the transitions

in the parts of the LTS that are rooted in s and t, respectively, where lb =
(∅, (1, apbqcr), apbq+1cr,∅) and lc = (∅, (1, apbqcr), apbqcr+1,∅) represent the
computation steps performed by the membrane for input apbqcr. Note that the
input is sent out due to dissolution. Now, we have that s vS t, since t is able

to simulate each lp,q.r
b move by s, but s 6vRS t, since t

lp,q,r
c−−−→ v and s has no

lp,q,r
c move.

Now we can show that both inclusions of vS in vT and vRS into vRT are
strict.

Example 13 Let us consider the membranes in Fig. 9. Their behavior differ
since the membrane in the left side chooses at the first computation step if
one object b or one object c will be sent out at the fourth step, whereas the
membrane in the right side makes the decision in the second computation step.
Actually, in the left side the choice is made by membrane 2, which can send a
to either 3 or 4. In the former case 3 sends out b to 2, which sends out b to 1,
which sends out b. In the latter case 4 sends out c to 2, which sends out c to
1, which sends out c. In the right side, 2 can only send a to 5, which decides
to send out to 2 either b or c. In the former case 2 sends out b to 1, which
sends out b. In the latter case 2 sends out c to 1, which sends out c.

Let us take the following P Algebra terms:
s3 ≡ [3 (a → ∅b,∅)]3
s4 ≡ [4 (a → ∅c,∅)]4
s2 ≡ [2 (∅, a) ∪ (a → ∅∅a∅,∅) ∪ (a → ∅∅∅a,∅) ∪ (b → ∅b∅∅,∅) ∪ (c →
∅c∅∅,∅)]2
t5 ≡ [5 (a → ∅b,∅) ∪ (a → ∅c,∅)]5
t2 ≡ [2 (∅, a) ∪ (a → ∅∅a,∅) ∪ (b → ∅b∅,∅) ∪ (c → ∅c∅,∅)]2
s1 ≡ t1 ≡ [1 (b → ∅b∅,∅) ∪ (c → ∅c∅,∅)]1
s ≡ µ(s1, µ(s2, s3 | s4))

24

�

	

�

�

	

�

�

	

�

�

	

�

�

	

�

�

	

�

�

	

�

a→ (a, in4)

2

1

b→ (b, out) c→ (c, out)

c→ (c, out)

b→ (b, out)
a

a→ (a, in3) 3

4

1

a→ (a, in5)

2
b→ (b, out) c→ (c, out)

b→ (b, out)

c→ (c, out)

a→ (b, out)

a→ (c, out)

5
a→ (b, out)

a→ (c, out)

a

�

��

�

��

�

��

�

���

�� �

��

�

��

�

��

�

��

�

��

�

��

�

���

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��@@R

- - -

- ���

@@R

-

-

-

-

���
s

s
p,q

2

s
p,q

3
s
p,q

5

s
p,q

4

s
p,q

7

s
p,q

6

s
p,q

9

s
p,q

8

t t
p,q

2,3

t
p,q

5

t
p,q

4

t
p,q

7

t
p,q

6
t
p,q

8

t
p,q

9

l
p,q

1,p,q
l
p,q

1,p,q
l
p,q

3,p,q

l
p,q

1,p,q

l
p,q

1,p,q

l
p,q

2,p,q
l
p,q

1,p,q
l
p,q

1,p,q

l
p,q

1,p,q

l
p,q

1,p,q

l
p,q

1,0,0

l
p,q

1,p,q

l
p,q

1,p,q
l
p,q

2,p,q

l
p,q

3,p,q

l
p,q

1,p,q

l
p,q

1,p,q

l
p,q

1,0,0

l
p,q

1,0,0

Fig. 9. Two membrane systems showing that both inclusions vS ⊆ vT and
vRS ⊆ vRT are strict. The labels are as follows: lp

′,q′
1,p,q = (∅, (1, bp′cq′), bpcq,∅),

lp
′,q′

2,p,q = (∅, (1, bp′cq′), bp+1cq,∅), lp
′,q′

3,p,q = (∅, (1, bp′cq′), bpcq+1,∅).

t ≡ µ(t1, µ(t2, t5)).

Terms s and t correspond to the membranes in Fig. 9. The parts of the LTS
inferred from the P Algebra that are rooted in s and t have been partially
depicted in the figure.

By construction, the LTS takes into account that s and t could be inserted
into a parent membrane, thus receiving objects b and c from such a parent.
LTS transitions modeling a computation step in which the input received from
the parent membrane is bpcq, enter state sp,q

i , or tp,q
i . From each state sp,q

i , or

tp,q
i , transitions labeled lp

′,q′
j,p,q depart for each p′ and q′. For readability, we have

depicted only transitions labeled lp,q
j,p,q to represent all of them. A transition

labeled lp
′,q′

1,p,q (resp.: lp
′,q′

2,p,q, lp
′,q′

3,p,q) describes a step with input bp′cq′ and output
bpcq (resp.: bp+1cq, bpcq+1).

Now, it holds that s ≈T t, s ≈RT t, and s ≈F t. Relation R = {(s, t)} ∪
{(sp,q

2 , tp,q
2,3) | p, q ≥ 0} ∪ {(sp,q

3 , tp,q
2,3) | p, q ≥ 0} ∪ {(sp,q

i , tp,q
i) | p, q ≥ 0, 4 ≤ i ≤ 9}

is a simulation, whereas no simulation (and, therefore, no ready simulation)
containing (t, s) can be given since neither sp,q

2 nor sp,q
3 are able to simu-

late tp,q
2,3. In fact, tp,q

2,3 has, among the others, both traces lp,q
1,p,ql

p,q
1,p,ql

p,q
2,p,q and

lp,q
1,p,ql

p,q
1,p,ql

p,q
3,p,q, whereas sp,q

2 has not the trace lp,q
1,p,ql

p,q
1,p,ql

p,q
3,p,q, and sp,q

3 has not the
trace lp,q

1,p,ql
p,q
1,p,ql

p,q
2,p,q. Hence, the pair (t, s) is in vT \ vS and in vRT \ vRS.

It remains to show that both inclusions of vRT in vT and vRT into vF are
strict.

Example 14 Let us consider the membranes in Fig. 10. The membrane 2 on
the right side chooses immediately whether 1 will produce b or c at the next
step, whereas membrane 2 on the left side gives to 1 the task of making the

25

�

	

�

�

	

�

�

	

�

�

	

�
a→ (b, out)δ

a→ (c, out)δ

b→ (b, out)δ

c→ (c, out)δ

b→ (b, out)δ

a→ (c, out)δ

c→ (c, out)δ

a

a→ (a, out)δ

1 1

a→ (b, out)δ 2 2
a→ (b, out)δ

a→ (c, out)δ

a

�

�� �

�� �

��

�

���

�� �

��

�
�

��*

H
H

HHj

-

Z
Z~

�
�3

-

-

�

	
�

�

	
�

�

	
�

st

l
p,q,r

1

l
pb,pc,q,r

2,u,v,w

l
pb,pc,q,r

3,u,v,w v

v

v

v

l
pb,pc,q,r

3,u,v,w

l
pb,pc,q,r

2,u,v,w

t
p+1,q,r

2,3

s
p,q+1,r

2

s
p,q,r+1

3

l
p,q,r

1

l
p,q,r

1

Fig. 10. Two membrane systems showing that both inclusions
vRT ⊆ vF and vRT ⊆ vT are strict. The labels are as follows:
lp,q,r
1 = (∅, (1, apbqcr),∅,∅), lpb,pc,q,r

2,u,v,w = (∅, (1, aubvcw), aubpb+q+1+vcpc+r+w,∅),
lpb,pc,q,r
3,u,v,w = (∅, (1, aubvcw), aubpb+q+vcpc+r+1+w,∅).

choice at next step.

Let us take the following P Algebra terms:
s2 ≡ [2 (∅, a) ∪ (a → ∅bδ,∅) ∪ (a → ∅cδ,∅)]2
t2 ≡ [2 (∅, a) ∪ (a → ∅aδ,∅)]2
s1 ≡ t1 ≡ [1 (a → ∅b∅δ,∅) ∪ (a → ∅c∅δ,∅) ∪ (b → ∅b∅δ,∅) ∪ (c →
∅c∅δ,∅)]1
s ≡ µ(s1, s2)
t ≡ µ(t1, t2).

Terms t and s correspond to the membranes in Fig. 10. The parts of the LTS
rooted in t and s have been partially depicted in the figure.

The LTS takes into account that t and s could be inserted within some parent
membrane, thus receiving a, b, c from such a parent. For each p, q, r ∈ IN,
the transition labeled lp,q,r

1 describes the computation step performed from s,
and t, for input apbqcr. For readability we have depicted only one transition.
Term t reaches tp+1,q,r

2,3 , i.e. a state with objects ap+1bqcr. Note that one of
the objects a has been produced by the membrane 2. Term s reaches either
sp,q+1,r
2 , i.e. a state with objects apbq+1cr, where one object b has been produced

by the membrane 2, or sp,q,r+1
3 , i.e. a state with objects apbqcr+1, where one

object c has been produced by the membrane 2. Label lpb,pc,q,r
2,u,v,w (resp. lpb,pc,q,r

3,u,v,w)
describes a computation step for input aubvcw and output aubpb+q+1+vcpc+r+w

(resp. aubpb+q+vcpc+r+1+w), where pb and pc are values such such that pb +pc =
p, and the output contains the input due to dissolution.

It holds that s ≈T t and t vF s (Note, on the contrary, that s 6vF t. For
example, (l0,0,0

1 , {l0,0,0,0
2,0,0,0}) is a failure for state s but it is not a failure for state

t.) Moreover, it holds that s 6vRT t and t 6vRT s. In fact, {lp,q,r
1 |p, q, r ≥

0}, l0,0,0
1 , {l0,0,0,0

2,u,v,w|u, v, w ≥ 0} is a ready trace of s but it is not a ready trace of

26

t. Viceversa, {lp,q,r
1 |p, q, r ≥ 0}, l0,0,0

1 , {l0,0,0,0
2,u,v,w, l0,0,0,0

3,u,v,w} is a ready trace of t but
not of s. Hence, both (s, t) and (t, s) are in vT\vRT , and (t, s) is in vF \vRT .

5 Priorities

We can deal with priority by adding to evolution rules information on the
evolution rules having higher priority. Priorities are usually represented as a
binary relation on evolution rules. However, for the sake of compositionality,
we would like that each evolution rule contains some information about its
priority relationships with respect to other rules. In particular, we would like
that each evolution rule contains some information about the applicability of
rules with higher priority.

To model that a rule u → vhvo{vli} has lower priority than all evolution rules
in a set {uj → (vj

h, here)(vj
o, out)(vj

1, inlj1
), . . . (vj

nj
, inljnj

) | j ∈ J}, our choice is

to represent u → vhvo{vli} with the constant ({(uj,Mj)}u → vhvo{vli},∅),
where Mj = {lj1, . . . , ljnj

}. The interpretation is that u → vhvo{vli} cannot be
applied if there exists some j such that all objects in uj are available and all
labels in Mj are labels of child membranes. In fact, in such a case, a rule with
higher priority is applicable.

In the following, a pair in V ∗ × 2IN as (uj, Mj) is called a priority pair.

Hence, we assume that non–dissolving evolution rules and dissolving evolution
rules have the following forms:

(u1,M1) . . . (um,Mm) u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)

(u1,M1) . . . (um,Mm) u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)δ

We denote them with {(ui,Mi)}u → vhvo{vli} and {(ui,Mi)}u → vhvo{vli}δ,
respectively.

The Priority P Algebra (PP Algebra) is defined analogously to the P Algebra.

Definition 15 (PP Algebra) The abstract syntax of membrane contents c,
membranes m, and membrane systems ms is given by the following grammar,
where l ranges over IN and a over V :

c ::= (∅,∅)
∣∣∣ ({(ui,Mi)}u → vhvo{vli},∅)

∣∣∣
({(ui,Mi)}u → vhvo{vli}δ,∅)

∣∣∣ (∅, a)
∣∣∣ c ∪ c

m ::= [lc]l

27

ms ::= m
∣∣∣ ms | ms

∣∣∣ µ(m,ms)
∣∣∣ v

The LTS associated with PP Algebra has labels carrying information on pri-
ority. Labels can be of the following forms:

• (u, U, v, v′,M, I, O↑, O↓, uP ,MP , A), describing a computation step performed
by a membrane content c. The new components uP , MP , and A have the
following meaning:
· The pair (uP ,MP) is a priority pair that explains the non application

of some evolution rules in c with the triggering of other evolution rules
in c having higher priority. Actually, we assume that all objects in uP

are available, and that all labels in MP are labels of child membranes
to which objects can be delivered. When operation [l]l is applied to c,
and, subsequently, operation µ is applied to ([lc]l,ms), for any membrane
system ms and membrane label l, we have to check that our assumption
is correct. More precisely, we require that uP is contained in vv′, and that
each label in MP is a label of some membrane in ms.

· A is a set of priority pairs such that each (u,M) in A would preempt at
least one of the applied evolution rules in c with the triggering of another
evolution rule in c having higher priority. Actually, for each (u,M) ∈ A,
we assume that either some object in u is not available, or some label in M
is not a label of any child membrane. When operation [l]l is applied to c,
and, subsequently, operation µ is applied to ([lc]l,ms), for any membrane
system ms and membrane label l, we have to check that our assumption
is correct. More precisely, we require that either u is not contained in vv′,
or that some label in M is not a label of any membrane in ms.

• (M, I, O↑, O↓,MP , A), describing a computation step performed by a mem-
brane system ms. The new components MP and A have the same meaning
as in the previous case.

Rules in Fig. 11 extend those in Fig. 2 having the same name with additional
information for handling priorities. In what follows we describe only the ad-
ditional information.

Let us consider the rule (mc1n). The label shows that no evolution rule with
higher priority is applicable, namely for each i either some object in ui is not
available, or some label in Mi is not a label of any child membrane. Hence,
if n ≥ 1 then n occurrences of {(ui,Mi)}u → vhvo{vli} are applied, whereas
if n = 0 the label shows that {(ui,Mi)}u → vhvo{vli} is not applicable since
the multiset of objects u is not available. The case in which {(ui,Mi)}u →
vhvo{vli} is not applied since the evolution rule with higher priority enabled
by the objects ui and delivering objects to the child membranes in Mi is
applicable, is described by the new rule (mc1′0). In rules (mc2n), (mc3), and
in the new rule (mc3′), priorities are handled as in rules (mc1n), (mc10),

28

I ∈ V ∗ n ∈ IN

({(ui, Mi)}u → vhvo{vli},∅)
∅,I,vn

o ,{(li,vn
li

)},∅,∅,{(ui,Mi)}
−−−−−−−−−−−−−−−−−−−−−−−→

un,{u},∅,∅
({(ui, Mi)}u → vhvo{vli}, Ivn

h
)

(mc1n)

I ∈ V ∗ (uj , Mj) ∈ {(ui, Mi)}
({(ui, Mi)}u → vhvo{vli},∅)

∅,I,∅,∅,uj ,Mj ,∅−−−−−−−−−−−−−→
∅,∅,∅,∅

({(ui, Mi)}u → vhvo{vli}, I)

(mc1′0)

I ∈ V ∗ n ∈ IN n > 0

({(ui, Mi)}u → vhvo{vli}δ,∅)
∅,I,Ivn

o vn
h

δ,{(li,vn
li

)},∅,∅,{(ui,Mi)}
−−−−−−−−−−−−−−−−−−−−−−−−−−→

un,{u},∅,∅
v

(mc2n)

I ∈ V ∗

({(ui, Mi)}u → vhvo{vli}δ,∅)
∅,I,∅,∅,∅,∅,{(ui,Mi)}−−−−−−−−−−−−−−−−−→

∅,{u},∅,∅
({(ui, Mi)}u → vhvo{vli}δ, I)

(mc3)

I ∈ V ∗ (uj , Mj) ∈ {(ui, Mi)}
({(ui, Mi)}u → vhvo{vli}δ,∅)

∅,I,∅,∅,uj ,Mj ,∅−−−−−−−−−−−−−→
∅,∅,∅,∅

({(ui, Mi)}u → vhvo{vli}δ, I)

(mc3′)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅
({(ui, Mi)}u → vhvo{vli},∅)

M,I,∅,∅,∅,∅,{(ui,Mi)}−−−−−−−−−−−−−−−−−→
∅,∅,∅,∅

({(ui, Mi)}u → vhvo{vli}, I)

(mc4)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅
({(ui, Mi)}u → vhvo{vli}δ,∅)

M,I,∅,∅,∅,∅,{(ui,Mi)}−−−−−−−−−−−−−−−−−→
∅,∅,∅,∅

({(ui, Mi)}u → vhvo{vli}δ, I)

(mc5)

I ∈ V ∗

(∅, a)
∅,I,∅,∅,∅,∅,∅−−−−−−−−−−−→

∅,∅,a,∅
(∅, I)

(mc6)
I ∈ V ∗

(∅, a)
∅,I,∅,∅,∅,∅,∅−−−−−−−−−−−→

∅,∅,∅,a
(∅, Ia)

(mc7)

I ∈ V ∗

(∅,∅)
∅,I,∅,∅,∅,∅,∅−−−−−−−−−−−→

∅,∅,∅,∅
(∅, I)

(mc8)

Fig. 11. Rules for membrane contents.

and (mc1′0), respectively. In rules (mc4) and (mc5) the label shows that no
evolution rule with higher priority is applicable. In rules (mc6), (mc7), and
(mc8) priority plays no role.

Given two multisets of objects u1 and u2, let u1] u2 denote the multiset
(u1 ∪ u2) \ (u1 ∩ u2). If u1 (resp. u2) is a multiset of objects that are assumed
to be available so that no evolution rule in a set R1 (resp. R2) is applicable,
then u1] u2 is the least multiset of objects that should be available so that
no evolution rule in R1 ∪ R2 is applicable. This operation is exploited in the
rules in Fig. 12, which extend those in Fig. 3 with handling of priorities. In all
these rules, all priority pairs (u,M) in A1A2 are such that either some object
in u is assumed to be not available, or some label in M is assumed not to be
a label of any child membrane. Since all objects in uP1] uP2 are assumed to
be available, and all labels in MP1 and MP2 are assumed to be labels of child
membranes, we require that either u 6⊆ uP1] uP2 or M 6⊆ MP1MP2 . Moreover,
since all labels in M1M2 are assumed not to be labels of child membranes, we

29

M1M2 ∩MP1MP2 = ∅ ∀(u, M) ∈ A1A2.(u 6⊆ uP1] uP2 ∨M 6⊆ MP1MP2)

M1M2 ∩ Labels(O↓1 ∪IN O↓2) = ∅ v′1v′2 0 U1 ⊕ U2 δ 6∈ O↑1O↑2

x1

M1,I1,O
↑
1 ,O

↓
1 ,uP1 ,MP1 ,A1−−−−−−−−−−−−−−−−−−−→

u1,U1,v1,v′1
y1 x2

M2,I2,O
↑
2 ,O

↓
2 ,uP2 ,MP2 ,A2−−−−−−−−−−−−−−−−−−−→

u2,U2,v2,v′2
y2

x1 ∪ x2

M1M2,I1I2,O
↑
1O

↑
2 ,O

↓
1∪INO

↓
2 ,uP1]uP2 ,MP1MP2 ,A1A2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′1v′2
y1 ∪ y2

(u1)

M1M2 ∩MP1MP2 = ∅ ∀(u, M) ∈ A1A2.(u 6⊆ uP1] uP2 ∨M 6⊆ MP1MP2)

M1M2 ∩ Labels(O↓1 ∪IN O↓2) = ∅ v′1v′2 0 U1 ⊕ U2 δ ∈ O↑1 δ 6∈ O↑2

x1

M1,I1,O
↑
1 ,O

↓
1 ,uP1 ,MP1 ,A1−−−−−−−−−−−−−−−−−−−→

u1,U1,v1,v′1
y1 x2

M2,I2,O
↑
2 ,O

↓
2 ,uP2 ,MP2 ,A2−−−−−−−−−−−−−−−−−−−→

u2,U2,v2,v′2
y2

x1 ∪ x2

M1M2,I1I2,O
↑
1O

↑
2Objects(y2),O

↓
1∪INO

↓
2 ,uP1]uP2 ,MP1MP2 ,A1A2−−→

u1u2,U1⊕U2,v1v2,v′1v′2
v

(u2)

M1M2 ∩MP1MP2 = ∅ ∀(u, M) ∈ A1A2.(u 6⊆ uP1] uP2 ∨M 6⊆ MP1MP2)

M1M2 ∩ Labels(O↓1 ∪IN O↓2) = ∅ v′1v′2 0 U1 ⊕ U2 δ ∈ O↑1 ∩O↑2

x1

M1,I1,O
↑
1 ,O

↓
1 ,uP1 ,MP1 ,A1−−−−−−−−−−−−−−−−−−−→

u1,U1,v1,v′1
y1 x2

M2,I2,O
↑
2 ,O

↓
2 ,uP2 ,MP2 ,A2−−−−−−−−−−−−−−−−−−−→

u2,U2,v2,v′2
y2

x1 ∪ x2

M1M2,I1I2,O
↑
1O

↑
2 ,O

↓
1∪INO

↓
2 ,uP1]uP2 ,MP1MP2 ,A1A2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

u1u2,U1]U2,v1v2,v′1v′2
v

(u3)

Fig. 12. Rules for union of membrane contents.

require that M1M2 ∩MP1MP2 = ∅.

Let us consider the rules in Fig. 13, which extend those in Fig. 5 with handling
of priority. Let us take rules (m1) and (m2). Since all objects in uP are assumed
to be available, we require that uP ⊆ uv′. Since for each pair (u′, M ′) ∈ A
it is assumed that either some object in u′ is not available, or some label in
M ′ is not a label of any child membrane, we require that if u′ ⊆ uv′, namely
if the objects in u′ are actually available, then M ′ is not empty. In such a
case, if operation µ is not applied to ([lx]l, ms), for any ms, then we are sure
that l has no child with label in M ′, and, if µ is applied to ([lx]l,ms), for
some ms, then we shall check that some label in M ′ is not a label of any
child in ms. To this purpose, it suffices to carry only information on M ′ in the
label of the conclusion. Let us consider rules (jux1), (jux2), and (jux3). Since
Def. 15 ensures that x1 | x2 cannot appear as the first argument of operation
µ, namely x1 and x2 cannot have any common child, we are sure that the set of
children of x1 and x2 cannot furtherly change. Hence, we can assume that we
have already checked that all membrane labels that are required to be labels
of children of x1 and x2 actually exist, as it appears from the fifth component
of the label of the premises, which are empty. For the same reason, we are sure

30

x
M,I,O↑,O↓,uP ,MP ,A−−−−−−−−−−−−−−−→

u,U,u,v′
y δ 6∈ O↑ uP ⊆ uv′ ∀(u′, M ′) ∈ A.(u′ ⊆ uv′ =⇒ M ′ 6= ∅)

[lx]l
M,{(l,I)},O↑,O↓,MP ,{(∅,M′) | ∃u′.(u′,M′)∈A∧u′⊆uv′}−−→ [ly]l

(m1)

x
M,I,O↑,O↓,uP ,MP ,A−−−−−−−−−−−−−−−→

u,U,u,v′
y δ ∈ O↑ uP ⊆ uv′ ∀(u′, M ′) ∈ A.(u′ ⊆ uv′ =⇒ M ′ 6= ∅)

[lx]l
M,{(l,I)},O↑,O↓,MP ,{(∅,M′) | ∃u′.(u′,M′)∈A∧u′⊆uv′}−−→ v

(m2)

x1

M1,I1,O
↑
1 ,∅,∅,A1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅,∅,A2−−−−−−−−−−−−−→ y2 δ 6∈ O↑1O↑2

x1|x2

∅,I1I2,O
↑
1O

↑
2 ,∅,∅,∅

−−−−−−−−−−−−−−−→ y1|y2

(jux1)

x1

M1,I1,O
↑
1 ,∅,∅,A1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅,∅,A2−−−−−−−−−−−−−→ y2 δ ∈ O↑1 , δ 6∈ O↑2

x1|x2

∅,I1I2,(O
↑
1O

↑
2)−δ,∅,∅,∅

−−−−−−−−−−−−−−−−−−→ y2

(jux2)

x1

M1,I1,O
↑
1 ,∅,∅,A1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅,∅,A2−−−−−−−−−−−−−→ y2 δ ∈ O↑1 ∩O↑2

x1|x2

∅,I1I2,(O
↑
1O

↑
2),∅,∅,∅

−−−−−−−−−−−−−−−−→ v

(jux3)

Fig. 13. Rules for single membranes and juxtaposition of membranes.

that the labels we have assumed not to be labels of children of x1 and x2 and
that are carried by A1 and A2 actually are not labels of any child of x1 and
x2, and we can set to ∅ the last component of the label of the conclusion.

Let us consider the rules in Fig. 14, which extend those in Fig. 6 with handling
of priority. In all rules, since all membrane labels in MP are assumed to be
labels of children of x1, we require that MP ⊆ Labels(I2). The rules in Fig. 13
ensure that, for each (u,M) ∈ A, it holds that u = ∅. Hence, we have to
check that at least one membrane label in M is not a label of any child of x1.
Actually, we check that M 6⊆ Labels(I2). Since Def. 15 ensures that µ(x1, x2)
cannot appear as the first argument of operation µ, namely x1 and x2 cannot
have any common child, we are sure that the set of children of x1 and x2 cannot
furtherly change. Hence, we can assume that we have already checked that all
membrane labels that are required to be labels of children of x2 actually exist,
and that no membrane label that is required not to be a label of any child of
x2 actually exists, as it appears from the fifth and the sixth component of the
label of the transition performed by x2 in the premise, which are empty sets.

5.1 Properties of the Semantics

First of all let us note that also the SOS rules of the semantics of the PP
Algebra respect the de Simone format, thus implying that the precongruence

31

M1 ∩ Labels(I2) = ∅ O↓1 l I2 O↑2 ⊆ I1 MP ⊆ Labels(I2) ∀(u, M) ∈ A.M 6⊆ Labels(I2)

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1 ,MP ,A

−−−−−−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅,∅,∅

−−−−−−−−−−−−→ y2 δ 6∈ O↑1O↑2

µ(x1, x2)
∅,(l1,I1\O

↑
2),O

↑
1 ,∅,∅,∅

−−−−−−−−−−−−−−−−−→ µ(y1, y2)

(h1)

M1 ∩ Labels(I2) = ∅ O↓1 l I2 O↑2 ⊆ I1 MP ⊆ Labels(I2) ∀(u, M) ∈ A.M 6⊆ Labels(I2)

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1 ,MP ,A

−−−−−−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅,∅,∅

−−−−−−−−−−−−→ y2 δ ∈ O↑1 δ 6∈ O↑2

µ(x1, x2)
∅,{(l1,I1\O

↑
2)},O

↑
1−δ,∅,∅,∅

−−−−−−−−−−−−−−−−−−−−→ y2

(h2)

M1 ∩ Labels(I2) = ∅ O↓1 l I2 O↑2 ⊆ I1 MP ⊆ Labels(I2) ∀(u, M) ∈ A.M 6⊆ Labels(I2)

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1 ,MP ,A

−−−−−−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅,∅,∅

−−−−−−−−−−−−→ y2 δ 6∈ O↑1 δ ∈ O↑2

µ(x1, x2)
∅,{(l1,I1\O

↑
2)},O

↑
1 ,∅,∅,∅

−−−−−−−−−−−−−−−−−−→ y1

(h3)

M1 ∩ Labels(I2) = ∅ O↓1 l I2 O↑2 ⊆ I1 MP ⊆ Labels(I2) ∀(u, M) ∈ A.M 6⊆ Labels(I2)

x1

M1,{(l1,I1)},O
↑
1 ,O

↓
1 ,MP ,A

−−−−−−−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2 ,∅,∅,∅

−−−−−−−−−−−−→ y2 δ ∈ O↑1 ∩O↑2

µ(x1, x2)
∅,{(l1,I1\O

↑
2)},O

↑
1 ,∅,∅,∅

−−−−−−−−−−−−−−−−−−→ v

(h4)

Fig. 14. Rules for hierarchy of membranes.

results stated in Thm. 10 are still valid. Moreover, the examples given in Sect. 4
to show that the inclusions in Fig. 8 are strict in the LTS inferred from the P
Algebra are valid for the LTS inferred from the PP Algebra as well.

Theorem 16 All preorders in Def. 7 are precongruences.

PROOF. The same as that of Theorem 10. 2

Corollary 17 The kernels of all preorders in Def. 7 are congruences.

Our aim is now to show that the semantics of the PP Algebra does a correct
handling of priorities. Showing that the semantics reflects maximal parallelism
can be done as in the case of the P Algebra.

In the derivation of a transition of a term of the form (R, u′), or [l(R, u′)]l, or
µ([l(R, u′)]l, x′), we say that a non dissolving evolution rule (resp. dissolving
evolution rule) r in R is assumed to be enabled when a semantic rule among
(mc1n) and (mc4) (resp. (mc2n), (mc3), and (mc5)) is applied to infer the
transition of (r,∅) exploited to infer the transition of the whole term. Notice

32

that these semantic rules are precisely the rules for (r,∅) assuming that no
priority pair of r preempts r.

Definition 18 Let r = {(ui,Mi)}u → vhvo{vli} (resp. r = {(ui, Mi)}u →
vhvo{vli}δ) be an evolution rule and (R, u′) = (R′, u′)∪ (r,∅) be a membrane
content. We say that r is assumed to be enabled in the derivation of a tran-

sition (R, u′)
M,I,O↑,O↓,uP ,MP ,A−−−−−−−−−−−−→

u′′,U,v,v′
x inferred by applying the semantic rule either

(u1) or (u2) (resp. (u2) or (u3)), with premises (R′, u′)
M1,I1,O↑1 ,O↓1 ,uP1

,MP1
,A1−−−−−−−−−−−−−−→

u1,U1,v1,v′1
y1

and (r,∅)
M2,I2,O↑2 ,O↓2 ,uP2

,MP2
,A2−−−−−−−−−−−−−−→

u2,U2,v2,v′2
y2, if and only if this latter premise is inferred

by applying the rule (mc1n) or (mc4) (resp. (mc2n), or (mc3), or (mc5)).

Moreover, r is assumed to be enabled in the derivation of a transition per-
formed by the membrane [l(R, u′)]l inferred by applying the rule (m1) or (m2)
with a transition of (R, u′) in which r is assumed to be enabled as premise

Finally, r is assumed to be enabled in the derivation of a transition performed
by the hierarchy µ([l(R, u′)]l, x′) inferred by applying a rule in (h1)–(h4) with
a transition of [l(R, u′)]l in which r is assumed to be enabled as premise.

To show that priorities are handled correctly, we can show that the transitions
in which an evolution rule r is assumed to be enabled can be derived only if
either some of the objects or some of the child membranes needed to trigger
the rules with higher priority are not present, namely no priority pair of r
preempts r. To this aim, we prove two theorems. The first theorem states
that, if r is assumed to be enabled in the derivation of a transition performed
by a membrane [l(R, u′)]l with r in R, then, for each of the priority pairs of r
in which no membrane label appears, at least one object among those in the
priority pair is not in u′. Notice that in this case we do not consider priority
pairs in which at least one membrane label l′ appears. The reason is that,
since l has no child, we are sure that no membrane labeled l′ can be a child
of l. The second theorem states that, if r has some membrane label l′ in its
priority pairs and is assumed to be enabled in the derivation of a transition
performed by the hierarchy µ([l(R, u′)]l, x′) with r in R, then no membrane in
x′ has label l′. Notice that in this case we do not consider objects in priority
pairs since they play no role in hierarchy.

To prove the first theorem we need the following lemma, which states that
if a rule r is assumed to be enabled in the derivation of a transition of the
membrane content (R, u′), then the label of the transition keeps track of all
priority pairs that would preempt r.

Lemma 19 If a rule {(ui,Mi)}u → vhvo{vli} or {(ui,Mi)}u → vhvo{vli}δ is

33

assumed to be enabled in the derivation of a transition (R, u′)
M,I,O↑,O↓,uP ,MP ,A−−−−−−−−−−−−→

u′′,U,v,v′

x, then {(ui,Mi)}⊆ A.

PROOF. By induction on the derivation of the transition. The base cases are
when one of the semantic rules in Fig. 11 is applied. The property {(ui,Mi)} ⊆
A is satisfied in the cases of (mc1n), (mc2n), (mc3), (mc4) and (mc5), while
in the other cases either there is no evolution rule, or the evolution rule is
not assumed to be enabled. The induction cases are when one of the rules in
Fig. 12 is applied, and in this case the induction hypothesis can be applied
trivially. 2

Theorem 20 If an evolution rule r = {(ui,Mi)}u → vhvo{vli} or r =
{(ui,Mi)}u → vhvo{vli}δ is assumed to be enabled in the derivation of a tran-

sition [l(R, u′)]l
M,I,O↑,O↓,MP ,A−−−−−−−−−−→ x, then, for all (v,∅) ∈ {(ui,Mi)}, it holds

that v 6⊆ u′.

PROOF. By Def. 18 we know that transition [l(R, u′)]l
M,I,O↑,O↓,MP ,A−−−−−−−−−−→ x is

derived by applying semantic rule either (m1) or (m2), and by using as premise

a transition (R, u′)
M,I,O↑,O↓,uP ,MP ,A′−−−−−−−−−−−−→

u′′,U,u′′,v′
y in which r is assumed to be enabled.

By Lemma 19 we know that {(ui,Mi)} ⊆ A′. Finally, by definition of (m1) and
(m2), we have that, for all (v,∅) ∈ {(ui,Mi)}, it holds that v 6⊆ u′′v′ = u′. 2

To prove the second theorem we need the following lemma, which states that if
a rule r is assumed to be enabled in the derivation of a transition of the mem-
brane [l(R, u′)]l, then the label of the transition keeps track of the membrane
labels that should not appear in any membrane system put inside [l(R, u′)]l.

Lemma 21 If a rule {(ui,Mi)}u → vhvo{vli} or {(ui,Mi)}u → vhvo{vli}δ is

assumed to be enabled in the derivation of a transition [l(R, u′)]l
M,I,O↑,O↓,MP ,A−−−−−−−−−−→

x, then, for each (v,M ′) ∈ {(ui,Mi)} such that v ⊆ u′, it holds that (∅,M ′) ∈
A.

PROOF. Similar to the proof of Theorem 20. 2

Let Lab(x1 | . . . | xn), where xi is either [li(R, u)]li or µ([li(R, u)]li , yi), be the
set of labels of the juxtaposition of membranes, namely the set {l1, . . . , ln}.

34

Theorem 22 If an evolution rule r = {(ui,Mi)}u → vhvo{vli} or r =
{(ui,Mi)}u → vhvo{vli}δ is assumed to be enabled in the derivation of a

transition µ([l(R, u′)]l, x)
M,I,O↑,O↓,MP ,A−−−−−−−−−−→ y, then, for all (v, M ′) ∈ {(ui,Mi)}

such that v ⊆ u′, it holds that M ′ 6⊆ Lab(x).

PROOF. By Def. 18 we know that the transition µ([l(R, u′)]l, x)
M,I,O↑,O↓,MP ,A−−−−−−−−−−→

y is derived by applying a semantic rule among (h1)–(h4), and by using as

a premise a transition [l(R, u′)]l
M1,I1,O↑1 ,O↓1 ,M ′

P ,A′−−−−−−−−−−−→ y in which r is assumed to

be enabled. By Lemma 21 we know that for all (v, M ′) ∈ {(ui,Mi)} such
that v ⊆ u′, it holds that (∅,M ′) ∈ A′. Finally, the other premise of the rule

(h1)−−(h4) has the form x
M2,I2,O↑2 ,∅,∅,∅−−−−−−−−−→ x′, and the constraints of the rule

implies that M ′ 6⊆ Labels(I2) = Lab(x). 2

6 Future Work

It would be worth developing axiomatic semantics characterizing equivalent P
Systems. Namely, given any equivalence relation, we should provide a set of
syntactical transformations between terms being correct and complete w.r.t.
the equivalence considered. This has application in program transformation
and proof by rewriting.

In the field of classic process calculi, axiomatic theories are well established
since the eighties [6,15], and, for languages in suitable classes, algorithms have
been developed to obtain axiomatizations in a syntax-driven way (as examples,
see [1,2]). A central idea in the mentioned papers is that concurrency can be
simulated by interleaving, namely the concurrent execution of two actions, say
a and b, is simulated by the nondeterministic choice between performing a and
subsequently b, or conversely, b and subsequently a. This is possible because
processes running in parallel run at different rates, and one cannot predict
the relative temporal order between their actions. Concurrent processes can
be reduced to nondeterministic choices of sequential processes that are called
head normal forms.

Let us take now the P Algebra terms (a → ∅b∅,∅) and (c → ∅d∅,∅). Their
union w.r.t. operation (∪) can be viewed as a parallel composition of two
terms, each representing an evolution rule. Since these rules are in the same
membrane, they are applied with maximal parallelism, so that n occurrences of
a and m occurrences of c imply n application of the first rule and m application
of the second rule, so that n occurrences of b and m occurrences of d are sent
to the outer membrane. Now, the behavior of (a → ∅b∅,∅) ∪ (c → ∅d∅,∅)

35

cannot be equivalent to the behavior of any membrane content having only
one evolution rule. This implies that parallelism cannot be reduced, at least
at membrane content level. As a consequence, the work by [6,15] based on
reduction of parallelism and on head normal forms cannot be adapted to P
Systems setting in a trivial way. Similar problems arise in axiomatizations for
synchronous languages, where parallelism cannot be reduced since processes
running in parallel are perfectly synchronized and proceed at the same rate
[20,21].

Acknowledgments

This research has been partially supported by MiUR PRIN 2005 Project
“Analisi di sistemi di Riduzione mediante sistemi di Transizione (ART)” and
MiUR PRIN 2006 Project “Biologically Inspired Systems and Calculi and
their Applications (BISCA)”.

References

[1] L. Aceto, Deriving complete inference systems for a class of GSOS languages
generating regular behaviors, in: Proceeding of the 5th International
Conference on Concurrency Theory, CONCUR’94, in: Lecture Notes in
Computer Science, vol. 836, Springer, 1994, pp. 449–464.

[2] L. Aceto, B. Bloom, F. Vaandrager, Turning SOS rules into equations, Inform.
and Comput. 111 (1994) 1–52.

[3] L. Aceto, W.J. Fokkink, C. Verhoef, Structural operational semantics, in:
J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra,
Elsevier, 2001, pp. 197–292.

[4] O. Andreai, G. Ciobanu, D. Lucanu, Structural operational semantics of P
Systems, in: Proceedings of the 6th Workshop on Membrane Computing,
WMC 2005, in Lecture Notes in Computer Science, vol. 3850, Springer, 2006,
pp. 31–28.

[5] O. Andreai, G. Ciobanu, D. Lucanu, A rewriting logic framework for
operational semantics of membrane systems, Theoret. Comp. Sci. 373 (2007)
163–181.

[6] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication,
Inform. and Comput. 60 (1984) 109–137.

[7] G. Berry, A. Benveniste (Eds), Another look at real time systems, IEEE Proc.
79 (1991) 1268–1336.

36

[8] N. Busi, Using well–structured transition systems to decide divergence for
catalytic P systems, Theoret. Comput. Sci. 372 (2007) 125–135.

[9] N. Busi, Causality in membrane systems, in: Proceedings of the 8th Workshop
on Membrane Computing, WMC 2007, in: Lecture Notes in Computer
Science, vol. 4860, Springer, 2007, pp. 160–171.

[10] R. de Simone, High level synchronization devices in Meije-SCCS, Theoret.
Comput. Sci. 37 (1985) 245–267.

[11] R. Freund, S. Verlan, A formal framework for static (tissue) P Systems, in:
Proceeding of the 8th Workshop on Membrane Computing, WMC 2007, in:
Lecture Notes in Computer Science, vol. 4860, Springer, 2007, pp. 271–284.

[12] R. Keller, Formal verification of parallel programs, CACM 19 (1976) 371–384.

[13] G. Lüttgen, M. von der Beeck, R. Cleaveland, Statecharts via process algebra,
in: Proceedings of the 10th International Conference on Concurrency Theory,
CONCUR’99, in: Lecture Notes in Computer Science 1664, Springer, 1999,
pp. 399–414.

[14] A. Maggiolo-Schettini, A. Peron, S Tini, A comparison of statecharts step
semantics, Theoret. Comput. Sci. 290 (2003) 465–498.

[15] R. Milner, A complete inference system for a class of regular behaviors, J.
Comput. System Sci. 28 (1984) 439–466.

[16] G. Pǎun, Membrane computing. An introduction, Springer, 2002.

[17] G. Pǎun, G. Rozenberg, A guide to membrane computing, Theoret. Comput.
Sci. 287 (2002) 73–100.

[18] G. Plotkin, A structural spproach to operational semantics, Tech. Rep. DAIMI
FN-19, University of Aarhus, 1981.

[19] G. Plotkin, A structural approach to operational semantics, J. Log. Algebr.
Program. 60–61 (2004) 17–139.

[20] S. Tini, An axiomatic semantics for Esterel, Theoret. Comput. Sci. 269 (2001)
231–282.

[21] S. Tini, An axiomatic semantics for the synchronous language Gentzen, J.
Comput. Syst. Sci. 66 (2003) 316–348.

[22] A.C. Uselton and S.A. Smolka, A compositional semantics for Statecharts
using labeled transition systems, in: Proceeding of the 5th International
Conference on Concurrency Theory, CONCUR’94, in: Lecture Notes in
Computer Science, vol. 836, Springer, 1994, pp. 2–17.

[23] F. Vaandrager, On the relationship between process algebra and input/output
automata, in: Proceedings of the 6th Annual IEEE Symposium on Logic in
Computer Science, LICS’91, IEEE Press, 1991, pp. 387–398.

37

[24] R.J. van Glabbeek, Full abstraction in structural operational semantics, in:
Proceedings of the 3rd International Conference on Algebraic Methodology
and Software Technology, AMAST 1993, in: Workshops on Computing,
Springer, 1993, pp. 77–84.

38

