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Abstract. We introduce a probabilistic algorithm for the simulation
of chemical reactions, which can be used as an alternative to the well-
established stochastic algorithm proposed by D.T. Gillespie in the ’70s.
We show that the probabilistic evolution of systems derived by means
of our algorithm can be compared to the stochastic time evolution of
chemical reactive systems described by Gillespie. Moreover, we use our
algorithm in the definition of a formal model based on multiset rewriting,
and we show some simulation results of enzymatic activity, which we
compare with results of real experiments.

1 Introduction

The modelling of chemical reactions by using deterministic rate laws has been
successful in both chemistry and biochemistry. The law of mass action is an
empirical law which gives a relation between reaction rates and molecular con-
centrations. Given an initial concentration, we can use that law to derive all the
concentrations at future time points.

The law is well tailored for describing deterministic and continuous processes,
but it is less applicable when one considers smaller and smaller systems in which
the discrete character of components supports the application of discrete mod-
els. Many of these models aim at describing the single steps of the evolution
of a system [1–3]. Moreover, the inherent random character of chemical reac-
tions justifies the use of discrete stochastic models [4–9]. Most of these models
construct on the paper by Gillespie [10], which gives a stochastic simulation algo-
rithm physically and mathematically well grounded from a kinetic theory point
of view and which has had substantial improvements from the computational
point of view [11–13].

Gillespie’s approach simulates the time evolution of a chemically reacting
system by determining when the next reaction will occur and what kind of
reaction it will be. The time of the next reaction is individuated on the continuous
time axis, thus the algorithm never approximates infinitesimal time movements
by finite time steps. Kind and time of the next reaction are computed on the
basis of a stochastic reaction constant. Such a constant is in general unknown



and it is guessed starting from the deterministic kinetic rate constant in an
approximated way [7].

The main features of the method we propose in this paper are that time
advances by discrete steps and that the reaction which will occur is computed
directly from the deterministic kinetic rate. The use of the kinetic rate has the
advantage of immediately relating real experiments and simulations. Actually,
the reaction rates given by a real experiment can be used for a simulation, and
vice–versa one may perform simulations with different reaction rates until a value
is found that gives the observed behaviors. As a consequence of our choice of
the reaction rate as the stochastic constant, our method does not depend on
the measure unit chosen for reactants (number of molecules, moles, micromoles,
picomoles, etc . . . ), and therefore it is better scalable than Gillespie’s method.

We show that Gillespie’s approach and ours are comparable under suitable
assumptions. Moreover, we have implemented our method and applied it to
samples proposed by Gillespie, obtaining the same results. We have also studied
a real case of enzymatic activity, namely the reactions in the calf eye due to
enzyme Sorbitol Dehydrogenase. Simulation results agree with the experimental
ones both from the qualitative and the quantitative points of view. In [14],
where we used a different choice criterion of the next reaction, the agreement
with experiments was not as good from the quantitative point of view.

The algorithm for computing the possible evolutions allows the construction
of a probabilistic transition system on which properties of the described system
can be checked by a probabilistic model checker, such as, for example, PRISM
[15]. To this purpose, we formalise the steps of the algorithm as derivation steps
of a probabilistic rewriting system.

In Section 2, after giving some background, we recall Gillespie’s algorithm,
we give our algorithm and compare them. In Section 3 we define the Probabilis-
tic MultiSet Rewriting as an example of formal model in which our algorithm
is used. In Section 4 we show some results of simulation of the Lotka and of
the Brussellator reactions, which can be compared with the results obtained by
Gillespie. Moreover we show some results of simulation of the Sorbytol Dehydro-
genase, which we compare with experimental results supplied by the authors of
[16]. Finally, in Section 5 we give some conclusions.

2 Simulation of Chemical Reactions

2.1 Background

The fundamental empirical law governing reaction rates in biochemistry is the
law of mass action. This states that for a reaction in a homogeneous medium,
the reaction rate will be proportional to the concentrations of the individual
reactants involved. A chemical reaction is usually represented by the following
notation:

`1S1 + `2S2
k



k
−1

`3S3 + `4S4



where S1, . . . , S4 are molecules, `1, . . . , `4 are their stoichiometric coefficients,
and k, k−1 are the kinetic constants. We denote with L the sum of the stoichio-
metric coefficients, that is the total number of reactant molecules. The use of
the symbol 
 denotes that the reaction is reversible (i.e. it can occur in both
directions). Irreversible reactions are denoted by the single arrow →.

For example, given the simple reaction

2A
k



k
−1

B

the rate of the production of molecule B for the law of mass action is:

dB+

dt
= k[A]2

and the rate of destruction of B is:

dB−

dt
= k−1[B]

where [A], [B] are the concentrations (i.e. moles over volume unit) of the respec-
tive molecules. In general, the rate of a reaction is:

k[S1]
`1 · · · [Sρ]

`ρ

where S1, . . . , Sρ are all the distinct molecular reactants of the reaction.
The rate of a reaction is usually expressed in moles · s−1 (it is a speed),

therefore the measure unit of the kinetic constant is moles−(L−1) · s−1.

2.2 Gillespie’s Stochastic Algorithm

In [10] Gillespie gives a stochastic formulation of chemical kinetics that is based
on the theory of collisions and that assumes a stochastic reaction constant cµ

for each considered chemical reaction Rµ. The reaction constant cµ is such that
cµdt is the probability that a particular combination of reactant molecules of Rµ

will react in an infinitesimal time interval dt.
The probability that a reaction Rµ will occur in the whole solution in the time

interval dt is given by cµdt multiplied by the number of distinct Rµ molecular
reactant combinations. For instance, the reaction

R1 : S1 + S2 → 2S1 (1)

will occur in a solution with X1 molecules S1 and X2 molecules S2 with proba-
bility X1X2c1dt. Instead, the inverse reaction

R2 : 2S1 → S1 + S2 (2)

will occur with probability X1(X1−1)
2! c2dt. The number of distinct Rµ molecular

reactant combinations is denoted by Gillespie with hµ, hence, the probability of
Rµ to occur in dt (denoted with aµdt) is

aµdt = hµcµdt



Now, assuming that S1, . . . , Sn are the only molecules that may appear in
a chemical solution, a state of the simulation is a tuple (X1, . . . , Xn) represent-
ing a solution containing Xi molecules Si for each i in 1, . . . , n. Given a state
(X1, . . . , Xn), a set of reactions R1, . . . , RM , and a value t representing the cur-
rent time, the algorithm of Gillespie performs two steps:

1. The time t+τ at which the next reaction will occur is randomly chosen with
τ exponentially distributed with parameter

∑M
ν=1 aν ;

2. The reaction Rµ that has to occur at time t + τ is randomly chosen with
probability aµdt.

The function Pg(τ, µ)dt represents the probability that the next reaction will
occur in the solution in the infinitesimal time interval (t + τ, t + τ + dt) and will
be Rµ. The two steps of the algorithm imply

Pg(τ, µ)dt = P 0
g (τ) · aµdt

where P 0
g (τ) corresponds to the probability that no reaction occurs in the time

interval (t, t + τ). Since P 0
g (τ) is defined as

P 0
g (τ) = exp

(

−

M
∑

ν=1

aντ

)

we have, for 0 ≤ τ < ∞,

Pg(τ, µ)dt = exp

(

−

M
∑

ν=1

aντ

)

· aµdt

Finally, the two steps of the algorithm can be implemented in accordance
with Pg(τ, µ) by choosing τ and µ as follows:

τ =

 

1
PM

ν=1 aν

!

ln

„

1

r1

«

µ = the integer for which

µ−1
X

ν=1

aν < r2

M
X

ν=1

aν ≤

µ
X

ν=1

aν

where r1, r2 ∈ [0, 1] are two real values generated by a random number generator.
After the execution of the two steps, the clock has to be updated to t + τ and
the state has to be modified by subtracting the molecular reactants and adding
the molecular products of Rµ.

2.3 The Probabilistic Simulation Algorithm

The probabilistic algorithm we propose in this paper as an alternative to Gille-
spie’s method assumes that in a very small fixed time interval ∆t at most one
reaction may occur in a chemical solution. The length of ∆t depends on the
number and on the speeds of the chemical reactions.

As we reported in Section 2.1, the speed of a chemical reaction Rµ is given by
kµ[Sµ1]

`µ1 · · · [Sµρ]
`µρ , where kµ is the kinetic constant of Rµ, [Sµi] is the concen-

tration of the i–th molecular reactant and `µi is the stoichiometric constant of



Sµi in Rµ. For the sake of simplicity, we assume concentrations to be expressed
as the number of molecules per volume unit. Given a set of chemical reactions
R1, . . . , RM and a volume V of the chemical solution, ∆t has to be fixed to 1

MN

seconds, where N is an arbitrarily great integer value such that

0 <
V kµ[Sµ1]

`µ1 · · · [Sµρ]
`µρ

N
≤ 1 (3)

for 1 ≤ µ ≤ M and for all the possible concentrations (assumed to be finite) of
Sµ1, . . . , Sµρ. For instance, if we have the following two reactions:

R1 : S1 + S2 → 2S1 with k1 = 3 molecules−1s−1

R2 : 2S1 → S1 + S2 with k2 = 2 molecules−1s−1

and the initial solution is 10S1 in the volume of 1 litre, then the concentrations
of S1 and S2 may vary between ([S1] = 10, [S2] = 0) and ([S1] = 1, [S2] = 9). The
maximum of k1[S1][S2] is 3·5·5 = 75 and the maximum of k2[S1]

2 is 2·102 = 200,
hence N has to be greater or equal to 200, and consequently ∆t ≤ 1

2·200 = 1
400

seconds.

We remark that the choice of the value of N is critical. Actually, if we take
for N the minimum value satisfying (3), we gain as regards efficiency but we may
lose precision. This happens in particular when concentrations of reactants are
low and the minimum value of N satisfying (3) gives a ∆t too wide to assume
that at most one reaction occurs in it. In such cases a greater value of N must
be chosen.

Once chosen N , the probabilistic reaction constant pµ of the chemical reaction
Rµ is defined as follows:

pµ =
V kµ

N

and the probability of Rµ to occur is:

P (Rµ) =

{

pµ[Sµ1]
`µ1 · · · [Sµρ]

`µρ =
pµ

Qρ
i=1

(Xµi)
`µi

V Lµ
if Rµ can occur

0 otherwise

where Xµi is the number of molecules Sµi in the solution, for 1 ≤ i ≤ ρ. We
remark that reaction Rµ can occur if `µi ≤ Xµi and that the requirement given
in (3) ensures that 0 ≤ P (Rµ) ≤ 1.

As in Gillespie’s algorithm, a state of the simulation is a tuple (X1, . . . , Xn)
representing a solution containing Xi molecules Si, and S1, . . . , Sn are all the
possible molecules. Given a state (X1, . . . , Xn) and a value t representing the
current time, the probabilistic simulation algorithm consists in the iteration of
the following two steps:

1. A reaction Rµ is randomly chosen (all the reactions are equiprobable);

2. The chosen Rµ is performed with probability P (Rµ).



Therefore, we have that the probability of choosing and performing reaction Rµ

in the time interval (t, t + ∆t) is

P (µ) =
1

M
P (Rµ)

and the probability of performing no reactions in the same time interval is

P0 = 1 −

M
∑

ν=1

1

M
P (Rν)

The two steps of the algorithm can be implemented using a standard random
number generator. At each iteration the current time t has to be incremented
by ∆t, and, if a reaction has occurred, the state (X1, . . . , Xn) has to be updated
by subtracting the molecular reactants and by adding the molecular products of
the reaction performed.

2.4 Comparing the Two Algorithms

We begin the comparison of the two algorithms by discussing some problems
related to the existence of the reaction constant cµ and the computation of the
number of distinct molecular reactants combinations hµ.

The reaction constant cµ is in general unknown and it is usually estimated
from the more familiar kinetic constant kµ. As in the previous section, without
loss of precision, we assume the concentration of a substance in a solution to
be expressed as the number of molecules per volume unit, better than as the
number of moles per volume unit. Hence, kµ is expressed as molecules−(L−1)s−1

instead of moles−(L−1)s−1, where L is the total number of molecular reactants
of Rµ. This assumption allows avoiding the Avogadro number in the formula:

cµ =
kµ

∏ρ
i=1〈Xµi〉

`µi

〈hµ〉V Lµ−1
(4)

where V is the volume of the chemical solution, ρ is the number of distinct
molecular reactants of Rµ, 〈Xµi〉 is the average number of molecules Sµi that
may appear in a solution with 1 ≤ i ≤ ρ, 〈hµ〉 is the average of hµ, `µi is the
stoichiometric constant of Sµi and Lµ is `µ1 + · · · + `µρ.

The number of distinct reactant combinations hµ corresponds to a product
of binomial coefficients. As shown in [7], assuming that the numbers of the
molecules in the solution are large, we have that hµ can be approximated as
follows:

hµ ≈

∏ρ
i=1 (Xµi)

`µi

∏ρ
i=1 `µi!

(5)

Hence, Eq. (4) can be simplified as follows:

cµ ≈
kµ

∏ρ
i=1 `µi!

V Lµ−1
(6)



For instance, for the reaction R1 of (1) we have h1 ≈ X1X2, therefore c1 ≈ k1

V
,

and for the reaction R2 of (2) we have h2 ≈ (X1)
2

2! , and therefore, c2 ≈ k22!
V

.
Now, we show that if we consider an infinitesimal time interval dt instead

of ∆t, we obtain that the probabilities derived by our algorithm correspond to
the probabilities of Gillespie’s one, modulo the approximations described above.
In particular, in the following lemma we show that the probability of a reaction
Rµ to occur in the infinitesimal time interval (t, t + dt) in Gillespie’s stochastic
approach is approximated by the probability of the same reaction to be chosen
and performed by the probabilistic simulation algorithm.

Lemma 1. If dt = ∆t, it holds aµdt ≈ P (µ).

Proof. We prove only the non trivial case P (µ) 6= 0. By definition of aµ we have
aµdt = cµhµdt, and moreover:

cµhµdt ≈
kµ

Qρ

i=1 `µi!

V Lµ−1
·

Qρ

i=1 (Xµi)
`µi

Qρ

i=1 `µi!
· dt by equations (5) and (6)

=
kµV

MN
·

Qρ

i=1 (Xµi)
`µi

V Lµ
because dt = ∆t =

1

MN

=
1

M
pµ

Qρ

i=1 (Xµi)
`µi

V Lµ
= P (µ) by definitions of pµ and P (µ) ut

Since the probability of no reaction in a time interval of length at least τ is
equivalent to the probability of no reaction in ∆t multiplied by itself d τ

∆t
e times,

we define P0(τ) as follows:

P0(τ) = P
d τ

∆t
e

0

Moreover, let P (τ, µ) be the probability that at time t the next reaction will be
Rµ and it will occur in the infinitesimal time interval (t + τ, t + τ + dt). P (τ, µ)
is the product of the probability of the occurrence of no reactions in the time
interval (t, t + τ) and the probability of choosing and performing Rµ, that is:

P (τ, µ) = P0(τ) · P (µ)

We prove that the reaction probability density function Pg(τ, µ)dt of Gillespie
is approximated by P (τ, µ) if the interval ∆t corresponds to the infinitesimal
interval dt.

Theorem 2. If dt = ∆t it holds Pg(τ, µ)dt ≈ P (τ, µ).

Proof. By definition of Pg(τ, µ) we have Pg(τ, µ)dt = P 0
g (τ) · aµdt; moreover:

P
0
g (τ ) = exp

 

−
M
X

ν=1

cνhντ

!

≈ exp

 

−
M
X

ν=1

pν

Qρ

i=1 (Xµi)
`µi

MV Lµ

τ

dt

!

by Lemma 1

= exp

 

−

M
X

ν=1

V kνdt

Qρ

i=1 (Xµi)
`µi

V Lµ

τ

dt

!

= exp

 

−

M
X

ν=1

V kν

Qρ

i=1 (Xµi)
`µi

V Lµ−1
τ

!



By definition of P (τ, µ) we have P (τ, µ) = P 0(τ) · P (µ); moreover:

P0(τ ) =

 

1 −
M
X

ν=1

pν

Qρ

i=1 (Xµi)
`µi

MV Lµ

!d τ
∆t

e

=

 

1 −
M
X

ν=1

V kν

Qρ

i=1 (Xµi)
`µi

MNV Lµ

!dMNτe

By applying the substitution α = −
∑M

ν=1 V kν

Qρ
i=1

(Xµi)
`µi

V Lµ
, we obtain:

Pg(τ, µ)dt ≈ exp (ατ )aµdt and P (τ, µ) = (1 +
α

MN
)dMNτe

P (µ)

Since dt = ∆t = 1
MN

is infinitesimal (hence N is close to infinity), we can prove

that Pg(τ, µ)dt ≈ P (τ, µ) by Lemma 1 and because limx→∞(1 + 1
x
)dxe = e. ut

3 Probabilistic MultiSet Rewriting

In [5] the application to molecular systems of the Stochastic π-calculus [4] is
validated by the stochastic formulation of the kinetics of chemical reactions
given by Gillespie. More precisely, in [5] a variant of the Stochastic π-calculus is
presented in which Gillespie’s algorithm is used in the semantics of the model.

Another example of use of Gillespie’s algorithm is the definition of the Stochas-
tic MultiSet Rewriting (SMSR) [17]: such a formalism is based on a set of rewrit-
ing rules (representing chemical reactions) that can be applied to multisets (rep-
resenting solutions) with probabilities derived by that algorithm.

In this paper we use our algorithm to define the Probabilistic MultiSet Rewrit-
ing (PMSR). As the name suggests, this model is similar to SMSR, and it uses
our probabilistic algorithm instead of Gillespie’s one. We choose to apply our
method to MultiSet Rewriting because it seems to us a very natural represen-
tation of chemical systems, it has a simple semantics, and it permits us to use
probabilities of the simulation algorithm as they are.

3.1 Probabilistic MultiSet Rewriting (PMSR)

As in SMSR, in PMSR multisets represent chemical solutions and rewriting rules
represent reactions. We assume a possibly infinite set Σ of multiset elements (also
called molecules) and we define probabilistic rewriting rules as follows.

Definition 3 (PMSR Rule). A Probabilistic MultiSet Rewriting rule is a
triple (M1, p, M2) where:

– M1 and M2 are two different multisets with elements in Σ;

– p ∈]0, 1] is the probabilistic constant of the rule.

A probabilistic rewriting rule (M1, p, M2) can be denoted also with the more usual
notation M1→p M2.



The application of a rule R to a multiset M produces a new multiset M ′

which is the result of replacing in M the left–hand side with the right–hand side
of R. If the left–hand side of a rule is not a sub-multiset of M , then such a rule
cannot be applied.

Since multisets are transformed by rule applications as solutions are trans-
formed by reactions, we can give as probabilities to rules the probabilities of
the reactions, which are derived by our algorithm. Therefore, we have that the
probabilistic constant p of a rule corresponds to the probabilistic reaction con-
stant pµ of the reaction Rµ associated to that rule. Now, a possible evolution
over time of a chemical solution can be represented by a sequence of applications
of rewriting rules starting from an initial multiset. We define PMSR systems as
states of the evolution of a solution.

Definition 4 (PMSR System). A Probabilistic MultiSet Rewriting system
is a pair (M,R), where M is a multiset of elements in Σ and R is a finite set
of rewriting rules.

We give the semantics of PMSR systems as a probabilistic transition system.
Probabilities of the transitions are the same as in Sect. 2.3.

Definition 5 (Semantics). The semantics of PMSR is the probabilistic tran-
sition system in which states are PMSR systems and transitions are described
by the following inference rules:

Rµ ∈ R Rµ = Mµ→pµ M ′
µ Mµ ⊆ M

(M,R)
P (µ)
−−−→ ((M \ Mµ) ∪ M ′

µ,R) (M,R)
P0−−→ (M,R)

It is intended that all the transitions consume a fixed amount of time ∆t, and
therefore one might count the time taken for performing a sequence of transitions.
Since the semantics of the model is a probabilistic transition system, properties
of the described system can be verified by means of a probabilistic model checker.

4 Applications

We consider Lotka and Brussellator reactions simulated by Gillespie in [10].
Lotka and Brussellator reactions are the following:

Lotka Y1
k1→ 2Y1 Y1 + Y2

k2→ 2Y2 Y2
k3→ Z

where k1 = 10, k2 = 0.01 and k3 = 10;

Brussellator X
k1→ X + Y1 Y1

k2→ Y2 2Y1 + Y2
k3→ 3Y1 Y1

k4→ Z

where k1 = 5000, k2 = 50, k3 = 0.000025 and k4 = 5. The constants given by
Gillespie have been transformed into kinetic constants by applying Eq. (6).

In Figure 1 we show some experimental results for Lotka and Brussellator
reactions. As in [10], the initial solution for the Lotka simulation is given by
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Fig. 1. Simulation results obtained with the Lotka reactions (on the left) and with the
Brussellator reactions (on the right).

Setting E S F NADH NAD+ E−NADH E−NAD+

A 210 0 4 × 1011 1.6 × 108 0 0 0

B 430 0 4 × 1011 1.6 × 108 0 0 0

Table 1. Initial solutions. All values are in pM .

Y1 = Y2 = 1000, while for the Brussellator simulation we have an initial solution
with X = 1, Y1 = 1000 and Y2 = 2000. Note that here the possible concentrations
of reactants are infinite, and therefore N cannot be chosen such that (3) is
satisfied for all the concentrations. Therefore we have chosen N such that (3)
was satisfied for all the concentrations given by the steps of the simulations
shown in Figure 1. For the Lotka simulation we used N = 4 · 104, while for the
Brussellator simulation we set N = 2 ·106. Note that our results agree with those
obtained by Gillespie with his stochastic algorithm.

As a further example, let us consider some reactions in the calf eye: here
the enzyme Sorbitol Dehydrogenase (SDH) catalyses the reversible oxidation of
Sorbitol and other polyalcohols to the corresponding keto–sugars (the accumu-
lation of sorbitol in the calf eye has been proposed as the primary event in the
development of sugar cataract in the calf [16]). The reactions are shown in the
following scheme:

E + NADH
k1




k2

E−NADH E
k7→ Ei

E−NADH + F
k3




k4

E−NAD+ + S E−NAD+ k5




k6

E + NAD+

where E represents the enzyme Sorbitol dehydrogenase, S and F represent sor-
bitol and fructose, respectively, NADH represents the nicotinamide adenine din-
ucleotide and NAD+ is the oxidised form of NADH ; k1, . . . , k7 are the kinetic
constants. Note that the enzyme degradation is modelled by the transformation
of E into its inactive form Ei.

The kinetic constants are given in [16] (apart from k7 that has been supplied
by the authors of that paper) and are referred to concentrations measured in
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Fig. 2. Sorbitol dehydrogenase: concentrations of NADH with time varying. Simula-
tions (solid lines) are compared with real experiments (dashed lines). The graph on the
left corresponds to Setting A, while the graph on the right corresponds to Setting B.

moles · litres−1. The solutions used in experiments of biologists usually contain
enzymes with a concentration in the order of 10−10moles and other molecules
with concentrations in the order of 10−1 up to 10−4moles. In order to be precise
enough (but without considering interactions between single pairs of molecules)
we adopt picomoles (equivalent to 10−12moles) as measure unit. We can use the
measure unit we prefer because our algorithm does not depend on it. In general,
by decreasing the measure unit we increase precision of the simulation but the
values of the concentrations increase as well. Therefore we choose the scale such
that the precision is sufficient still maintaining the values of the concentrations
tractable. The kinetic constants for the considered reactions when this measure
unit is picomoles are: k1 = 6.2×10−6, k2 = 33, k3 = 2.2×10−9, k4 = 7.9×10−9,
k5 = 227, k6 = 6.1× 10−7, and k7 = 1.9× 10−3. In Figure 2 we show the results
given by the simulation with the initial solutions given by the settings A and
B in Table 1, and we compare such results with the results of real chemical
experiments. For setting A we set N = 105, while for setting B we used N =
2 · 105.

The reactions due to Sorbitol Dehydrogenase have been studied in [14] with
an algorithm that, as already mentioned, uses a different method for choosing
rules. The results we obtained by the present algorithm are more satisfactory
from the quantitative point of view. As one can see in the figures, the curves
obtained by simulations practically coincide with the ones obtained by experi-
ments.

5 Conclusions and Future Works

We have introduced a probabilistic algorithm for the simulation of chemical
reactions that chooses the reaction occurring at every time on the basis of prob-
abilities computed according to deterministic kinetic rates. We have compared
our algorithm with the well–known Gillespie’s algorithm and shown that results



of simulations agree both with experimental results and with Gillespie’s simula-
tions. Moreover, our method can be applied with different measure units, and,
as a consequence, it may work when huge quantities of reactants are involved. In
these cases the number of molecules is so big that Gillespie’s algorithm, working
at the level of molecules, is practically inapplicable.
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