
Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

Performance of Multithreaded Chip
Multiprocessors and Implications for

Operating System Design

Based on papers by:
A.Fedorova, M.Seltzer, C.Small, and D.Nussbaum

Pisa – November 6, 2006

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling
Multithreaded Chip Multiprocessors (CMT)

Introduction

Multithreaded Chip Multiprocessors (CMT) are a new generation
of processors designed to improve performance of
memory–intensive applications.

The goal of CMTs is to improve performance of modern
applications such as Web Services, application servers and on–line
transaction processing systems.

I multiple threads executing short sequences of integer
operations, with frequent dynamic branches

I low cache locality and branch prediction accuracy

I low utilization of the processor pipeline

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling
Multithreaded Chip Multiprocessors (CMT)

Introduction

CMT processors combine:

I chip multiprocessing (CMP)

I hardware multithreading (MT)

A CMP processor include multiple processor cores on a single chip,
which allows more than one thread to be active at a time.

An MT processor interleaves execution of intructions from different
threads. As a results, if one thread blocks on a memory access,
other threads can make forward progress.

As a consequence, CMTs are equipped with dozens of
simulatneously active thread contexts.

I Competition for shared resources is high!

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling
Multithreaded Chip Multiprocessors (CMT)

The Structure of a CMT Processor

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling
Multithreaded Chip Multiprocessors (CMT)

Examples of CMT Processors

INTEL

I Core Duo: 2 cores, ... x2 L1 Cache, 2MB L2 Cache,
1.66–2.13 Ghz

I Core 2 Duo: 2 cores, ... x2 L1 Cache, 4MB L2 Cache,
1.86–2.93 Ghz

I . . .

AMD

I Athlon 64 X2: 2 cores, 128KB x2 L1 Cache, 2MB L2 Cache,
2.00–2.60 Ghz

SUN

I UltraSPARC T1 (Niagara): up to 8 cores, 24KB x8 L1 Cache,
3MB L2 Cache, 1.00–1.20Ghz

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling
Multithreaded Chip Multiprocessors (CMT)

Thread Interleaving in Each Processor Core

Two approaches exists to handle thread interleaving in a CPU core
I Coarse–grained multithreading switches to a new thread

when a thread occupying the processor blocks on a memory
request

I High context switch cost! (the decision to switch depends on
determining whether a cache miss occurred, and this is made
late in the pipeline)

I Fine–grained multithreading switches threads on every
cycle

I The performance of a single thread is extremely poor

CMT processors usually realize fine–grained multithreading.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling
Multithreaded Chip Multiprocessors (CMT)

Plan of the Talk

How contention for

I the processor pipeline

I L1 data chache

I L2 cache

affects system performance? Which of these shared resource may
become performance bottlenecks?

A new scheduling algorithm to improve L2 performance.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

A CMT System Simulator

To study contention for shared resources, a simulator of a CMT
has been developed as a set of exetension to the Simics simulation
toolkit.

I simulator based on an UltraSPARC II machine

I the simulated machine can bootstrap the Solaris OS and a
standard Unix environment

I the number of CPU cores and the number of thread contexts
for each core are configurable

I cache sizes, cache latencies and memory latency are
configurable

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

Pipeline Contention

Threads differ in how they use the processor pipeline.

I Compute–intensive threads issue instructions freqently and
utilize the pipeline intensively

I Memory–intensive threads frequently stall while waiting for
a response from the memory hierarchy

The scheduler can balance the demand for pipeline resources
across cores by co–scheduling compute–intensive threads with
memory–intensive threads on the same processor core.

A scheduler can identify compute–intensive and memory–intensive
threads by measuring the workload’s CPI (cycles per instruction)
metric.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

Pipeline Contention

Experiment to evaluate the potential performance improvement
obtained by using a scheduler that co–schedules compute–intensive
threads with memory–intensive threads.

I On a machine with 4 cores and 4 thread contexts for each core
I Tried several ways to schedule 16 threads

I 4 each with CPIs 1, 6, 11, and 16

I The result is the measure of IPC (Instructions per Cycle)
achieved by each schedule

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

Pipeline Contention

Assignment of threads to cores. Schedules (a) and (b) match
compute–intensive threads with memory–intensive threads.
Schedules (c) and (d) place compute–intensive threads on the
same core.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

Pipeline Contention

IPC achieved by each schedule.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

Pipeline Contention

While the potential performance improvement from this scheduling
technique is dramatic, to achieve it, it was necessary to have
threads with a wide range of CPIs.

What happens with real workloads?
I Average CPIs for a number of standard integer benchmarks

have been measured.
I SPEC CPU, SPEC JVM, SPEC JBB, and SPEC Web

I For most benchmarks, the average CPI is around 4
I All between 2.37 and 5.11

Other experiments performed with SPEC benchmarks confirmed
that performance gains from CPI-based scheduling are modest
(about 5%) for such workloads.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

The L1 Data Cache

Multithreaded processors are typically configured with small L1
data caches. This could result in high latencies associated with
handling cache faults.

Experiment to evaluate the potential loss of performance due to
high L1 data miss rates:

I On a machine with a single core and 4 thread contexts

I Executed four copies of some benchmarks by varying the
cache size

I The result is the measure of the cache miss ratios and IPCs
achieved by each group of benchmarks, for each cache size

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

The L1 Data Cache

L1 data cache miss ratios as the cache size changes.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

The L1 Data Cache

Pipeline utilization as the cache size changes.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

The L2 Cache
The L2 cache has a greater potential for becoming a performance
bottleneck because the latency between the L2 and main memory
is very high.

I In a Intel P4-HT, L1 → L2 costs 18 cycles, and L2 → Mem
costs 360 cycles

Experiment to evaluate the effect of L2 performance.

I On a 2 core CPU with 4 thread contexts and 8Kb of L1 cache

I Chosen 9 benchmarks with good and poor cache locality

I Executed two copies of each benchmark (18 threads) by
varying the cache size

I Thread scheduled by the standard Solaris scheduler!

I The result is the measure of the cache miss ratios and IPCs
achieved for each cache size

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

The L2 Cache

L2 miss ratios for the 18–thread SPEC workload.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

The L2 Cache

IPC for the 18–thread SPEC workload.
Processor IPC is sensitive tho the L2 miss ratio.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

A CMT System Simulator
Processor Pipeline
Processor Caches

The L2 Cache

Performance degradation is evident as the L2 cache
becomes smaller

+

Modern applications exhibit a dangerous trend of becoming
progressively more data–intensive

+

Changing software is easier than changing hardware

=

It is wise to equip the OS with the ability to handle
L2 cache shortage

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

Balance–Set Scheduling

Originally proposed by Denning as a way of improving the
performance of virtual memory.

It is based on the notion of Working Set: the data that must be
present in main memory (or in cache) to assure the efficient
execution of a program (a thread).

The idea is to

1. separate all runnable threads in groups such that the
combined working set of each group fits in the cache

2. schedule a group at a time for the duration of a time slice

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

Balance–Set Scheduling

Problem: experiments show that working set size is not a good
indicator of the workload’s cache behavior.

I some benchmarks with large working sets produced lower miss
ratios than others with a small working set

Working set size is a good indicator only if the program access its
working set uniformly!

A better way to asses a workload’s cache behavior is necessary.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Reuse–Distance Model

Proposed by Berg and Hagersten.

It is based on the notion of Reuse Distance of a memory location:
the amount of time (num. of memory references) that passes
between successive references to the same memory location.

I The smallest is the reuse distance of a location, the greater is
the probability that a reference will result in a hit.

The input necessary for this model is the reuse–distance histogram:
it counts the total number of re–references that fell within each
distance.

I Can be built at runtime by using the standard hardware
watchpoint mechanism.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Reuse–Distance Model

An example of reuse–distance histogram (188.ammp).

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Reuse–Distance Model

Given a reuse–distance histogram for a single thread, the
reuse–distance model estimates a cache miss ratio.

For balance–set scheduling, we need to estimate cache miss ratios
for groups of threads. Two methods:

I COMB

I AVG

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Reuse–Distance Model

I COMB: (i) sum the number of references for each reuse
distance in each histogram, (ii) and multiply each reuse
distance by the number of threads in the group, (iii) apply the
reuse–distance estimation on the resulting histogram.

I AVG: (i) assume that each thread runs with its own dedicated
partition of a cache, (ii) estimate ratios for individual threads,
(iii) compute the average.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Reuse–Distance Model

Actual vs predicted miss rates (#1=COMB, #2=AVG)

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Reuse–Distance Model

Estimed miss ratios are, on average, within 17% of the actual ones

I However, both COMB and AVG are “accurate enough” to
distinguish between thread groups that produce high miss
ratios and those that produce low miss ratios

The drawback of COMB is that it is computationally too expensive
to implement on a real system.

I In a machine with 32 thread contexts and 100 threads the
scheduler has to combine

(100
32

)
histograms!

AVG wins!

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Scheduling Algorithm

Step 1 Computing miss rate estimations (Periodically)

I Assume N runnable threads and M hardware thread contexts

I Compute all the miss rate esimations of the
(N
M

)
groups of M

threads by using the reuse–distance model and AVG

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Scheduling Algorithm

Step 2 Choosing the L2 miss ratio threshold (Periodically)

I The scheduler will keep the L2 miss ratio below this threshold

I The goal is to set this threshold to be as low as possible

I Analysis of the individual reuse–distance histograms allows to
identify the most cache–greedy thread

I Once the scheduler has computed the estimated miss ratios
for all possible groups of threads, it picks the smallest miss
ratio among the groups including the greediest thread

I The picked ratio is the threshold

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Scheduling Algorithm

Step 3 Identify the groups that will produce low cache miss ratios
(Periodically)

I Simply discard the groups of threads whose estimated miss
ratio is above the threshold

I The remaining groups are candidate groups

I Every runnable thread is at least in one candidate group!

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Scheduling Algorithm

Step 4 Scheduling decision (Every time a time slice expires)

I Choose a group from the set of candidate groups

I Schedule the threads in the group to run during the current
time slice

I Keep track of how much processor time each thread has
received

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Scheduling Algorithm

To choose thread groups there can be two policies:
performance–oriented (PERF) and fairness–oriented (FAIR)

I With PERF, we select the group with the lowest miss ratio
and containing threads that have not yet been selected, until
each thread is represented in the schedule

I With FAIR, we select the group with the greatest number of
the least frequently selected threads

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

The Scheduling Algorithm: An Example

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

Emulating the scheduler

Experiment performed by using the 18–thread SPEC workload
described before on a dual core CPU with 4 thread contexts on
each core.

Reuse–distance histograms computed by the simulator for all
threads off–line

I no information about the overhead!

Examined all the
(18

8

)
combinations of threads and computed the

candidate set.

From the candidate set picked several groups using either PERF or
FAIR policy to obtain the final schedule.

Executed the schedule on the simulator.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

Emulating the Scheduler

L2 miss ratios achieved with the default (Solaris) scheduler, and
the balance set scheduler.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

Emulating the Scheduler

IPC achieved with the default (Solaris) scheduler, and the balance
set scheduler.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design



Introduction
Sources of Performance Bottlenecks

Balance–Set Scheduling

Conclusions

The authors determined that contention for L2 cache has the
greatest effect on system performance.

With balance–set scheduling, the L2 miss rates has been reduced
by 19–37% when using the PERF policy and 9–18% when using
the FAIR policy

The same performance improvements achived with PERF can be
achieved by using the defauld scheduler by doubling the L2 cache
size.

Based on papers by A.Fedorova et Al. Perf. of CMT Processors and Implications for OS Design


	Introduction
	Multithreaded Chip Multiprocessors (CMT)

	Sources of Performance Bottlenecks
	A CMT System Simulator
	Processor Pipeline
	Processor Caches

	Balance--Set Scheduling

