Compositional Semantics and Behavioral Equivalences for P Systems

Roberto Barbuti ${ }^{1}$ Andrea Maggiolo Schettini ${ }^{1}$ Paolo Milazzo ${ }^{1}$ Simone Tini ${ }^{2}$

1. Dipartimento di Informatica, Università di Pisa, Italy
2. Dipartimento di Scienze della Cultura, Politiche e dell'Informazione Università dell'Insubria, Como, Italy

$$
\text { Pisa - October, } 2007
$$

Outline of the talk

(1) Introduction

- P Systems
- Behavioral Equivalences for P Systems
(2) The P Algebra
- Syntax
- Semantics
- Behavioral Preorders and Equivalences
(3) The PP Algebra
- Few Words
(4) Conclusions and Future Work

Introduction

P Systems are distributed parallel computing devices inspired by the structure and the functioning of living cells

Recently, some operational semantics of P Systems have been defined (e.g. by Ciobanu et Al., Busi, and Freund et Al.)

The aim of this work is to introduce behavioral equivalences for P Systems

- We introduce a process algebraic representation of P Systems
- We define a compositional semantics as a Labeled Transition System (LTS)
- We study well-known behavioral equivalences over LTSs on our semantics

P Systems

A P System Π is given by

$$
\Pi=\left(V, \mu, w_{1}, \ldots, w_{n},\left(R_{1}, \rho_{1}\right), \ldots,\left(R_{n}, \rho_{n}\right)\right)
$$

where:

- V is an alphabet whose elements are called objects;
- $\mu \subset \mathbb{N} \times \mathbb{N}$ is a membrane structure, such that $(i, j) \in \mu$ denotes that the membrane labeled by j is contained in the membrane labeled by i;
- w_{i} with $1 \leq i \leq n$ are strings from V^{*} representing multisets over V associated with the membranes $1,2, \ldots, n$ of μ;
- R_{i} with $1 \leq i \leq n$ are finite sets of evolution rules associated with the membranes $1,2, \ldots, n$ of μ;
- ρ_{i} is a partial order relation over R_{i}, specifying a priority relation between rules: $\left(r_{1}, r_{2}\right) \in \rho_{1}$ iff $r_{1}>r_{2}$ (i.e. r_{1} has a higher priority than r_{2}).

Evolution Rules

The products of a rule are denoted with a multiset of messages of the following forms:

- (v, here): objects v remain in the same membrane;
- (v, out $)$: objects v are sent out;
- $\left(v, i n_{l}\right)$: objects v are sent into the child membrane l.

We can assume that all evolution rules have the following form, where $\left\{l_{1}, \ldots, l_{n}\right\}$ is a set of membrane labels in \mathbb{N}.

$$
u \rightarrow\left(v_{h}, \text { here }\right)\left(v_{o}, \text { out }\right)\left(v_{1}, i n_{l_{1}}\right) \ldots\left(v_{n}, i n_{l_{n}}\right)
$$

A dissolving evolution rule is denoted by adding to the products the special message δ such that $\delta \notin V$:

$$
u \rightarrow\left(v_{h}, \text { here }\right)\left(v_{o}, \text { out }\right)\left(v_{1}, i n_{l_{1}}\right) \ldots\left(v_{n}, i n_{l_{n}}\right) \delta
$$

An Example

A P System that may send out of the skin membrane (if the computation terminates) a multiset of objects $c^{n} d^{n}$.

Maximal Parallelism

Evolution rules are applied with maximal parallelism:
A multiset of instances of evolution rules is chosen non-deterministically such that no other rule can be applied to the system obtained by removing all the objects necessary to apply the chosen instances of rules.

Priority relations between rules are such that:
A rule with a priority smaller than another cannot be chosen for application if the one with greater priority is applicable.

Observable Behavior

In order to define reasonable semantics and behavioral equivalences we have to characterize what is reasonable to observe of the behavior of a P System

- There are many choices...

We choose to observe the input/output behavior of membranes:
Two membranes are equivalent if, at each step, they can:

- receive the same objects from outer and inner membranes
- send the same objects to the outer membrane (or to the external environment)
- send the same objects to the same inner membranes

Examples of Equivalent Membranes

The following membranes could be considered as equivalent:

and also the following two:

Examples of Equivalent Membrane Contents

A membrane content is a pair (\mathcal{R}, u) where

- \mathcal{R} is a set of evolution rules
- u is a multiset of objects
that can be (a part of) the content of a membrane

These membrane contents should be considered pairwise equivalent:

$$
\begin{gathered}
(a \rightarrow(b, \text { here }) \delta, \varnothing) \quad \text { and } \quad(a \rightarrow(b, o u t) \delta, \varnothing) \\
(a \rightarrow(b, \text { here }) \delta, a b c) \quad \text { and } \quad(a \rightarrow(b, \text { out }) \delta, a b c) \\
\left(\mathcal{R}_{1}, \varnothing\right) \quad \text { and } \quad\left(\mathcal{R}_{2}, \varnothing\right) \\
\text { where } \mathcal{R}_{1}=\{\quad a \rightarrow(b, \text { here }), a \rightarrow(c, \text { here }) \quad\} \text { and } \\
\mathcal{R}_{2}=\mathcal{R}_{1} \cup\{\quad a a \rightarrow(b c, \text { here })\} .
\end{gathered}
$$

Outline of the talk

(1) Introduction

- P Systems
- Behavioral Equivalences for P Systems
(2) The P Algebra
- Syntax
- Semantics
- Behavioral Preorders and Equivalences
(3) The PP Algebra
- Few Words

4 Conclusions and Future Work

The P Algebra (for P Systems without Priorities)

Def. (P Algebra) The syntax of membrane contents c, membranes m, and membrane systems $m s$ is given by the following grammar:

$$
\begin{array}{cc}
c::=(\varnothing, \varnothing) & \left(u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\}, \varnothing\right)\left|\left(u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\} \delta, \varnothing\right)\right|(\varnothing, a) \mid c \cup c \\
m::=\left[{ }_{l} c\right]_{l} & m s::=m|m s| m s|\mu(m, m s)| \mathbf{v}
\end{array}
$$

where l and l_{i} range over \mathbb{N} and a ranges over V.

- $u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\}$ stands for $u \rightarrow\left(v_{h}\right.$, here $)\left(h_{o}\right.$, out $)\left(v_{l_{1}}, i n_{l_{1}}\right) \ldots\left(v_{l_{n}}, i n_{l_{n}}\right)$
- $c_{1} \cup c_{2}$ denotes the membrane content obtained by merging the rules and the objects of c_{1} and c_{2}
- $\left.{ }_{l} c\right]_{l}$ denotes a membrane whose content is c and whose label is l
- $m s \mid m s$ denotes juxtaposition of membranes
- $\mu(m, m s)$ denotes the containment of the membranes $m s$ in m (hierarchical composition)
- \mathbf{v} represents the dissolved membrane

Example of Term of the P Algebra

corresponds to the term:

$$
\begin{aligned}
& \mu\left(\left[1_{1}(a \rightarrow(b, \text { in } 2), \varnothing) \cup(\varnothing, a)\right]_{1},\right. \\
& \left.\quad[2(b \rightarrow(c, \text { here }), \varnothing) \cup(c \rightarrow(a, \text { out }), \varnothing)]_{2}\right)
\end{aligned}
$$

that is (for short):

$$
\mu\left(\left[{ }_{1} a \rightarrow\left(b, i n_{2}\right), a\right]_{1},[2 b \rightarrow(c, \text { here }), c \rightarrow(a, \text { out })]_{2}\right)
$$

Semantics of the P Algebra

The semantics of the P Algebra is a Labeled Transition System (LTS)

- states are terms
- transitions are labeled by information about the input/output behavior of the system (observation)

Let's start with membrane contents. We would like to

- define the behavior of individual evolution rules and objects
- infer the behavior of a membrane content from the behaviors of its rules and objects

Problem: it is hard to express the concept of maximal parallelism in a compositional way

Solution: we enrich transition labels with information concerning the (potential) application and non application of evolution rules

Transitions of Membrane Contents

$\begin{aligned} & \text { Assumptions on } \\ & \text { child membranes }\end{aligned} \begin{aligned} & \text { Observable behavior } \\ & \text { (input/output) }\end{aligned}$
Information for maximal parallelism

Inference Rules for Membrane Contents

$$
\begin{aligned}
& \frac{I \in V^{*}}{(\varnothing, \varnothing) \underset{\varnothing, \varnothing, \varnothing, \varnothing}{\varnothing, \varnothing, \varnothing, \varnothing}}(\varnothing, I) \\
& \frac{I \in V^{*}}{(\varnothing, a) \frac{\varnothing, I, \varnothing, \varnothing}{\varnothing, \varnothing, \varnothing, a}(\varnothing, I a)} \\
& \frac{I \in V^{*}}{(\varnothing, a) \frac{\varnothing, I, \varnothing, \varnothing}{\varnothing, \varnothing, a, \varnothing}}(\varnothing, I) \\
& \text { (mc8) } \\
& (m c 7) \\
& (m c 6) \\
& \frac{I \in V^{*} \quad n \in \mathbb{N}}{\left(u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\}, \varnothing\right) \xrightarrow[u^{n},\{u\}, \varnothing, \varnothing]{\varnothing, I, v_{0}^{n},\left\{\left(l_{i}, v_{i}^{n}\right)\right\}}\left(u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\}, I v_{h}^{n}\right)}
\end{aligned}
$$

Inference Rules for Membrane Contents (2)

$$
\begin{gather*}
\frac{I \in V^{*} \quad n \in \mathbb{N} \quad n>0}{\left(u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\} \delta, \varnothing\right) \frac{\varnothing, I, I v_{o}^{n} v_{h}^{n} \delta,\left\{\left(l_{i}, v_{l_{i}}^{n}\right)\right\}}{u^{n},\{u\}, \varnothing, \varnothing} \mathbf{v}} \\
\frac{I \in V^{*}}{\left(u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\} \delta, \varnothing\right) \frac{\varnothing, I, \varnothing, \varnothing}{\varnothing,\{u\}, \varnothing, \varnothing}}\left(u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\} \delta, I\right)
\end{gather*} \quad(m c 3)
$$

Inference Rules for Membrane Contents (3)

$$
\frac{x_{1} \xrightarrow[u_{1}, U_{1}, v_{1}, v_{1}^{\prime}]{M_{1}, I_{1}, O_{1}^{\uparrow}, O_{1}^{\downarrow}} y_{1} \quad x_{2} \xrightarrow[u_{2}, U_{2}, v_{2}, v_{2}^{\prime}]{\stackrel{M_{2}, I_{2}, O_{2}^{\uparrow}, O_{2}^{\downarrow}}{\rightarrow} y_{2} \quad \begin{array}{c}
M_{1} M_{2} \cap \operatorname{Labels}\left(O_{1}^{\downarrow} \cup_{\mathbb{N}} O_{2}^{\downarrow}\right)=\varnothing \\
v_{1}^{\prime} v_{2}^{\prime} \nvdash U_{1} \oplus U_{2} \quad \delta \notin O_{1}^{\uparrow} O_{2}^{\uparrow}
\end{array}}}{x_{1} \cup x_{2} \xrightarrow[M_{1} M_{2}, I_{1} I_{2}, O_{1}^{\uparrow} O_{2}^{\uparrow}, O_{1}^{\downarrow} \cup_{\mathbb{N}} O_{2}^{\downarrow}]{u_{1} u_{2}, U_{1} \oplus U_{2}, v_{1} v_{2}, v_{1}^{\prime} v_{2}^{\prime}} y_{1} \cup y_{2}}
$$

+ similar rules to handle dissolution of x_{1} or/and x_{2}
- $u_{1} u_{2}$ is the union of multisets u_{1} and u_{2}
- $v \vdash U$ means $\exists u$. $(u \subseteq v \wedge u \in U)$
- $\cup_{\mathbb{N}}$ groups objects sent to the same child membrane
- \oplus merges sets of multisets by removing redundant ones

Example of Semantics of Membrane Contents

$$
\begin{aligned}
& \begin{aligned}
& \stackrel{\emptyset, I_{1}, \emptyset,\{(2, b b)\}}{a,\{a\}, \emptyset, \emptyset} \rightarrow\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1} c c\right) \\
& \emptyset, I_{1}, \emptyset,\{(2, b)\} \\
& a,\{a\}, \emptyset, \emptyset \\
& \emptyset, I_{1}, \emptyset, \emptyset
\end{aligned}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1} c\right) \\
& \left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), \emptyset\right) \\
& \xrightarrow[\emptyset, \emptyset, \emptyset, \emptyset]{\{2\}, I_{1}, \emptyset, \emptyset}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1}\right) \\
& \begin{array}{c}
\begin{array}{l}
\emptyset, I_{2}, \emptyset, \emptyset \\
\emptyset, \emptyset, \emptyset, a \\
\emptyset, I_{2}, \emptyset, \emptyset
\end{array} \\
\emptyset, \emptyset, a, \emptyset
\end{array}\left(\emptyset, I_{2} a\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[a a,\{a\}, \emptyset, \emptyset]{\emptyset, I_{1}, \emptyset,\{(2, b b)\}}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1} c c\right) \\
& \frac{\emptyset, I_{1}, \emptyset,\{(2, b)\}}{a,\{a\}, \emptyset, \emptyset}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1} c\right) \\
& \xrightarrow[\emptyset,\{a\}, \emptyset, \emptyset]{\substack{a,\{a\}, \emptyset, \emptyset \\
\emptyset, I_{1}, \emptyset, \emptyset}}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1}\right) \\
& \left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), \emptyset\right) \\
& \xrightarrow[\emptyset, \emptyset, \emptyset, \emptyset]{\{2\}, I_{1}, \emptyset, \emptyset}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1}\right) \\
& \begin{aligned}
& \begin{array}{l}
\emptyset, I_{2}, \emptyset, \emptyset \\
\emptyset, \emptyset, \emptyset, a
\end{array}\left(\emptyset, I_{2} a\right) \\
& \emptyset, I_{2}, \emptyset, \emptyset
\end{aligned}\left(\emptyset, I_{2}\right) \\
& (\emptyset, a) \cup(\emptyset, a)=\left(\emptyset, a \xrightarrow{\substack{\emptyset a) \\
\emptyset, \emptyset, \emptyset, a a}}\left(\emptyset, I_{2} I_{2}^{\prime} a a\right)\right.
\end{aligned}
$$

$\left(a \rightarrow(c\right.$, here $\left.)\left(b, i n_{2}\right), \emptyset\right)$

$(\emptyset, a) \cup(\emptyset, a)=(\emptyset, a \bar{a})$

$$
\begin{aligned}
\begin{array}{l}
\emptyset, I_{1} I_{2} I_{2}^{\prime}, \emptyset,(2, b b b) \\
a a a,\{a\}, a a, \emptyset \\
\emptyset, I_{1} I_{2} I_{2}^{\prime}, \emptyset,(2, b b)
\end{array}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1} I_{2} I_{2}^{\prime} c c c\right) \\
a a,\{a\}, a, a
\end{aligned}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I_{1} I_{2} I_{2}^{\prime} a c c\right) \quad a \vdash\{a\}!!!!
$$

$\left(a \rightarrow(c\right.$, here $)\left(b, i n_{2}\right), \widehat{a a)}$

Inference Rules for Membranes and Juxtapositions

$\frac{x \xrightarrow[u, U, u, v^{\prime}]{M, I, O^{\uparrow} O^{\downarrow}} y \quad \delta \notin O^{\uparrow}}{\left.{ }_{[l} x\right]_{l} \xrightarrow{M,\{(l, I)\}, O^{\uparrow}, O \downarrow}\left[{ }_{l} y\right]_{l}} \quad(m 1)$

$$
\begin{equation*}
\frac{x \xrightarrow[u, U, u, v^{\prime}]{M, I, O^{\uparrow}, O^{\downarrow}} y \quad \delta \in O^{\uparrow}}{[l x]_{l} \xrightarrow{M,\{(l, I)\}, O^{\uparrow}, O \downarrow} \mathbf{V}} \tag{m2}
\end{equation*}
$$

- information under the arrow is no longer necessary
- the transition from x to y must be acceptable
- the first and the third label under the arrow are the same
- this is important to ensure maximal parallelism

$$
\begin{equation*}
\frac{x_{1} \xrightarrow{M_{1}, \mathcal{I}_{1}, O_{1}^{\uparrow}, \varnothing} y_{1} \quad x_{2} \xrightarrow{M_{2}, \mathcal{I}_{2}, O_{2}^{\uparrow}, \varnothing} y_{2} \quad \delta \notin O_{1}^{\uparrow} O_{2}^{\uparrow}}{x_{1}\left|x_{2} \xrightarrow{\varnothing, \mathcal{I}_{1} \mathcal{I}_{2}, O_{1}^{\uparrow} O_{2}^{\uparrow}, \varnothing} y_{1}\right| y_{2}} \tag{jux1}
\end{equation*}
$$

+ similar rules to handle dissolution of x_{1} or/and x_{2}

Inference Rules for Hierarchical Compositions

$$
\begin{gather*}
x_{1} \xrightarrow{M_{1},\left\{\left(l_{1}, I_{1}\right)\right\}, O_{1}^{\uparrow}, O_{1}^{\downarrow}} y_{1} \quad x_{2} \xrightarrow{M_{2}, \mathcal{I}_{2}, O_{2}^{\uparrow}, \varnothing} y_{2} \\
\frac{O_{1}^{\downarrow} \bumpeq \mathcal{I}_{2} \quad O_{2}^{\uparrow} \subseteq I_{1} \quad M_{1} \cap \operatorname{Labels}\left(\mathcal{I}_{2}\right)=\varnothing \quad \delta \notin O_{1}^{\uparrow} O_{2}^{\uparrow}}{\mu\left(x_{1}, x_{2}\right) \xrightarrow{\varnothing,\left(l_{1}, I_{1} \backslash O_{2}^{\uparrow}\right), O_{1}^{\uparrow}, \varnothing} \mu\left(y_{1}, y_{2}\right)} \tag{h1}
\end{gather*}
$$

+ similar rules to handle dissolution of x_{1} or/and x_{2}
- $O_{1}^{\downarrow} \bumpeq \mathcal{I}_{2}$ means that the two sets of pairs are the same apart from some $\left(l_{i}, \varnothing\right)$

$$
\mu\left([1 \ldots]_{1},[2 \ldots]_{2} \mid[3 \ldots]_{3}\right) \xrightarrow{\varnothing,\left\{\left(1, I_{1}\right)\right\}, \varnothing, \varnothing} \mu\left(\left[{ }_{1}(-, I c c)\right]_{1},\left[{ }_{2}(\varnothing, b b)\right]_{2} \mid[3(\varnothing, \varnothing)]_{3}\right)
$$

$$
\begin{aligned}
& \begin{array}{c}
a \rightarrow(c, \text { here })\left(b, i n_{2}\right) \\
a a r
\end{array} \\
& \left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), a a\right) \xrightarrow[a a,\{a\}, a a, \varnothing]{\varnothing, I_{1}, \varnothing,(2, b b)}\left(a \rightarrow(c, \text { here })\left(b, i n_{2}\right), I c c\right) \\
& {\left[1\left(a \rightarrow c_{\text {here }} b_{\text {in }_{2}}, a a\right)\right]_{1} \xrightarrow{\varnothing,\left\{\left(1, I_{1}\right)\right\}, \varnothing,(2, b b)}\left[1\left(a \rightarrow c_{\text {here }} b_{\text {in }_{2}}, I c c\right)\right]_{1}} \\
& {[2(\varnothing, \varnothing)]_{2} \xrightarrow{\varnothing,\{(2, b b)\}, \varnothing, \varnothing}[2(\varnothing, b b)]_{2} \quad\left[{ }_{3}(\varnothing, \varnothing)\right]_{3} \xrightarrow{\varnothing,\{(3, \varnothing)\}, \varnothing, \varnothing}\left[{ }_{3}(\varnothing, \varnothing)\right]_{3}} \\
& {\left[{ }_{2}(\varnothing, \varnothing)\right]_{2}\left|\left[{ }_{3}(\varnothing, \varnothing)\right]_{3} \xrightarrow{\varnothing,\{(2, b b),(3, \varnothing)\}, \varnothing, \varnothing}\left[{ }_{2}(\varnothing, b b)\right]_{2}\right|\left[{ }_{3}(\varnothing, \varnothing)\right]_{3}}
\end{aligned}
$$

Maximal Parallelism Theorem

Theorem (Maximality)

$$
(\mathcal{R}, u) \xrightarrow{M, I, O_{1}^{\dagger}, O_{1}^{\perp}} x \quad \text { implies } \quad\left(\mathcal{R}, v^{\prime}\right) \frac{M, I^{\prime}, O_{2}^{\dagger}, O_{2}^{\perp}}{u^{\prime}, U, u^{\prime}, u^{\prime}} \rightarrow
$$

for any $u^{\prime \prime} \neq \varnothing$

Well-known Behavioral Preorders (1)

 Let $(\mathcal{S}, \mathcal{L},\{\xrightarrow{\ell} \mid \ell \in \mathcal{L}\})$ be an LTS. A relation $R \subseteq \mathcal{S} \times \mathcal{S}$- is a simulation (\sqsubseteq_{S} the largest) if, for each pair $s_{1} R s_{2}$, if $s_{1} \xrightarrow{\ell} s_{1}^{\prime}$ then there is a transition $s_{2} \xrightarrow{\ell} s_{2}^{\prime}$ such that $s_{1}^{\prime} R s_{2}^{\prime}$;
- is a ready simulation ($\sqsubseteq_{R S}$ the largest) if it is a simulation and, for each pair $s_{1} R s_{2}$, if $s_{1} \nLeftarrow$ then $s_{2} \nLeftarrow$;
- is a ready trace preorder ($\sqsubseteq_{R T}$ the lar.) if, for each pair $s_{1} R s_{2}$, any ready trace of s_{1} is a ready trace of s_{2} (a sequence $L_{0} \ell_{1} L_{1} \ldots \ell_{n} L_{n}$ with $L_{i} \subseteq \mathcal{L}$ and $\ell_{i} \in \mathcal{L}$ is a ready trace of a state s_{0} if $s_{0} \xrightarrow{\ell_{1}} s_{1} \xrightarrow{\ell_{2}} \ldots s_{n-1} \xrightarrow{\ell_{n}} s_{n}$ and Initials $\left(s_{i}\right)=L_{i}$ for $\left.i=0, \ldots, n\right)$;
- is a failure preorder (\sqsubseteq_{F} the largest)if, for each pair $s_{1} R s_{2}$, any failure of s_{1} is a failure of s_{2} (a pair $\left(\ell_{1} \ldots \ell_{n}, L\right)$ with $\ell_{1} \ldots \ell_{n} \in \mathcal{L}$ and $L \subseteq \mathcal{L}$ is a failure of a state s if $s \xrightarrow{\ell_{1}} \ldots \xrightarrow{\ell_{n}} s^{\prime}$ for some state s^{\prime} such that $\operatorname{Initials}\left(s^{\prime}\right) \cap L=\varnothing$);
- is a trace preorder (\sqsubseteq_{T} the largest)if, for each pair $s_{1} R s_{2}$, any trace of s_{1} is a trace of s_{2} (a sequence $\ell_{1} \ldots \ell_{n}$ with $\ell_{i} \in \mathcal{L}$ is a trace of a state s_{0} if $s_{0} \xrightarrow{\ell_{1}} \ldots \xrightarrow{\ell_{n}} s_{n}$ for some state $\left.s_{n}\right)$.

Well-known Behavioral Preorders (2)

It is well-known that the considered preorders are structured as follows (where \rightarrow is \subseteq)

In the case of the P Algebra all the inclusions are strict

Well-known Behavioral Equivalences

The kernels of the preorders (the largest equivalence each of them contains) are well-known behavioral equivalences

- bisimulation \approx is the kernel of \sqsubseteq_{S}
- trace equivalence \approx_{T} is the kernel of \sqsubseteq_{T}

The inference rules of the semantics of the P Algebra satisfy de Simone format.

Theorem All of the considered preorders are precongruences
Corollary All of the kernels of the considered preorders are congruences

Examples of Equivalent Membranes (1)

Their semantics are

$$
[n(a \rightarrow(b, h e r e) \delta, a c)]_{n} \xrightarrow{\varnothing, I, b c, \varnothing} \mathbf{v}
$$

and

$$
\left[{ }_{n}(a \rightarrow(b c, \text { out }) \delta, a)\right]_{n} \xrightarrow{\varnothing, I, b c, \varnothing} \mathbf{v}
$$

that are (obviously) both trace equivalent \approx_{T} and bisimilar \approx

Examples of Equivalent Membranes (2)

Portions of their semantics are

that are trace equivalent \approx_{T} but not bisimilar \approx

Outline of the talk

(1) Introduction

- P Systems
- Behavioral Equivalences for P Systems
(2) The P Algebra
- Syntax
- Semantics
- Behavioral Preorders and Equivalences
(3) The PP Algebra
- Few Words

4 Conclusions and Future Work

Priorities

As for maximal parallelism, rule priorities are difficult to be described compositionally

The definition becomes easier if we choose a different notation

$$
a \rightarrow(b, \text { in } 2)>c \rightarrow(d, \text { out })
$$

becomes

$$
a \rightarrow\left(b, \text { in } n_{2}\right) \quad\{(a, 2)\} c \rightarrow(d, \text { out })
$$

where $(a, 2)$ is called priority pair and contains information on the applicability of the rule with higher priority

The PP Algebra

Def. (PP Algebra) The syntax of membrane contents c, membranes m, and membrane systems $m s$ is given by the following grammar:

$$
\begin{aligned}
& c::==\varnothing, \varnothing) \mid\left(\left\{\left(u_{i}, M_{i}\right)\right\} u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\}, \varnothing\right) \\
&\left|\left(\left\{\left(u_{i}, M_{i}\right)\right\} u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\} \delta, \varnothing\right)\right|(\varnothing, a) \mid c \cup c \\
& m::==\left[{ }_{l} c\right]_{l} \\
& m s::=m|m s| m s|\mu(m, m s)| \mathbf{v}
\end{aligned}
$$

where l and l_{i} range over \mathbb{N} and a ranges over V.

- $\left\{\left(u_{i}, M_{i}\right)\right\} u \rightarrow v_{h} v_{o}\left\{v_{l_{i}}\right\}$ stands for $\left\{\left(u_{1}, M_{1}\right), \ldots,\left(u_{n}, M_{n}\right)\right\} u \rightarrow$ $\left(v_{h}\right.$, here $)\left(h_{o}\right.$, out $)\left(v_{l_{1}}, i n_{l_{1}}\right) \ldots\left(v_{l_{m}}, i n_{l_{m}}\right)$

Transitions with Priorities

Conclusions and Future Work

We defined a compositional semantics of P Systems

- we proved that it correctly describes maximal parallelism (and priorities)

We considered some well-known behavioral preorders and equivalences

- we proved that they are different relations in the case of P Systems
- we proved them to be (pre)congruences

As future work we will develop axiomatic semantics

- syntactical transformations between terms being correct and complete w.r.t. a behavioral equivalence

