An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Roberto Barbuti Andrea Maggiolo–Schettini Paolo Milazzo Angelo Troina

Dipartimento di Informatica, Università di Pisa, Italy

Edinburgh - April 4, 2005

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Introduction

Simulating chemical reactions

Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Conclusions

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

imulating hemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Introduction

Chemical reactions are described by the law of mass action

- the speed of a reaction is proportional to the concentrations of the individual reactants involved
- differential equations

Gillespie's simulation algorithm

- stochastic method based on the theory of collisions
- each reaction takes a (continuous) random time which is exponentially distributed

The simulation algorithm we propose

- performs discrete time steps of (fixed) lenght Δt ;
- assume that at each step at most one reaction may occur (randomly chosen).

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

Introduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Background

Usual notation for chemical reactions:

$$\ell_1 S_1 + \ldots + \ell_\rho S_\rho \stackrel{k}{\underset{k_{-1}}{\rightleftharpoons}} \ell'_1 P_1 + \ldots + \ell'_\gamma P_\gamma$$

where:

- \triangleright S_i, P_i are molecules
- ℓ_i, ℓ'_i are stoichiometric coefficients
- ▶ *k*, *k*₋₁ are the kinetic constants

For the law of mass action, the forward rate of a reaction is:

$$\frac{dP}{dt} = k[S_1]^{\ell_1} \cdots [S_\rho]^{\ell_\rho}$$

and the backward rate is:

$$\frac{dS}{dt} = k_{-1}[P_1]^{\ell'_1} \cdots [P_{\gamma}]^{\ell'_{\gamma}}$$

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

Introduction

Simulating chemical reactions

Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Gillespie's stochastic approach (1)

- assumes a stochastic reaction constant c_μ for each chemical reaction R_μ
- $c_{\mu}dt$ is the probability that a particular combination of reactant molecules of R_{μ} react in an infinitesimal time interval dt

The total probability (denoted $a_{\mu}dt$) of R_{μ} to occur in the infinitesimal time interval dt is

$$a_\mu dt = h_\mu c_\mu dt$$

where h_{μ} is the number of distinct molecular reactant combinations.

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions

Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Gillespie's stochastic approach (2)

Example:

solution with X_1 molecules S_1 and X_2 molecules S_2

reaction $R_1 : S_1 + S_2 \rightarrow 2S_1$ $\blacktriangleright h_1 = X_1X_2$ $\flat a_1 = X_1X_2c_1$ $\flat a_1dt = X_1X_2c_1dt$

reaction $R_2 : 2S_1 \rightarrow S_1 + S_2$ $h_2 = \frac{X_1(X_1 - 1)}{2}$ $a_2 = \frac{X_1(X_1 - 1)}{2}c_2$ $a_2 dt = \frac{X_1(X_1 - 1)}{2}c_2 dt$ An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions

Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Gillespie's algorithm

Given a set of reactions $\{R_1, \ldots, R_M\}$ and a current time t

- 1. The time $t + \tau$ at which the next reaction will occur is randomly chosen with τ exponentially distributed with parameter $\sum_{\nu=1}^{M} a_{\nu}$;
- 2. The reaction R_{μ} that has to occur at time $t + \tau$ is randomly chosen with probability $a_{\mu}dt$.

At each step t is incremented by τ and the chemical solution is updated.

At each step the probability density function

$$P_{g}(\tau,\mu) = \exp\left(-\sum_{\nu=1}^{M} a_{\nu}\tau\right) \cdot a_{\mu}dt$$

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

Introduction

Simulating chemical reactions

Gillespie's algorithm Our algorithm A comparison

Examples and applications Probabilistic MultiSe

Rewriting Simulation results

Conclusions

gives the probability that the next reaction will occur in the time interval $(t + \tau, t + \tau + dt)$ and will be R_{μ} .

Our algorithm (1)

- ► assumes that in a very small (fixed) time interval Δt at most one reaction may occur
- ► Δt depends on the number and on the rates of the chemical reactions

Basic idea:

- divide the rate of each reaction (given by the law of mass action) by an arbitrarily great integer value N
- ► use the result as the probability of each reaction to occur in ∆t

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications Probabilistic MultiS

Rewriting

Our algorithm (2)

Given a set of reactions $\{R_1, \ldots, R_M\}$, and assuming a volume of 1 litre

- Δt has to be fixed to $\frac{1}{MN}$
- N is such that

$$0 < \frac{k_{\mu}[S_{\mu 1}]^{\ell_{\mu 1}} \cdots [S_{\mu \rho}]^{\ell_{\mu \rho}}}{N} \leq 1$$

for $1 \le \mu \le M$ and for all the possible concentrations (assumed to be finite) of $S_{\mu 1}, \ldots, S_{\mu \rho}$

The probability of R_{μ} is

$$P(R_{\mu}) = egin{cases} rac{k_{\mu}[S_{\mu 1}]^{\ell_{\mu 1}}...[S_{\mu
ho}]^{\ell_{\mu
ho}}}{N} & ext{if } R_{\mu} ext{ can occur} \ 0 & ext{otherwise} \end{cases}$$

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

```
Simulating
chemical reactions
Gillespie's algorithm
Our algorithm
A comparison
```

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Our algorithm (3)

The algorithm iterates the following steps:

- 1. A reaction R_{μ} is randomly chosen (all the reactions are equiprobable);
- 2. The chosen R_{μ} is performed with probability $P(R_{\mu})$.

The probability of choosing and performing R_{μ} in Δt is

$$P(\mu) = rac{1}{M} P(R_\mu)$$

and the probability of performing no reactions in Δt is

$$P_0=1-\sum_{
u=1}^M P(
u)$$

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

```
Simulating
chemical reactions
Gillespie's algorithm
Our algorithm
A comparison
```

Examples and applications

Probabilistic MultiSe Rewriting Simulation results

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Comparing the two algorithms (1)

Assume Δt infinitesimal. Results:

The probability of performing R_μ in Gillespie's algorithm is equivalent (with an approximation) to the probability of choosing and performing R_μ in our algorithm, that is

a
$$_\mu$$
dt $pprox$ P(μ)

 A step in Gillespie's algorithm can be simulated by a sequence of steps in our algorithm having (approximatively) the same probability

Approximations are introduced by deriving c_{μ} from k_{μ}

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Comparing the two algorithms (2)

Gillespie's algorithm	Our Algorithm
- Assumes c_{μ} in general unknown derived by k_{μ} (approx)	+ Uses k _μ usually well–known
 Considers reactions individually 	+ Is based on the law of mass action does not depend on the measure units (scalability)
+ Precise reaction times	- Assumes at most one reaction in Δt

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

A comparison

Probabilistic MultiSet Rewriting (1)

The Probabilistic MultiSet Rewriting formalism (PMSR)

- is a simple example of formalism using our algorithm
- describes the behaviour of a chemical solution as a probabilistic transition system

Definition (PMSR Rule). A Probabilistic MultiSet Rewriting rule is a triple (M_1, p, M_2) where:

- ▶ *M*₁, *M*₂ are two different multisets;
- ▶ $p \in]0, 1]$ is the *probabilistic constant* of the rule.

A probabilistic rewriting rule (M_1, p, M_2) can be denoted also with the more usual notation $M_1 \rightarrow_p M_2$. An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Probabilistic MultiSet Rewriting (2)

Definition (PMSR System). A Probabilistic MultiSet Rewriting system is a pair (M, \mathcal{R}) , where M is a multiset and \mathcal{R} is a finite set of rewriting rules.

Definition (Semantics). The semantics of PMSR is the probabilistic transition system in which states are PMSR systems and transitions are described by the following inference rules:

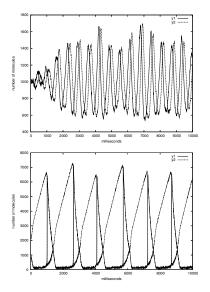
$$\frac{R_{\mu} \in \mathcal{R} \quad R_{\mu} = M_{\mu} \rightarrow_{p_{\mu}} M'_{\mu} \quad M_{\mu} \subseteq M}{(M, \mathcal{R}) \xrightarrow{P(\mu)} ((M \setminus M_{\mu}) \cup M'_{\mu}, \mathcal{R})}$$

$$\overline{(M,\mathcal{R})\xrightarrow{P_0}(M,\mathcal{R})}$$

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline


Introduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results

Lotka and Brusselator reactions

Lotka reactions

$$Y_1 \xrightarrow{k_1} 2Y_1$$
$$Y_1 + Y_2 \xrightarrow{k_2} 2Y_2$$
$$Y_2 \xrightarrow{k_3} Z$$

Brusselator reactions

$$X \xrightarrow{k_1} X + Y_1$$

$$Y_1 \xrightarrow{k_2} Y_2$$

$$2Y_1 + Y_2 \xrightarrow{k_3} 3Y_1$$

$$Y_1 \xrightarrow{k_4} Z$$

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

Introduction

```
Simulating
chemical reactions
Gillespie's algorithm
Our algorithm
A comparison
```

```
Examples and applications
```

Probabilistic MultiSet Rewriting

Simulation results

Sorbitol Dehydrogenase

Real enzymatic activity involving Fructose and Sorbitol.

$$E + NADH \stackrel{k_1}{\underset{k_2}{\leftarrow}} ENADH \qquad E \stackrel{k_7}{\xrightarrow{}} E_i$$
$$ENADH + F \stackrel{k_3}{\underset{k_4}{\leftarrow}} ENAD^+ + S \qquad ENAD^+ \stackrel{k_5}{\underset{k_6}{\leftarrow}} E + NAD^+$$

$$k_{1} = 6.2 \times 10^{-6} s^{-1} p M^{-1}$$

$$k_{2} = 33 s^{-1}$$

$$k_{3} = 2.2 \times 10^{-9} s^{-1} p M^{-1}$$

$$k_{4} = 7.9 \times 10^{-9} s^{-1} p M^{-1}$$

$$k_{5} = 227 s^{-1}$$

$$k_{6} = 6.1 \times 10^{-7} s^{-1} p M^{-1}$$

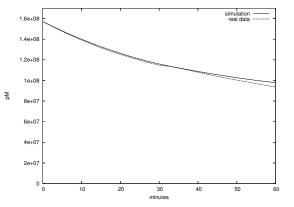
$$k_{7} = 1.9 \times 10^{-3} s^{-1}$$

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction


Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting

Simulation results

Sorbitol Dehydrogenase - simulation 1

concentration of NADH over time simulation (solid line) vs experiments (dashed line)

Initial (picomolar) concentrations $[E] = 210 \quad [F] = 4 \times 10^{11} \quad [NADH] = 1.6 \times 10^{8}$ $[S] = [NAD^{+}] = [ENADH] = [ENAD^{+}] = 0^{\circ}$ Reactions Barbuti Maggiolo-Schettini Milazzo Troina Outline Introduction Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison Examples and

An Alternative to

Gillespie's Algorithm for Simulating Chemical

pplications Probabilistic MultiSet Rewriting

Simulation results

Sorbitol Dehydrogenase - simulation 2

concentration of NADH over time simulation (solid line) vs experiments (dashed line)

Initial (picomolar) concentrations $[E] = 430 \quad [F] = 4 \times 10^{11} \quad [NADH] = 1.6 \times 10^{8}$ $[S] = [NAD^{+}] = [ENADH] \stackrel{\text{\tiny C}}{=} [ENAD^{+}] \stackrel{\text{\tiny C}}{=} 0^{\circ} \stackrel{\text{\tiny C}}{=} 0^{\circ}$ An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting

Simulation results

Conclusions

We have:

- introduced a probabilistic algorithm for simulating chemical reactions
- compared our algorithm with Gillespie's one
- shown simulation results

Advantages of our algorithm:

- based on the law of mass action
- scalable (on the measure unit of concentrations)

Prototype implementation:

http://www.di.unipi.it/~milazzo/biosims/

An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

Barbuti Maggiolo-Schettini Milazzo Troina

Outline

ntroduction

Simulating chemical reactions Gillespie's algorithm Our algorithm A comparison

Examples and applications

Probabilistic MultiSet Rewriting Simulation results