Approximation and uncertainty in models of biological systems

Paolo Milazzo

Dipartimento di Informatica, Università di Pisa, Italy

Torino - November 16, 2009

Introduction: Systems Biology

"Systems Biology is a comprehensive quantitative analysis of the manner in which all the components of a biological system interact functionally over time." Alan Aderem, Systems Biology: Its Practice and Challenges. Cell 121, 511-513 (2005)

The aim of current research in Systems Biology is to integrate the knowledge about single constituents of living organisms into *system view*.

The two main approaches to biological systems modelling:

Biomath Models are given as *differential equations* (or recurrence equations), and are studied by applying *analytical* and *numerical* techniques.

Bioinfo Biological systems are modelled as *stochastic concurrent* systems and analyzed by *simulation* and *model checking*.

The application of such tools is limited to small, well known pathways

イロト 不得下 イヨト イヨト

Introduction: The need of approximations

"Biological processes are profoundly complex, containing hundreds or thousands of component interactions. This leads to uncertainty i.e., precise information about probabilities, pathway structure, rate constants and similar parameters, is often unknown. Further, it is often impossible to assign precise point probabilities to each of the myriad constituents of an intricate biological pathway."

Iyengar M.S., McGuire M.F., Imprecise and Qualitative Probability in Systems Biology, ICSB, October 1-6, 2007

The two main problems in biological systems modelling are:

- complexity of the systems
- unavailability of (precise) kinetic parameters

Hence, the need of constructing approximated models

• by means (if possible) of conservative abstractions

Introduction: our approaches

We propose two approaches for the construction and analysis of models with approximations:

- Delay stochastic simulation
 - PhD thesis (in progress) by Giulio Caravagna Dipartimento di Informatica, Università di Pisa
- Probabilistic model checking with uncertainty on kinetic rates
 - PhD thesis (in progress) by Guido Scatena IMT Lucca Institute for Advanced Studies

Outline of the talk

Introduction

Delay Stochastic Simulation

- Delay Differential Equations (DDEs)
- A model of tumor growth
- Stochastic simulation of chemical reactions (Gillespie)
- Delay stochastic simulation of chemical reactions (Barrio et Al.)
- A purely delayed approach to stochastic simulation

3 Probabilistic Model Checking with Uncertain Kintetic Rates

- Probabilistic Reachability
- Probabilistic Reachability with Uncertainty
- Application to the Tumor Growth Model

References

12 N 4 12 N

5 / 49

Delays in models of biological systems

Delays may be used to model events for which the underlying dynamics

- either cannot be precisely observed
- or is too complex to be handled efficiently by analysis tools

A delay σ represents the time necessary for the underlying network of events to produce some result observable in the higher level model.

Mathematical modelling of biological systems with delays is mainly based on delay differential equations (DDEs)

• the derivative of the unknown function at time t is given in terms of the values of the function at time $t - \sigma$.

Tumor growth is based on cell divisions (or *mitosis*).

The cell cycle, the process between two mitosis, consists of 4 phases :

- I : interphase
 - G₁: pre-synthetic phase
 - S : replication of DNA
 - G₂: post-synthetic phase
- M : mitosis phase

We consider a DDE model of tumor growth proposed by *Villasana and Radunskaya*.

Tumor cells are classified in two populations:

- T_1 : cells in the interphase (phases G_1 , S and G_2);
- T_M : cells in the mitotic phase (M).

The model includes the following events:

- cell death in any phase (apotosis)
- ② interphase \rightarrow mitosis (one cell in T_I moves to T_M)
- **3** mitosis \rightarrow interphase (one cell in T_M becomes two in T_M)

The passage from interphase to mitosis takes much more time than the other events.

8 / 49

The DDEs model by Villasana and Radunskaya is:

$$\frac{dT_{I}}{dt} = 2a_{4}T_{M} - d_{2}T_{I} - a_{1}T_{I}(t - \sigma) \qquad T_{I}(t) = \phi_{0}(t) \text{ for } t \in [-\sigma, 0]$$
$$\frac{dT_{M}}{dt} = a_{1}T_{I}(t - \sigma) - d_{3}T_{M} - a_{4}T_{M} \qquad T_{M}(t) = \phi_{1}(t) \text{ for } t \in [-\sigma, 0]$$

Let $d = d_3 + a_4$, namely d is the rate at which mitotic cells disappear.

The number of cells that enter mitosis at time t depends on the number of cells that entered the interphase σ time units before, namely $T_I(t - \sigma)$.

This means that the interphase is associated with a duration σ (about one day in human cells).

In DDEs delays are modelled as dependencies form states of the system in the past.

Analytical study by varying a_1 and d gives five parameter regions:

When $\sigma = 0$:

- In R-I the tumor grows
- In other regions the tumor decays
- When $\sigma > 0$:
 - In R-I the tumor grows
 - In R-II the tumor decays
 - In other regions the tumor size oscillates

- N

These are some results of numerical simulation with $\sigma = 1$.

These are some results of numerical simulation with $\sigma = 10$.

Torino – November 16, 2009

э.

12 / 49

Stochastic simulation of chemical reactions (no delays)

Usual notation for chemical reactions:

$$\ell_1 S_1 + \ldots + \ell_\rho S_\rho \stackrel{k}{\underset{k_{-1}}{\rightleftharpoons}} \ell'_1 P_1 + \ldots + \ell'_\gamma P_\gamma$$

where:

- S_i, P_i are molecules (reactants)
- ℓ_i, ℓ'_i are stoichiometric coefficients
- k, k_{-1} are the kinetic constants

Stochastic simulation of chemical reactions (no delays) Gillespie's stochastic simulation algorithm (SSA):

- represents a chemical solution as a multiset of molecules
- computes the reaction rate a_{μ} by multiplying the kinetic constant by the number of possible combinations of reactants

Example: chemical solution with X_1 molecules S_1 and X_2 molecules S_2

reaction $R_1 : S_1 + S_2 \xrightarrow{k_1} 2S_1$ rate $a_1 = \binom{X_1}{1}\binom{X_2}{1}k_1 = X_1X_2k_1$ reaction $R_2 : 2S_1 \xrightarrow{k_2} S_1 + S_2$ rate $a_2 = \binom{X_1}{2}k_2 = \frac{X_1(X_1-1)}{2}k_2$

Given a set of reactions $\{R_1, \dots, R_M\}$ and a current time t

- The time t + τ at which the next reaction will occur is randomly chosen with τ exponentially distributed with parameter Σ^M_{ν=1} a_ν;
- The reaction R_{μ} that has to occur at time $t + \tau$ is randomly chosen with probability $\frac{a_{\mu}}{\sum_{\nu=1}^{M} a_{\nu}}$.

At each step t is incremented by τ and the chemical solution is updated.

14 / 49

Stochastic simulation of chemical reactions (no delays)

Delay stochastic simulation of chemical reactions

Algorithm proposed by Barrio et Al. in 2006.

Chemical reactions may be associated with delays: $S \xrightarrow{k,\sigma} P$

Similar to Gillespie's algorithm, but when a delayed reaction is chosen at time t:

- reactants are removed at time $t + \tau$
- products addition is scheduled for time $t + \tau + \sigma$

The delay σ is actually interpreted as a duration

• different interpretation w.r.t. DDEs

Delay stochastic simulation of chemical reactions

Given a set of reactions $\{R_1, \ldots, R_M\}$ and a current time t

- The time $t + \tau$ at which the next reaction will occur is randomly chosen with τ exponentially distributed with parameter $\sum_{\nu=1}^{M} a_{\nu}$;
- If there are no scheduled products additions in $[t, t + \tau]$:
 - Choose reaction R_{μ} with probability $\frac{a_{\mu}}{\sum^{M} a_{\mu}}$.
 - If R_{μ} is associated with a delay σ :
 - $\star\,$ remove the reactants and update t to $t+\tau\,$
 - Otherwise, execute R_{μ} as in Gillespie's algorithm and update t to $t + \tau$;
- If there is a scheduled product addition at $t + \tau'$ with $\tau' \leq \tau$:
 - add the products and update t to $t + \tau'$

• • = • • = •

Delay stochastic simulation of chemical reactions

Paolo Milazzo (Università di Pisa)

Let us reformulate the tumor growth example as a delay stochastic model.

Reactions:

$$T_M \xrightarrow{a_4} 2T_I \qquad T_I \xrightarrow{d_2} T_I \xrightarrow{d_1,\sigma} T_M \qquad T_M \xrightarrow{d_3}$$

where σ is the duration of the interphase

 $\bullet\,$ we will consider $\sigma=1$ and $\sigma=10$ as before

These are some results of delay stochastic simulation with $\sigma = 1$.

20 / 49

These are some results of delay stochastic simulation with $\sigma = 10$.

Stochastic simulation results are qualitatively similar to numerical simulation results:

• both approaches show tumor growth and eradication with similar parameters

But let us consider average tumor eradication times:

	DDE	DSSA
R-II with $\sigma = 1.0$	50	64
R-II with $\sigma = 10.0$	59	224
R-III with $\sigma = 1.0$	15	29
R-III with $\sigma = 10.0$	12	126
R-IV with $\sigma = 1.0$	238	302
R-IV with $\sigma = 10.0$	440	1072

In the delay stochastic model tumor eradication requires much more time...

Why this difference?

• in the delay stochastic model the tumor cell involved in a delayed reaction cannot die for σ time units!

This motivated us to develop a variant of the approach with a different interpretation of delays

• Delay as duration vs purely delayed

23 / 49

The Purely Delayed Approach

Chemical reactions may be associated with delays: $S \xrightarrow{k,\sigma} P$

Similar to Barrio's algorithm, but when a delayed reaction is chosen at time t:

- the simulation state is left unchanged
- the whole reaction is scheduled for time $t + \tau + \sigma$

The delay σ is actually interpreted as a delay

• interpretation more similar to that of DDEs

The Purely Delayed Approach

Given a set of reactions $\{R_1, \ldots, R_M\}$ and a current time t

- The time t + τ at which the next reaction will occur is randomly chosen with τ exponentially distributed with parameter Σ^M_{ν=1} a_ν;
- If there are no scheduled reactions in $[t, t + \tau]$:
 - Choose reaction R_{μ} with probability $\frac{a_{\mu}}{\sum_{m}^{M} a_{m}}$.
 - If R_{μ} is associated with a delay σ :
 - ***** update t to $t + \tau$
 - ★ schedule reaction R_{μ} for $t + \tau + \sigma$
 - Otherwise execute R_{μ} as in Gillespie's algorithm and update t to $t + \tau$;
- If there is a scheduled reaction R_{ν} at $t + \tau'$ with $\tau' \leq \tau$:
 - if R_{ν} is still applicable, apply R_{ν}
 - update t to $t + \tau'$

The Purely Delayed Approach

Paolo Milazzo (Università di Pisa)

Torino - November 16, 2009

Purely Delayed Model of Tumor growth

These are some results of purely delayed stochastic simulation with $\sigma = 1$.

Purely Delayed Model of Tumor growth

These are some results of purely delayed stochastic simulation with $\sigma = 10$.

Paolo Milazzo (Università di Pisa)

Torino – November 16, 2009

28 / 49

Purely Delayed Model of Tumor growth

Again, stochastic simulation results are qualitatively similar to previous results:

• all of the three approaches show tumor growth and eradication with similar parameters

But let us consider again average tumor eradication times:

	DDE	DSSA	PureDelay
R-II with $\sigma = 1.0$	50	64	51
R-II with $\sigma = 10.0$	59	224	67
R-III with $\sigma = 1.0$	15	29	17
R-III with $\sigma=$ 10.0	12	126	20
R-IV with $\sigma = 1.0$	238	302	214
R-IV with $\sigma = 10.0$	440	1072	248

Some considerations

The purely delayed approach is not in general better than Barrio's approach

• it depends on the phenomena to be modelled

Optimal solution: allow both the approaches to be used in models

Moreover, the purely delay approach has to be improved:

- Correctness issue: the reactants of a scheduled reaction may disappear and be recreated
- Performance issue: the same reaction can be scheduled several times on the same reactants

Further Developments

We are developing a CCS-like process algebra that includes stochasticity and delays as in the simulation algorithms

not ready for presentation...

12 N 4 12 N

Outline of the talk

Introduction

Delay Stochastic Simulation

- Delay Differential Equations (DDEs)
- A model of tumor growth
- Stochastic simulation of chemical reactions (Gillespie)
- Delay stochastic simulation of chemical reactions (Barrio et Al.)
- A purely delayed approach to stochastic simulation

Probabilistic Model Checking with Uncertain Kintetic Rates

- Probabilistic Reachability
- Probabilistic Reachability with Uncertainty
- Application to the Tumor Growth Model

References

4 1 1 4 1 1 1

Uncertain kinetic rates

Kinetic parameters of (bio)chemical reactions are often very difficult to estimate precisely

• the rate of a reaction depends many physical parameters: temperature, pH, volumes, etc...

Moreover, some parameters cannot be measured at all in laboratory

• inferred (with rough approximations) from similar reactions

The approach we propose consists in:

- replacing kinetic constants with intervals of possible values
- applying probabilistic model checking to obtain conservative upper and lower bounds for probabilistic reachability properties

We expolit abstract interpretation techniques to prove the correctness of our approach

Let us consider the following simple example:

$$M_{ex} = \{ R_1 : X Y \xrightarrow{3} Z R_2 : X W \xrightarrow{1} W \}$$

with initial state $s_0 = 2X 2Y 10W$.

We can easily construct the following Labelled Transition System (LTS):

where the transition rate is computed as in Gillespie's algorithm.

Let us consider the following simple example:

$$M_{ex} = \{ R_1 : X Y \xrightarrow{3} Z R_2 : X W \xrightarrow{1} W \}$$

with initial state $s_0 = 2X 2Y 10W$.

We can translate the LTS into a Discrete Time Markov Chain (DTMC):

We consider only sequentiality of events and we loose information on the elapsing of time.

Paolo Milazzo (Università di Pisa)

Let us consider the following simple example:

$$M_{ex} = \{ R_1 : X Y \xrightarrow{3} Z R_2 : X W \xrightarrow{1} W \}$$

with initial state $s_0 = 2X 2Y 10W$.

The DTMC can be used for probabilistic reachability analysis:

Example: $P(\text{obtaining two } Z) = Reach(s_3) = 3/8 \times 3/13 = 9/104$

Our approach:

- we allow intervals of possible values to be used in place of kinetic constants
- a model of chemical reactions with intervals (abstract model) represents an infinite set of models of reactions with kinetic constants (concrete models)

For example, the following abstract model

$$M_{ex}^{\circ} = \{ R_1^{\circ} : X Y \xrightarrow{[1,5]} Z \qquad R_2^{\circ} : X W \xrightarrow{[1,5]} W \}$$

includes the previously considered concrete model

$$M_{\text{ex}} = \{ R_1 : X Y \xrightarrow{3} Z R_2 : X W \xrightarrow{1} W \}$$

Let us consider the following simple example:

$$M_{ex}^{\circ} = \{ R_1^{\circ} : X Y \xrightarrow{[1,5]} Z \qquad R_2^{\circ} : X W \xrightarrow{[1,5]} W \}$$

with initial state $s_0 = 2X 2Y 10W$.

We can easily construct the following Labelled Transition System (LTS):

where the abstract transition rate is computed as in Gillespie's algorithm on the interval endpoints.

Paolo Milazzo (Università di Pisa)

Let us consider the following simple example:

$$M_{\text{ex}}^{\circ} = \{ R_1^{\circ} : X Y \xrightarrow{[1,5]} Z \qquad R_2^{\circ} : X W \xrightarrow{[1,5]} W \}$$

with initial state $s_0 = 2X 2Y 10W$.

We can translate the LTS into a Interval Markov Chain (IMC):

Let us consider the following simple example:

$$M_{\text{ex}}^{\circ} = \{ R_1^{\circ} : X Y \xrightarrow{[1,5]} Z \qquad R_2^{\circ} : X W \xrightarrow{[1,5]} W \}$$

with initial state $s_0 = 2X 2Y 10W$.

The IMC can be used for probabilistic reachability analysis:

Example: $P(\text{obtaining two } Z) = Reach(s_3) =$ = $[4/104, 1/2] \times^{Int} [1/51, 1/3] = [1/1326, 1/6]$

In a DTMC the outgoing transitions of each state are associated with a probability distribution

In a IMC the outgoing transitions of each state may be associated with a infinite number of probability distributions

We have proved that the probability distributions of states of a concrete model M are included in those of the corresponding abstract model M°

 abstract probabilistic reachability gives correct upper- and lower-bounds

We have applied standard abstract interpretation techniques:

$$\mathcal{M}^{\circ} \xrightarrow{LTS^{\circ}} \mathcal{L}TS^{\circ} \xrightarrow{\mathcal{H}^{\circ}} \mathcal{IMC}$$

$$\uparrow^{\alpha} \qquad \uparrow^{\alpha_{\mathcal{L}TS}} \qquad \uparrow^{\alpha_{\mathcal{MC}}}$$

$$\mathcal{M} \xrightarrow{LTS} \mathcal{L}TS \xrightarrow{\mathcal{H}} \mathcal{D}T\mathcal{MC}$$

Probabilistic reachability analysis becomes more complex when the model consists of more than two chemical reactions

• We have followed a standard extreme distributions approach (Fecher et Al.) that requires translation of the IMC into a Markov Decision Process (MDP)

We have developed a translator from chemical reactions with uncertain rates into PRISM input language

- AMSR2PRISM translator, http://www.di.unipi.it/msvbio/
- PRISM model checker,

http://www.prismmodelchecker.org

Paolo Milazzo (Università di Pisa)

Probabilistic Reachability in the Tumor Growth Model Let us reformulate the tumor growth example without delays.

Reactions:

In this case we have only two parameter regions:

- In R-I the tumor grows
- In R-II the tumor decays

44 / 49

Paolo Milazzo (Università di Pisa)

Torino - November 16, 2009

We consider three abstract models of tumor growth.

We consider three abstract models of tumor growth.

Abstract model M_1° :

$$T_M \xrightarrow{0.5} 2T_I$$

$$T_I \xrightarrow{[0.8,0.9]} T_M$$

$$T_I \xrightarrow{0.3}$$

$$T_M \xrightarrow{[0.05,0.1]}$$

We consider three abstract models of tumor growth.

Abstract model M_1° :

 $T_{M} \xrightarrow{0.5} 2T_{I}$ $T_{I} \xrightarrow{[0.8,0.9]} T_{M}$ $T_{I} \xrightarrow{0.3}$ $T_{M} \xrightarrow{[0.05,0.1]}$

Abstract model M_2° : $T_M \xrightarrow{0.5} 2T_I$

$$T_I \xrightarrow{[0.8,0.9]} T_M$$

$$T_I \xrightarrow{0.3} T_M \xrightarrow{[1,1.4]}$$

0 0

Paolo Milazzo (Università di Pisa)

We consider three abstract models of tumor growth.

Abstract model M_1° :

 $T_M \xrightarrow{0.5} 2T_I$ $T_I \xrightarrow{[0.8,0.9]} T_M$ $T_I \xrightarrow{0.3}$ $T_M \xrightarrow{[0.05,0.1]}$

Abstract model M_2° : $T_M \xrightarrow{0.5} 2T_I$ $T_I \xrightarrow{[0.8,0.9]} T_M$ $T_I \xrightarrow{0.3}$ $T_M \xrightarrow{[1,1.4]}$

Abstract model M_3° :

$$T_{M} \xrightarrow{0.5} 2T_{I}$$

$$T_{I} \xrightarrow{[0.8,0.9]} T_{M}$$

$$T_{I} \xrightarrow{0.3}$$

$$T_{M} \xrightarrow{[0.005,2]}$$

Abstract model M_1° :

 $T_M \xrightarrow{0.5} 2T_I$ $T_I \xrightarrow{[0.8,0.9]} T_M$ $T_I \xrightarrow{0.3}$ $T_M \xrightarrow{[0.05,0.1]}$

Abstract model M_2° : $T_M \xrightarrow{0.5} 2 T_I$ $T_I \xrightarrow{[0.8,0.9]} T_M$ $T_I \xrightarrow{0.3}$ $T_M \xrightarrow{[1,1.4]}$

We consider three abstract models of tumor growth.

We consider an initial population consisting of $10 T_M$ and $10 T_I$.

Abstract model M_3° : $T_M \xrightarrow{0.5} 2T_I$ $T_I \xrightarrow{[0.8,0.9]} T_M$ $T_I \xrightarrow{0.3}$ $T_M \xrightarrow{[0.005,2]}$

Paolo Milazzo (Università di Pisa)

Some Considerations

Our approach gives meaninful answers when the sensitivity of the system on variation of the uncertain parameters is not too high

The approach can also be used for parameter estimation by iteratively

- constructing an abstract model with wide intervals
- Checking properties known to hold
- \bigcirc refine the model until model checking gives [1,1] as result

The efficiency of the approach depends very much on the number of uncertain parameters

• the translation of an IMC into a MDP is exponential in the number of parameter intervals

超す イヨト イヨト ニヨ

47 / 49

Further Developments

We are working at a continuous time approach, in which the elapsing of time is taken into account

References

R. Barbuti, G. Caravagna, A. Maggiolo-Schettini and P. Milazzo. **On the interpretation of delays in delay stochastic simulation of biological systems**. Proc. of CompMod'09, EPTCS, in press.

R. Barbuti, F. Levi, P. Milazzo and G. Scatena. **Probabilistic Model Checking of Biological Systems with Uncertain Kinetic Rates**. Int. Conference on Reachability Problems (RP'06), LNCS 5797, pp. 64-78, 2009.

周 と く ヨ と く ヨ と 二 ヨ