
Dynamics of Biological Systems
Part II - Stochastic simulation
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Introduction

The modelling of chemical reactions using deterministic rate laws
(such as the law of mass action) has proven extremely successful in
both chemistry and biochemistry for many years

Rate laws consider chemical reactions to be macroscopic, continuous
and deterministic

These are evidently simplifications, as it is well understood that
chemical reactions involve discrete, random collisions between
individual molecules

As we consider smaller and smaller systems (such as intracellular
reactions) the valididy of a continuous approach becomes even more
tenuous
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Introduction

The fundamental principle behind stochastic modelling is the idea that
molecular reactions are essentially random processes

it is impossible to say with complete certainty the time at which the
next reaction within a volume will occur

In systems with a large number of interacting molecules, the randomness
of this behaviour averages out so that the overall macroscopic state of the
system becomes highly predictable

It is this property of large scale random systems that enables a
deterministic approach to be adopted

Paolo Milazzo (Università di Pisa) Dynamics of biological systems 3 / 18



Gillespie’s Stochastic Approach

Gillespie’s Stochastic Simulation Algorithm (SSA) is an exact procedure
for simulating the time evolution of a chemical reacting system by taking
proper account of the randomness inherent in such a system.

Given a set of reactions R = {R1, . . . ,Rn}, the SSA:

assumes a stochastic reaction constant cµ for each chemical reaction
Rµ ∈ R
cµdt is the probability that a particular combination of reactant
molecules of Rµ react in an infinitesimal time interval dt
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Gillespie’s Stochastic Approach

The constant cµ is used to compute the propensity (or stochastic rate) of
Rµ to occur in the whole chemical solution, denoted aµ, as follows:

aµ = hµcµ

where hµ is the number of distinct molecular reactant combinations.

Let Rµ be

`1S1 + . . .+ `ρSρ
c−→ `′1P1 + . . .+ `′γPγ

In accordance with standard combinatorics, the number of distint reactant
combinations of Rµ in a solution with Xi molecules of Si , with 1 ≤ i ≤ ρ,
is given by

hµ =

ρ∏
i=1

(
Xi

`i

)
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Gillespie’s Stochastic Approach
Example:
solution with X1 molecules S1 and X2 molecules S2

reaction R1 : S1 + S2 → 2S1

h1 =
(X1

1

)(X2
1

)
= X1X2

a1 = X1X2c1

reaction R2 : 2S1 → S1 + S2

h2 =
(X1

2

)
= X1(X1−1)

2

a2 = X1(X1−1)
2 c2

Note that propensity aµ is similar, for suitable kinetic constants, to the
mass action rates:

For R1 with k1 = c1, the law of mass action gives k1[S1][S2] ≈ a1

For R2 with k2 = c2/2, the law of mass action gives k2[S1]2 ≈ a2
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Gillespie’s Stochastic Approach

Propensity aµ is used in Gillespie’s approach as the parameter of an
exponential probability distribution modelling the time between subsequent
occurrences of reactions Rµ.

Exponential distrubution is a continuous probability distribution (on
[0,∞]) describing the timing between events in a Poisson process, namely
a process in which events occur continuously and independently at a
constant average rate (taken as parameter).

The probability density function f and the cumulative distribution function
F of an exponential distribution with parameter λ are as follows:

f (x) =

{
λe−λx x ≥ 0

0 x < 0
F (x) =

{
1− e−λx x ≥ 0

0 x < 0
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Gillespie’s Stochastic Approach

Probability density function Cumulative distribution function

The mean of an exponentially distributed variable with parameter λ is 1
λ .
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Gillespie’s Stochastic Approach

Two important properties of the exponential distribution hold:

The exponential distribution is memoryless:
P(X > t + s | X > s) = P(X > t). This allows a simulation
algorithm in which the expoenential distribution is used to forget
about the history of the simulation

Let X1, . . . ,Xn be independent exponentially distributed random
variables with parameters λ1, . . . , λn. Then X = min(X1, . . . ,Xn) is
also exponentially distributed with parameter λ = λ1 + . . .+ λn. This
allows a simulation algorithm to use a unique exponential distribution
for the whole set of reactions to be simulated
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Gillespie’s Stochastic Simulation Algorithm (SSA)

Given:

a set of molecular species {S1, . . . ,Sn}
initial numbers of molecules of each species {X1, . . .Xn} with Xi ∈ IN

a set of chemical reactions {R1, . . .RM}
Gillespie’s algorithm computes a possible evolution of the system
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Gillespie’s algorithm

The state of the simulation:

is a vector representing the multiset of molecules in the chemical
solution (initially [X1, . . . ,Xn])

a real variable t representing the simulation time (initially t = 0)

The algorithm iterates the following steps until t reaches a final value tstop.

1 The time t + τ at which the next reaction will occur is randomly
chosen with τ exponentially distributed with parameter

∑M
ν=1 aν ;

2 The reaction Rµ that has to occur at time t + τ is randomly chosen
with probability aµdt.

At each step t is incremented by τ and the multiset representing the
chemical solution is updated.
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ODEs vs SSA
Let us compare the deterministic and stochastic approach with some
examples of (bio)chemical reactions:

First example: Enzymatic activity: E + S
0.3



10.0
ES

0.01−−→ E + P

Starting with: 100E and 100S .

ODEs SSA
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ODEs vs SSA
Second example: Lotka reactions:

Y1
10→ 2Y1

Y1 + Y2
0.01→ 2Y2

Y2
10→ Z

Starting with 1000Y1 and 1000Y2

ODEs
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ODEs vs SSA
Second example: Lotka reactions:

Y1
10→ 2Y1

Y1 + Y2
0.01→ 2Y2

Y2
10→ Z

Starting with 1000Y1 and 900Y2 (slight perturbation).

ODEs
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ODEs vs SSA
Second example: Lotka reactions:

Y1
10→ 2Y1

Y1 + Y2
0.01→ 2Y2

Y2
10→ Z

Starting with 1000Y1 and 1000Y2

SSA
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ODEs vs SSA
Third example: Negative feedback loop:

G1
10−→ G1 + P1 P1 + G2

10


2

P1G2 P1
1−→

G2
10000−−−→ G2 + P2 P2 + G3

0.1


20

P2G3 P2
100−−→

G3
10−→ G3 + P3 P3 + G1

10


20

P3G1 P3
1−→

Starting with Gi = 1 and Pi = 0

ODEs SSA
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Computational cost of Gillespie’s algorithm

The computational cost of this detailed stochastic simulation algorithm
might be very high

the key issue is that the time elapsing between two reactions can be
very small

The algorithm becomes very inefficient when:

there are large number of molecules

kinetic constant are high

Computational cost is the main disadvantage of stochastic simulation with
respect to ODEs
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Computational cost of Gillespie’s algorithm

Several approximated versions of Gillespie’s algorithm aimed at reducing
the computational cost have been proposed:

Gibson and Bruck proposed the use of some efficient data structure to
improve the choice of the reaction to happen at each step

Gillespie proposed the τ -leap method: the key idea is to allow for
more reactions to take place in a single (longer) time interval, under
the condition that the propensities do not change too much in that
interval.

Hybrid simulation is a technique which combines ODEs with
stochastic simulation: ODEs are applied to molecules occurring in big
numbers, stochastic simulation to molecules occurring in small
numbers
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