A Probabilistic Calculus for Molecular Systems

Roberto Barbuti, Stefano Cataudella, Andrea Maggiolo-Schettini, Paolo Milazzo, and Angelo Troina

Department of Computer Science, University of Pisa (Italy)

Introduction

- Formal models for systems of interactive components can be easily adapted for the modeling of biochemical phenomena
- The modeling of biochemical reactions allows:
 - 1. the development of simulators
 - 2. the model checking of properties of biochemical systems
 - 3. (hopefully) the prediction of some unknown kinetic constants
- In this work:
 - 1. we introduce a probabilistic calculus for molecular reactions
 - 2. we use the calculus for modeling an example of real enzymatic activity
 - 3. we report some experimental results of simulation and model checking

A calculus of solutions (1)

Let \mathcal{E} be an infinite set of elementary particles:

(molecules) $m ::= X \mid m - m$ (solutions) $S ::= \mathbf{0} \mid m \mid S, S$

where X is any particle of \mathcal{E} and 0 is the empty solution.

• The structural congruence for solutions \equiv is the smallest equivalence relation such that:

$$S_1, S_2 \equiv S_2, S_1 \qquad (S_1, S_2), S_3 \equiv S_1, (S_2, S_3) \qquad S, 0 \equiv S$$
$$m_1 - m_2 \equiv m_2 - m_1 \qquad (m_1 - m_2) - m_3 \equiv m_1 - (m_2 - m_3)$$

A calculus of solutions (2)

$$m ::= X \mid m-m$$

$$S ::= 0 \mid m \mid S, S$$

$$S_{1}, S_{2} \equiv S_{2}, S_{1} \qquad S, 0 \equiv S$$

$$(S_{1}, S_{2}), S_{3} \equiv S_{1}, (S_{2}, S_{3})$$

$$m_{1}-m_{2} \equiv m_{2}-m_{1}$$

$$(m_{1}-m_{2})-m_{3} \equiv m_{1}-(m_{2}-m_{3})$$

A solution can be considered as a multi-set of molecules
 □ For instance, ∈ can be defined as follows:

$$m \in S \iff \exists S' \text{ s.t. } m, S' \equiv S$$

Probabilistic rules

• A *probabilistic rule* (or *reaction*) is a triple (S,P,S')

where S and S' are solutions and $P\,$ is a total function from the infinite set of molecules into $[0,\!1[$

• Examples (assume P(m) = 0 if not specified):

$$R_1 = (\{a, b\}, \{a \mapsto \frac{2}{3}, b \mapsto \frac{2}{3}\}, \{a - b\})$$

$$R_2 = (\{a - b\}, \{a - b \mapsto \frac{1}{2}\}, \{a, b\})$$

• A *system* is a pair (S,\mathcal{R}) where S is a solution and \mathcal{R} is a finite set of probabilistic rules

• Example:
$$(\{a,b\},\{R_1,R_2\})$$

Well-formed set of rules

• A set of rules $\mathcal{R} = \{(S_1, P_1, S'_1), \dots, (S_n, P_n, S'_n)\}$ is well-formed if it satisfies the following:

• for all
$$(S_i, P_i, S'_i) \in \mathcal{R}$$

 $S_i \cap S'_i = \emptyset$
 $\#(S_i) = \#(S'_i)$
 $P_i(m) > 0$ if $m \in S_i$, $P_i(m) = 0$ otherwise
if $m \equiv m'$ then $P_i(m) = P_i(m')$

 \Box for any molecule m

$$0 < P^{I}(m) \stackrel{def}{=} (1 - \sum_{i=0}^{n} P_{i}(m))$$

• for all $i, j \in 1, ..., n$ if $i \neq j$ then either $S_i \not\equiv S_j$ or $S'_i \not\equiv S'_j$

Example of well-formed set of rules

$$\mathcal{R} = \{R_1, R_2\} \qquad \begin{array}{l} R_1 = (\{a, b\}, \{a \mapsto \frac{2}{3}, b \mapsto \frac{2}{3}\}, \{a - b\}) \\ R_2 = (\{a - b\}, \{a - b \mapsto \frac{1}{2}\}, \{a, b\}) \end{array}$$

• for all
$$(S_i, P_i, S'_i) \in \mathcal{R}$$

 $S_i \cap S'_i = \emptyset$
 $\#(S_i) = \#(S'_i)$
 $P_i(m) > 0$ if $m \in S_i$, $P_i(m) = 0$ otherwise
if $m \equiv m'$ then $P_i(m) = P_i(m')$

 \Box for any molecule m

$$0 < P^{I}(m) \stackrel{def}{=} (1 - \sum_{i=0}^{n} P_{i}(m))$$

• for all $i, j \in 1, ..., n$ if $i \neq j$ then either $S_i \not\equiv S_j$ or $S'_i \not\equiv S'_j$

Step semantics

Given \mathcal{R} , we denote with \mathcal{R}^{I} the (not well-formed) set of rules:

 $\mathcal{R}^{I} = \{(\{m\}, \{m \mapsto P^{I}(m)\}, \{m\}) \mid m \text{ is a molecule}\}$

• The following recursive algorithm Step(S) describes how a system (S,\mathcal{R}) executes a step (it also returns the solution for the next step):

Molecular Probabilistic Transition System (1)

- Given two solutions S,S' and a set of rules R, it is possible to infer from the algorithm the probability of S to be transformed into S'
 p(S,S',R)
- Moreover, it is possible to build a probabilistic transition system:

Molecular Probabilistic Transition System (2)

- Given a system (S,\mathcal{R}) the *Molecular Probabilistic Transition System* (*MPTS*) of the system is a tuple $M = (Q,S,\mathcal{R},\delta,\pi)$ where:
 - Q is a finite set of solutions of density equal to #(S)
 - S is the initial solution (the solution of the system)
 - \mathcal{R} is the set of rules of the system
 - $\delta \subseteq Q \ge Q$ is a finite set of transitions
 - $\pi: \delta \to [0,1]$ is a probability function such that if $e = (S_1,S_2) \in \delta$, then $\pi(e) = p(S_1,S_2,\mathcal{R})$
- (Correctness) Given a system (S,\mathcal{R}) and its MPTS $M=(Q,S,\mathcal{R},\delta,\pi)$, there is $e = (S_1,S_2) \in \delta$ with $\pi(e) = p(S_1,S_2,\mathcal{R})$ if and only if there is $S_2 = Step(S_1)$

Example of MPTS

System:
$$(S = \{a, b\}, \mathcal{R} = \{R_1, R_2\})$$

where $R_1 = (\{a, b\}, \{a \mapsto \frac{2}{3}, b \mapsto \frac{2}{3}\}, \{a-b\})$
 $R_2 = (\{a-b\}, \{a-b \mapsto \frac{1}{2}\}, \{a, b\})$

Application: Sorbitol dehydrogenase

1.

$$E + NADH \stackrel{k_1}{\rightleftharpoons} E - NADH$$
$$E - NADH + F \stackrel{k_3}{\rightleftharpoons} E - NAD^+ + S \qquad E - NAD^+ \stackrel{k_5}{\rightleftharpoons} E + NAD^+$$

Simulation (1)

Simulator implemented in SICStus Prolog

- Given a system (S,R) the simulator
 - executes S' = Step(S)
 - \Box gives the concentrations of the molecules in S' as output
 - iterates on (S',\mathcal{R})
- Sorbitol dehydrogenase: initial concentrations

E	S	F	NADH	NAD+	E-NADH	E-NAD+
10	100	100	100	100	0	0

Simulation (2)

Model checking (1)

- A probabilistic model checker can be easily used for verifying properties of a Molecular Probabilistic Transition System
- We used the PRISM model checker for verifying properties of the sorbitol dehydrogenase
- Properties have been specified in the CSL language:

$$\phi ::= true \mid false \mid a \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \mathcal{P}_{\sim p}[\psi] \mid \mathcal{S}_{\sim p}[\psi]$$

$$\psi ::= X\phi \mid \phi \mathcal{U}^I \phi \mid \phi \mathcal{U} \phi$$

Sorbitol dehydrogenase: initial concentrations

S	F	NADH	NAD+	E-NADH	E-NAD+
25	25	25	25	0	0

Model checking (2)

Probability that the concentration of S becomes less than 10 in less then 5000 steps by varying the initial concentration of E

$$\mathcal{P}_{=?}$$
 [true $\mathcal{U}^{<=5000}[S] <= 10$]

Model checking (3)

 Probability that the concentration of E reaches 0 in less than 5000 steps by varying its initial value

$$\mathcal{P}_{=?}$$
 [true $\mathcal{U}^{<=5000}[E]=0$]

Conclusions

- We have developed a framework to model biochemical reactions
 - we have implemented a simulator
 - we have used a model checker (PRISM) to verify properties of reactions
- The main idea is to approximate the speed of reactions by probabilities of rule applications
- The choice of the right probabilities is critical !!
- Experiments have suggested to revise the semantics of the calculus to have a better approximation

Future work

- Expected improvements (short term):
 - the model will be revised in order to obtain better quantitative results
 - the choice of the probabilities will not be done by the modeler but probabilities will be derived automatically by kinetic constants
 - the semantics will be given in SOS style
 - some results of biological correctness will be proved
- Expected improvements (mid/long term):
 - more complex examples of real biological systems will be simulated and verified
 - some additional operators will be considered
 - the problem of predicting unknown kinetic constants will be faced

THE END...

Computing probabilities...

$$p(m) = \frac{[m]_S}{|S|} \qquad p(R_{i,1 < =i < =n} | m) = \frac{P_i(m)}{P_1(m) + \dots + P_n(m)}$$

$$p(S, S', \mathcal{R}) = \begin{cases} 1 & \text{if } S = \emptyset = S' \\ 0 & \text{if } \#(S) \neq \#(S') \\ \sum_{i=1}^{k} p(m_i) \sum_{j=1}^{n_i} p(R_{i,1 < =i < =n_i} | m_i) p(S \setminus S_j, S' \setminus S'_j, \mathcal{R}) & \text{otherwise} \end{cases}$$

Model checking (1)

- A probabilistic model checker can be easily used for verifying properties of a Molecular Probabilistic Transition System
- We used the PRISM model checker for verifying properties of the sorbitol dehydrogenase
- Properties have been specified in the CSL language: $\phi ::= true \mid false \mid a \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \mathcal{P}_{\sim p}[\psi] \mid \mathcal{S}_{\sim p}[\psi]$ $\psi ::= X\phi \mid \phi \mathcal{U}^{I}\phi \mid \phi \mathcal{U}\phi$
- Sorbitol dehydrogenase: initial concentrations

S	F	NADH	NAD+	E-NADH	E-NAD+
25	25	25	25	0	0