A Probabilistic Calculus for Molecular Systems

Roberto Barbuti, Stefano Cataudella, Andrea Maggiolo-Schettini, Paolo Milazzo, and Angelo Troina

Department of Computer Science, University of Pisa (Italy)
Introduction

- Formal models for systems of interactive components can be easily adapted for the modeling of biochemical phenomena.

- The modeling of biochemical reactions allows:
 1. the development of simulators
 2. the model checking of properties of biochemical systems
 3. (hopefully) the prediction of some unknown kinetic constants

- In this work:
 1. we introduce a probabilistic calculus for molecular reactions
 2. we use the calculus for modeling an example of real enzymatic activity
 3. we report some experimental results of simulation and model checking
A calculus of solutions (1)

Let \mathcal{E} be an infinite set of elementary particles:

(molecules) $m ::= X \mid m - m$

(solutions) $S ::= 0 \mid m \mid S, S$

where X is any particle of \mathcal{E} and 0 is the empty solution.

The *structural congruence* for solutions \equiv is the smallest equivalence relation such that:

$S_1, S_2 \equiv S_2, S_1$ \quad (S_1, S_2), S_3 \equiv S_1, (S_2, S_3)$ \quad $S, 0 \equiv S$

$m_1 - m_2 \equiv m_2 - m_1$ \quad $(m_1 - m_2) - m_3 \equiv m_1 - (m_2 - m_3)$
A solution can be considered as a multi-set of molecules
- For instance, \in can be defined as follows:

\[
m \in S \iff \exists S' \text{ s.t. } m, S' \equiv S
\]
A probabilistic rule (or reaction) is a triple (S, P, S')
where S and S' are solutions and P is a total function from the
infinite set of molecules into $[0,1[$

Examples (assume $P(m) = 0$ if not specified):

$R_1 = (\{a, b\}, \{a \mapsto \frac{2}{3}, b \mapsto \frac{2}{3}\}, \{a-b\})$
$R_2 = (\{a-b\}, \{a-b \mapsto \frac{1}{2}\}, \{a, b\})$

A system is a pair (S, \mathcal{R}) where S is a solution and \mathcal{R} is a finite set
of probabilistic rules

Example: $\left(\{a, b\}, \{R_1, R_2\}\right)$
A set of rules $\mathcal{R} = \{(S_1, P_1, S'_1), \ldots, (S_n, P_n, S'_n)\}$ is well-formed if it satisfies the following:

- for all $(S_i, P_i, S'_i) \in \mathcal{R}$

 $S_i \cap S'_i = \emptyset$

 $\#(S_i) = \#(S'_i)$

 $P_i(m) > 0$ if $m \in S_i$, $P_i(m) = 0$ otherwise

 if $m \equiv m'$ then $P_i(m) = P_i(m')$

- for any molecule m

 $0 < P^I(m) \overset{\text{def}}{=} (1- \sum_{i=0}^{n} P_i(m))$

- for all $i, j \in 1, \ldots, n$ if $i \neq j$ then either $S_i \neq S_j$ or $S'_i \neq S'_j$
Example of well-formed set of rules

\[\mathcal{R} = \{R_1, R_2\} \]

\[R_1 = (\{a, b\}, \{a \mapsto \frac{2}{3}, b \mapsto \frac{2}{3}\}, \{a-b\}) \]

\[R_2 = (\{a-b\}, \{a-b \mapsto \frac{1}{2}\}, \{a, b\}) \]

- for all \((S_i, P_i, S'_i) \in \mathcal{R}\)
 \[S_i \cap S'_i = \emptyset \]
 \[\#(S_i) = \#(S'_i) \]
 \[P_i(m) > 0 \text{ if } m \in S_i, \text{ } P_i(m) = 0 \text{ otherwise} \]
 \[\text{if } m \equiv m' \text{ then } P_i(m) = P_i(m') \]

- for any molecule \(m\)
 \[0 < P^I(m) \overset{\text{def}}{=} (1 - \sum_{i=0}^{n} P_i(m)) \]

- for all \(i, j \in 1, \ldots, n\) if \(i \neq j\) then either \(S_i \neq S_j\) or \(S'_i \neq S'_j\)
Step semantics

- Given \(\mathcal{R} \), we denote with \(\mathcal{R}^I \) the (not well-formed) set of rules:
 \[
 \mathcal{R}^I = \{ (\{m\}, \{m \mapsto P^I(m)\}, \{m\}) \mid m \text{ is a molecule} \}
 \]

- The following recursive algorithm \(\text{Step}(S) \) describes how a system \((S, \mathcal{R})\) executes a step (it also returns the solution for the next step):

1. choose \(m \) in \(S \)

2. let \(R_1, \ldots, R_n \) be the only rules in \(\mathcal{R} \cup \mathcal{R}^I \)
such that \(R_i = (S_i, P_i, S'_i), m \in S_i, S_i \subseteq S \)

3. choose \(R = (S_R, P_R, S'_R) \) in \(R_1, \ldots, R_n \)
 with probabilities \(\frac{P_1(m)}{\sum_{i=1}^n P_i(m)}, \ldots, \frac{P_n(m)}{\sum_{i=1}^n P_i(m)} \)

4. if \(S \setminus S_R = \emptyset \) then return \(S'_R \)
 else return \((S'_R \cup \text{Step}(S \setminus S_R)) \)

- RANDOMLY CHOOSE A MOLECULE \(m \) IN \(S \)

- CONSIDER ONLY THE RULES (IN \(\mathcal{R} \cup \mathcal{R}^I \)) THAT CAN BE APPLIED TO \(m \) IN \(S \)

- RANDOMLY CHOOSE ONE OF THESE RULES AFTER NORMALIZING THEIR PROBABILITIES

- RECURSIVELY EXECUTE ON THE REST OF THE SOLUTION
Molecular Probabilistic Transition System (1)

- Given two solutions S, S' and a set of rules \mathcal{R}, it is possible to infer from the algorithm the probability of S to be transformed into S'

 \[p(S, S', \mathcal{R}) \]

- Moreover, it is possible to build a probabilistic transition system:

```plaintext
\[ p(S, S', \mathcal{R}) \]
\[ p(S', S, \mathcal{R}) \]
```
Molecular Probabilistic Transition System (2)

- Given a system \((S, \mathcal{R})\) the **Molecular Probabilistic Transition System (MPTS)** of the system is a tuple \(M = (Q, S, \mathcal{R}, \delta, \pi)\) where:
 - \(Q\) is a finite set of solutions of density equal to \(\#(S)\)
 - \(S\) is the initial solution (the solution of the system)
 - \(\mathcal{R}\) is the set of rules of the system
 - \(\delta \subseteq Q \times Q\) is a finite set of transitions
 - \(\pi : \delta \to [0,1]\) is a probability function such that if \(e = (S_1, S_2) \in \delta\), then \(\pi(e) = p(S_1, S_2, \mathcal{R})\)

- (Correctness) Given a system \((S, \mathcal{R})\) and its MPTS \(M = (Q, S, \mathcal{R}, \delta, \pi)\), there is \(e = (S_1, S_2) \in \delta\) with \(\pi(e) = p(S_1, S_2, \mathcal{R})\) if and only if there is \(S_2 = Step(S_1)\)
Example of MPTS

System: $(S = \{a, b\}, \mathcal{R} = \{R_1, R_2\})$

where

$R_1 = (\{a, b\}, \{a \mapsto \frac{2}{3}, b \mapsto \frac{2}{3}\}, \{a-b\})$

$R_2 = (\{a-b\}, \{a-b \mapsto \frac{1}{2}\}, \{a, b\})$
Application: Sorbitol dehydrogenase

\[E + NADH \xrightarrow{k_1} E - NADH \]

\[E - NADH + F \xrightarrow{k_3} E - NAD^+ + S \quad E - NAD^+ \xrightarrow{k_5} E + NAD^+ \]

\[\mathcal{R} \]

1. (\{E,NADH\}, \{(E,0.468),(NADH,0.862)\}, \{E-NADH\})
2. (\{E-NADH,F\}, \{(E-NADH,0.001),(F,0.002)\}, \{E-NAD^+,S\})
3. (\{E-NAD^+\}, \{(E-NAD^+,0.774)\}, \{E,NAD^+\})
4. (\{E,NAD^+\}, \{(E,0.457),(NAD^+,0.859)\}, \{E-NAD^+\})
5. (\{E-NAD^+,S\}, \{(E-NAD^+,0.002),(S,0.008)\}, \{E-NADH,F\})
6. (\{E-NADH\}, \{(E-NADH,0.772)\}, \{E,NADH\})
7. (\{E\}, \{(E,0.075)\}, \{E\})
8. (\{S\}, \{(S,0.992)\}, \{S\})
9. (\{F\}, \{(F,0.998)\}, \{F\})

\[\mathcal{R}' \]

10. (\{NADH\}, \{(NADH,0.138)\}, \{NADH\})
11. (\{NAD^+\}, \{(NAD^+,0.141)\}, \{NAD^+\})
12. (\{E-NADH\}, \{(E-NADH,0.227)\}, \{E-NADH\})
13. (\{E-NAD^+\}, \{(E-NAD^+,0.254)\}, \{E-NAD^+\})
Simulation (1)

- Simulator implemented in SICStus Prolog
- Given a system \((S,R)\) the simulator
 - executes \(S' = \text{Step}(S)\)
 - gives the concentrations of the molecules in \(S'\) as output
 - iterates on \((S', R)\)
- Sorbitol dehydrogenase: initial concentrations

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>S</th>
<th>F</th>
<th>NADH</th>
<th>NAD(^+)</th>
<th>E-NADH</th>
<th>E-NAD(^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simulation (2)
Model checking (1)

- A probabilistic model checker can be easily used for verifying properties of a Molecular Probabilistic Transition System

- We used the PRISM model checker for verifying properties of the sorbitol dehydrogenase

- Properties have been specified in the CSL language:
 \[
 \phi ::= true \mid false \mid a \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid P_{\sim p}[\psi] \mid S_{\sim p}[\psi]
 \]

\[
\psi ::= X\phi \mid \phi U^I \phi \mid \phi U \phi
\]

- Sorbitol dehydrogenase: initial concentrations

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>F</th>
<th>NADH</th>
<th>NAD⁺</th>
<th>E-NADH</th>
<th>E-NAD⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Probability that the concentration of S becomes less than 10 in less then 5000 steps by varying the initial concentration of E

$$\mathcal{P}_{\leq 5000}^\leq [trueU \leq 10]$$
Model checking (3)

- Probability that the concentration of E reaches 0 in less than 5000 steps by varying its initial value

\[\mathcal{P} \stackrel{?}{=} \ [true \ \mathcal{U} \leq 5000 \ [E] = 0] \]
Conclusions

- We have developed a framework to model biochemical reactions
 - we have implemented a simulator
 - we have used a model checker (PRISM) to verify properties of reactions

- The main idea is to approximate the speed of reactions by probabilities of rule applications

- The choice of the right probabilities is critical!!

- Experiments have suggested to revise the semantics of the calculus to have a better approximation
Future work

- Expected improvements (short term):
 - the model will be revised in order to obtain better quantitative results
 - the choice of the probabilities will not be done by the modeler but probabilities will be derived automatically by kinetic constants
 - the semantics will be given in SOS style
 - some results of biological correctness will be proved

- Expected improvements (mid/long term):
 - more complex examples of real biological systems will be simulated and verified
 - some additional operators will be considered
 - the problem of predicting unknown kinetic constants will be faced
THE END...
Computing probabilities...

\[p(m) = \frac{[m]_S}{|S|} \]

\[p(R_{i,1\leq i\leq n}|m) = \frac{P_i(m)}{P_1(m) + \ldots + P_n(m)} \]

\[p(S, S', R) = \begin{cases}
1 & \text{if } S = \emptyset = S' \\
0 & \text{if } \#(S) \neq \#(S') \\
\sum_{i=1}^{k} p(m_i) \sum_{j=1}^{n_i} p(R_{i,1\leq i\leq n_i}|m_i) p(S \backslash S_j, S' \backslash S'_j, R) & \text{otherwise}
\end{cases} \]
Model checking (1)

- A probabilistic model checker can be easily used for verifying properties of a Molecular Probabilistic Transition System.

- We used the PRISM model checker for verifying properties of the sorbitol dehydrogenase.

- Properties have been specified in the CSL language:
 \[
 \phi ::= \text{true} \mid \text{false} \mid a \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid P_\sim p[\psi] \mid S_\sim p[\psi]
 \]

 \[
 \psi ::= X\phi \mid \phi U^I\phi \mid \phi U\phi
 \]

- Sorbitol dehydrogenase: initial concentrations

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>NADH</th>
<th>NAD⁺</th>
<th>E-NADH</th>
<th>E-NAD⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>