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Cells: complex systems of interactive components

Two classifications of cell:
I procaryotic
I eucaryotic

Main actors:
I membranes
I proteins
I DNA/RNA
I ions, macromolecules,. . .

Interaction networks:
I metabolic pathways
I signaling pathways
I gene regulatory networks

Computer Science can provide biologists with formalisms for the
description of interactive systems and tools for their analysis.
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Examples of interaction networks: the EGF pathway
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Examples of interaction networks: the lac operon
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Paolo Milazzo (Università di Pisa) Formal Methods and Systems Biology Verona – January 22, 2008 5 / 53



Outline of the talk

1 Introduction
Cells are complex interactive systems
The EGF pathway and the lac operon

2 The Calculus of Looping Sequences (CLS)
Definition of CLS
The EGF pathway and the lac operon in CLS

3 Bisimulations in CLS
A labeled semantics for CLS
Bisimulations in CLS
Bisimulations applied to the CLS model of the lac operon

4 CLS variants
Stochastic CLS
LCLS

5 Future Work and References
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The Calculus of Looping Sequences (CLS)

We assume an alphabet E . Terms T and Sequences S of CLS are given
by the following grammar:

T ::= S
∣∣ (

S
)L c T

∣∣ T | T
S ::= ε

∣∣ a
∣∣ S · S

where a is a generic element of E , and ε is the empty sequence.

The operators are:
S · S : Sequencing(
S
)L

: Looping (S is closed and it can rotate)
T1 c T2 : Containment (T1 contains T2)

T |T : Parallel composition (juxtaposition)

Actually, looping and containment form a single binary operator
(
S
)L c T .
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Examples of Terms

(i)
(
a · b · c

)L c ε
(ii)

(
a · b · c

)L c (d · e)L c ε
(iii)

(
a · b · c

)L c (f · g |
(
d · e

)L c ε)
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Structural Congruence

The Structural Congruence relations ≡S and ≡T are the least
congruence relations on sequences and on terms, respectively, satisfying
the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3

T | ε ≡T T
(
ε
)L c ε ≡T ε

(
S1 · S2

)L c T ≡T

(
S2 · S1

)L c T

We write ≡ for ≡T .
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CLS Patterns

Let us consider variables of three kinds:

term variables (X ,Y ,Z , . . .)

sequence variables (x̃ , ỹ , z̃ , . . .)

element variables (x , y , z , . . .)

Patterns P and Sequence Patterns SP of CLS extend CLS terms and
sequences with variables:

P ::= SP
∣∣ (

SP
)L c P

∣∣ P | P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x

∣∣ x̃

where a is a generic element of E , ε is the empty sequence, and x , x̃ and X
are generic element, sequence and term variables

The structural congruence relation ≡ extends trivially to patterns
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Rewrite Rules

Pσ denotes the term obtained by replacing any variable in T with the
corresponding term, sequence or element.

Σ is the set of all possible instantiations σ

A Rewrite Rule is a pair (P,P ′), denoted P 7→ P ′, where:

P,P ′ are patterns

variables in P ′ are a subset of those in P

A rule P 7→ P ′ can be applied to all terms Pσ.

Example: a · x · a 7→ b · x · b

can be applied to a · c · a (producing b · c · b)

cannot be applied to a · c · c · a
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Formal Semantics

Given a set of rewrite rules R, evolution of terms is described by the
transition system given by the least relation → satisfying

P 7→ P ′ ∈ R Pσ 6≡ ε
Pσ → P ′σ

T → T ′

T | T ′′ → T ′ | T ′′
T → T ′(

S
)L c T →

(
S
)L c T ′

and closed under structural congruence ≡.
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CLS modeling examples: the EGF pathway (1)

EGF

EGFR

SHC

CELL MEMBRANE

nucleus

phosphorylations
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CLS modeling examples: the EGF pathway (2)
First steps of the EGF signaling pathway up to the binding of the
signal-receptor dimer to the SHC protein

The EGFR,EGF and SHC proteins are modeled as the alphabet
symbols EGFR, EGF and SHC , respectively

The cell is modeled as a looping sequence (representing its external
membrane):

EGF | EGF |
(
EGFR · EGFR · EGFR · EGFR

)L c (SHC | SHC )

Rewrite rules modeling the first steps of the pathway:

EGF |
(
EGFR · x̃

)L c X 7→
(
CMPLX · x̃

)L c X (R1)(
CMPLX · x̃ · CMPLX · ỹ

)L c X 7→
(
DIM · x̃ · ỹ

)L c X (R2)(
DIM · x̃

)L c X 7→
(
DIMp · x̃

)L c X (R3)(
DIMp · x̃

)L c (SHC | X ) 7→
(
DIMpSHC · x̃

)L c X (R4)
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CLS modeling examples: the EGFR pathway (2)

A possible evolution of the system:

EGF | EGF |
(
EGFR · EGFR · EGFR · EGFR

)L c (SHC | SHC )

(R1)−−−→ EGF |
(
EGFR · CMPLX · EGFR · EGFR

)L c (SHC | SHC )

(R1)−−−→
(
EGFR · CMPLX · EGFR · CMPLX

)L c (SHC | SHC )

(R2)−−−→
(
EGFR · DIM · EGFR

)L c (SHC | SHC )

(R3)−−−→
(
EGFR · DIMp · EGFR

)L c (SHC | SHC )

(R4)−−−→
(
EGFR · DIMpSHC · EGFR

)L c SHC
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CLS modeling examples: the lac operon (1)
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CLS modeling examples: the lac operon (2)

Ecoli ::=
(
m
)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Rules for DNA transcription/translation:

lacI · x̃ 7→ lacI ′ · x̃ | repr (R1)

polym | x̃ · lacP · ỹ 7→ x̃ · PP · ỹ (R2)

x̃ · PP · lacO · ỹ 7→ x̃ · lacP · PO · ỹ (R3)

x̃ · PO · lacZ · ỹ 7→ x̃ · lacO · PZ · ỹ (R4)

x̃ · PZ · lacY · ỹ 7→ x̃ · lacZ · PY · ỹ | betagal (R5)

x̃ · PY · lacA 7→ x̃ · lacY · PA | perm (R6)

x̃ · PA 7→ x̃ · lacA | transac | polym (R7)
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CLS modeling examples: the lac operon (3)

Ecoli ::=
(
m
)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Rules to describe the binding of the lac Repressor to gene o, and what
happens when lactose is present in the environment of the bacterium:

repr | x̃ · lacO · ỹ 7→ x̃ · RO · ỹ (R8)

LACT |
(
m · x̃

)L c X 7→
(
m · x̃

)L c (X | LACT ) (R9)

x̃ · RO · ỹ | LACT 7→ x̃ · lacO · ỹ | RLACT (R10)(
x̃
)L c (perm | X ) 7→

(
perm · x̃

)L c X (R11)

LACT |
(
perm · x̃

)L c X 7→
(
perm · x̃

)L c (LACT | X ) (R12)

betagal | LACT 7→ betagal | GLU | GAL (R13)
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CLS modeling examples: the lac operon (4)

Ecoli ::=
(
m
)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Example:

Ecoli |LACT |LACT

→∗
(
m
)L c (lacI ′ · lacP · lacO · lacZ · lacY · lacA | polym | repr)|LACT |LACT

→∗
(
m
)L c (lacI ′ · lacP · RO · lacZ · lacY · lacA | polym)|LACT |LACT

→∗
(
m
)L c (lacI ′ · lacP · lacO · lacZ · lacY · lacA|polym|RLACT )|LACT

→∗
(
perm ·m

)L c (lacI ′−A|betagal |transac |polym|RLACT )|LACT

→∗
(
perm ·m

)L c (lacI ′−A|betagal |transac |polym|RLACT |GLU|GAL)
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Bisimulations

Bisimilarity is widely accepted as the finest extensional behavioral
equivalence one may impose on systems.

Two systems are bisimilar if they can perform step by step the same
interactions with the environment.

Properties of a system can be verified by assessing the bisimilarity
with a system known to enjoy them.

Bisimilarities need semantics based on labeled transition relations
capturing the potential interactions with the environment.

In process calculi, transitions are usually labeled with actions.

In CLS labels are contexts in which rules can be applied.
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Labeled semantics

Contexts C are given by the following grammar:

C ::= �
∣∣ C | T ∣∣ T | C

∣∣ (
S
)L c C

where T ∈ T and S ∈ S. Context � is called the empty context.

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
P 7→ P ′ ∈ R C [T ′′] ≡ Pσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′
C−→ P ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→
(
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP
T | T ′′ C−→ T ′ | T ′′

where CP are contexts that do not include
(
S
)L c C and the dual version

of the (par) rule is omitted.

Paolo Milazzo (Università di Pisa) Formal Methods and Systems Biology Verona – January 22, 2008 22 / 53



Bisimulations in CLS (1)

A binary relation R on terms is a strong bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′1 =⇒ ∃T ′2 s.t. T2

C−→ T ′2and T ′1RT ′2

T2
C−→ T ′2 =⇒ ∃T ′1 s.t. T1

C−→ T ′1 and T ′2RT ′1.

The strong bisimilarity ∼ is the largest of such relations.

A binary relation R on terms is a weak bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′1 =⇒ ∃T ′2 s.t. T2

C
=⇒ T ′2and T ′1RT ′2

T2
C−→ T ′2 =⇒ ∃T ′1 s.t. T1

C
=⇒ T ′1 and T ′2RT ′1.

The weak bisimilarity ≈ is the largest of such relations.

Theorem: Strong and weak bisimilarities are congruences.
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Bisimulations in CLS (2)

Consider the following set of rewrite rules:

R = { a | b 7→ c , d | b 7→ e , e 7→ e , c 7→ e , f 7→ a }

We have that a ∼ d , because

a
�|b−−→ c

�−→ e
�−→ e

�−→ . . .

d
�|b−−→ e

�−→ e
�−→ . . .

and f ≈ d , because

f
�−→ a

�|b−−→ c
�−→ e

�−→ e
�−→ . . .

On the other hand, f 6∼ e and f 6≈ e.

e
�−→ e

�−→ e
�−→ . . .
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Bisimulations in CLS (3)

Let us consider systems (T ,R). . .

A binary relation R is a strong bisimulation on systems if, given
(T1,R1) and (T2,R2) such that (T1,R1)R(T2,R2):

R1 : T1
C−→ T ′1 =⇒ ∃T ′2 s.t. R2 : T2

C−→ T ′2 and (T ′1,R1)R(T ′2,R2)

R2 : T2
C−→ T ′2 =⇒ ∃T ′1 s.t. R1 : T1

C−→ T ′1 and (R2,T
′
2)R(R1,T

′
1).

The strong bisimilarity on systems ∼ is the largest of such relations.

A binary relation R is a weak bisimulation on systems if, given
(T1,R1) and (T2,R2) such that (T1,R1)R(T2,R2):

R1 : T1
C−→ T ′1 =⇒ ∃T ′2 s.t. R2 : T2

C
=⇒ T ′2 and (T ′1,R1)R(T ′2,R2)

R2 : T2
C−→ T ′2 =⇒ ∃T ′1 s.t. R1 : T1

C
=⇒ T ′1 and (T ′2,R2)R(T ′1,R1)

The weak bisimilarity on systems ≈ is the largest of such relations.

Strong and weak bisimilarities on systems are NOT congruences.
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Bisimulations in CLS (4)

Consider the following sets of rewrite rules

R1 = {a | b 7→ c} R2 = {a | d 7→ c , b | e 7→ c}

We have that 〈a,R1〉 ≈ 〈e,R2〉 because

R1 : a
�|b−−→ c R2 : e

�|b−−→ c

and 〈b,R1〉 ≈ 〈d ,R2〉, because

R1 : b
�|a−−→ c R2 : d

�|a−−→ c

but 〈a | b,R1〉 6≈ 〈e | d ,R2〉, because

R1 : a | b �−→ c R2 : c | d 6 �−→
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Applying bisimulations to the lac operon
By using the weak bisimilarity on systems we can prove that from the state
in which the repressor is bound to the DNA we can reach a state in which
the enzymes are synthesized only if lactose appears in the environment.

We replace rule

x̃ · RO · ỹ | LACT 7→ x̃ · lacO · ỹ | RLACT (R10)

with (
w̃
)L c (x̃ · RO · ỹ | LACT | X ) | START 7→(

w̃
)L c (x̃ · lacO · ỹ | RLACT | X ) (R10bis)

The obtained model is bisimilar to (T1,R) where R is

T1 | LACT 7→ T2 (R1’) T2 | START 7→ T3 (R3’)

T2 | LACT 7→ T2 (R2’) T3 | LACT 7→ T3 (R4’)

that is a system satisfying the property.
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Some variants of CLS

Full–CLS
I The looping operator can be applied to any term
I Terms such as

(
a |
(
b
)L c c

)L c d are allowed

CLS+
I More realistic representation of the fluid nature of membranes: the

looping operator can be applied to parallel compositions of sequences
I Can be encoded into CLS

Stochastic CLS
I The application of a rule consumes a stochastic quantity of time

LCLS (CLS with Links)
I Description of protein–protein interactions at the domain level
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Background: the kinetics of chemical reactions

Usual notation for chemical reactions:

`1S1 + . . .+ `ρSρ
k


k−1

`′1P1 + . . .+ `′γPγ

where:

Si ,Pi are molecules (reactants)

`i , `
′
i are stoichiometric coefficients

k , k−1 are the kinetic constants

The kinetics is described by the law of mass action:

d [Pi ]

dt
= `′i k[S1]`1 · · · [Sρ]`ρ︸ ︷︷ ︸

reaction rate

−`′i k−1[P1]`
′
1 · · · [Pγ ]`

′
γ︸ ︷︷ ︸

reaction rate
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Background: Gillespie’s simulation algorithm

represents a chemical solution as a multiset of molecules

computes the reaction rate aµ by multiplying the kinetic constant by
the number of possible combinations of reactants

Example: chemical solution with X1 molecules S1 and X2 molecules S2

reaction R1 : S1 + S2 → 2S1 rate a1 =
(X1

1

)(X2
1

)
k1 = X1X2k1

reaction R2 : 2S1 → S1 + S2 rate a2 =
(X1

2

)
k2 = X1(X1−1)

2 k2

Given a set of reactions {R1, . . .RM} and a current time t

The time t + τ at which the next reaction will occur is randomly
chosen with τ exponentially distributed with parameter

∑M
ν=1 aν ;

The reaction Rµ that has to occur at time t + τ is randomly chosen
with probability

aµPM
ν=1 aν

.

At each step t is incremented by τ and the chemical solution is updated.
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Stochastic CLS (1)

Stochastic CLS incorporates Gillespie’s stochastic framework into the
semantics of CLS

Two main problems:

What is a reactant in Stochastic CLS?
I A subterm of a term T is a term T ′ 6≡ ε such that T ≡ C [T ′] for some

context C
I A reactant is an occurence of a subterm

What happens with variables?

I We consider a rule
(
a
)L c (b | X ) 7→

(
c
)L c X as a reaction between a

molecule a on a membrane and any molecule b contained in the
membrane.

I The semantics has to count how many times b occurs in the
instantiation of X
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Stochastic CLS (2)

Let us assume the syntax of Full–CLS. . .

Given a finite set of stochastic rewrite rules R, the semantics of Stochastic

CLS is the least transition relation
R,T ,r ,b−−−−→ closed wrt ≡ and satisfying by

the following inference rules:

R : PL
k7→ PR ∈ R σ ∈ Σ

PLσ
R,PLσ,k·comb(PL,σ),1−−−−−−−−−−−−−→ PRσ

T1
R,T ,r ,b−−−−−→ T2

T1 | T3
R,T ,r ,b·binom(T ,T1,T3)−−−−−−−−−−−−−−→ T2 | T3

T1
R,T ,r ,b−−−−−→ T2

(T1)L c T3
R,(T1)L c T3,r ·b,1−−−−−−−−−−−→ (T2)L c T3

T1
R,T ,r ,b−−−−−→ T2

(T3)L c T1
R,(T3)L c T1,r ·b,1−−−−−−−−−−−→ (T3)L c T2

The transition system obtained can be easily transformed into a
Continuous Time Markov Chain
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A Stochastic CLS model of the lac operon (1)
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A Stochastic CLS model of the lac operon (2)
Transcription of DNA, binding of lac Repressor to gene o, and interaction
between lactose and lac Repressor:

lacI · x̃ 0.027→ lacI · x̃ | Irna (S1)

Irna
0.17→ Irna | repr (S2)

polym | x̃ · lacP · ỹ 0.17→ x̃ · PP · ỹ (S3)

x̃ · PP · ỹ 0.017→ polym | x̃ · lacP · ỹ (S4)

x̃ · PP · lacO · ỹ 20.07→ polym | Rna | x̃ · lacP · lacO · ỹ (S5)

Rna
0.17→ Rna | betagal | perm | transac (S6)

repr | x̃ · lacO · ỹ 1.07→ x̃ · RO · ỹ (S7)

x̃ · RO · ỹ 0.017→ repr | x̃ · lacO · ỹ (S8)

repr | LACT
0.0057→ RLACT (S9)

RLACT
0.17→ repr | LACT (S10)
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A Stochastic CLS model of the lac operon (3)

The behaviour of the three enzymes for lactose degradation:(
x̃
)L c (perm | X )

0.17→
(
perm · x̃

)L c X (S11)

LACT |
(
perm · x̃

)L c X
0.0017→

(
perm · x̃

)L c (LACT |X ) (S12)

betagal | LACT
0.0017→ betagal | GLU | GAL (S13)

Degradation of all the proteins and mRNA involved in the process:

perm
0.0017→ ε (S14) betagal

0.0017→ ε (S15)

transac
0.0017→ ε (S16) repr

0.0027→ ε (S17)

Irna
0.017→ ε (S18) Rna

0.017→ ε (S19)

RLACT
0.0027→ LACT (S20)
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Simulation results (1)
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Simulation results (2)
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Simulation results (3)
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Modeling proteins at the domain level

To model a protein at the domain level in CLS it would be natural to use a
sequence with one symbol for each domain

The binding between two elements of two different sequences, cannot be
expressed in CLS

LCLS extends CLS with labels on basic symbols

two symbols with the same label represent domains that are bound to
each other

example: a · b1 · c | d · e1 · f
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Syntax of LCLS

Terms T and Sequences S of LCLS are given by the following grammar:

T ::= S
∣∣ (

S
)L c T

∣∣ T | T
S ::= ε

∣∣ a
∣∣ an

∣∣ S · S

where a is a generic element of E , and n is a natural number.

Patterns P and sequence patterns SP of LCLS are given by the
following grammar:

P ::= SP
∣∣ (

SP
)L c P

∣∣ P | P
∣∣ X

SP ::= ε
∣∣ a

∣∣ an
∣∣ SP · SP

∣∣ x̃
∣∣ x

∣∣ xn

where a is an element of E , n is a natural number and X , x̃ and x are
elements of TV , SV and X , respectively.
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Well–formedness of LCLS terms and patterns (1)

A1 |
(
B11 · B22

)L c C1 · C22 · C3

√

A1 |
(
B
)L c C 1× A1 | B1 | C 1×
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Well–formedness of LCLS terms and patterns (2)

An LCLS term (or pattern) is well–formed if and only if a label occurs no
more than twice, and in the content of a looping sequence a label occurs
either zero or two times

Type system for well–formedness:

1.
(
∅,∅

)
|= ε 2.

(
∅,∅

)
|= a 3.

(
∅, {n}

)
|= an

4.
(
∅,∅

)
|= x 5.

(
∅, {n}

)
|= xn 6.

(
∅,∅

)
|= x̃ 7.

(
∅,∅

)
|= X

8.

(
N1,N

′
1

)
|= SP1

(
N2,N

′
2

)
|= SP2 N1 ∩ N2 = N ′1 ∩ N2 = N1 ∩ N ′2 = ∅(

N1 ∪ N2 ∪ (N ′1 ∩ N ′2), (N ′1 ∪ N ′2) \ (N ′1 ∩ N ′2)
)
|= SP1 · SP2

9.

(
N1,N

′
1

)
|= P1

(
N2,N

′
2

)
|= P2 N1 ∩ N2 = N ′1 ∩ N2 = N1 ∩ N ′2 = ∅(

N1 ∪ N2 ∪ (N ′1 ∩ N ′2), (N ′1 ∪ N ′2) \ (N ′1 ∩ N ′2)
)
|= P1 | P2

10.

(
N1,N

′
1

)
|= SP

(
N2,N

′
2

)
|= P N1 ∩ N2 = N ′1 ∩ N2 = N1 ∩ N ′2 = ∅ N ′2 ⊆ N ′1(

N1 ∪ N ′2,N
′
1 \ N ′2

)
|=
(
SP
)L c P
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Application of rewrite rules
We would like to ensure that the application of a rewrite rule to a
well–formed term preserves well–formedness

not trivial: well–formedness can be easily violated

e.g. the rewrite rule a 7→ a1 applied to
(
b
)L c a produces

(
b
)L c a1

A compartment safe rewrite rule is such that

it does not add/remove occurrences of variables

it does not moves variables from one compartment (content of a
looping sequence) to another one

The application of a compartment safe rewrite rule preserves
well–formedness

To apply a compartment unsafe rewrite rule we require that

its patterns are CLOSED

its variables are instantiated with CLOSED terms
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The semantics of LCLS

Given a set of compartment safe rewrite rules RCS and a set of
compartemnt unsafe rewrite rules RCU , the semantics of LCLS is given by
the following rules

(appCS)
P1 7→ P2 ∈ RCS P1σ 6≡ ε σ ∈ Σ α ∈ A

P1ασ → P2ασ

(appCU)
P1 7→ P2 ∈ RCU P1σ 6≡ ε σ ∈ Σwf α ∈ A

P1ασ → P2ασ

(par)
T1 → T ′1 L(T1) ∩ L(T2) = {n1, . . . , nM} n′1, . . . , n

′
M fresh

T1 | T2 → T ′1{
n′1, . . . , n

′
M/n1, . . . , nM} | T2

(cont)
T → T ′ L(S) ∩ L(T ′) = {n1, . . . , nM} n′1, . . . , n

′
M fresh(

S
)L c T →

(
S
)L c T ′{n

′
1, . . . , n

′
M/n1, . . . , nM}

where α is link renaming, L(T ) the set of links occurring twice in the top
level compartment of T
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Main theoretical result

Theorem (Subject Reduction)
Given a set of well–formed rewrite rules R and a well–formed term T

T → T ′ =⇒ T ′ well–formed
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An LCLS model of the EGF pathway (1)

EGF

EGFR

SHC

CELL MEMBRANE

nucleus

phosphorylations
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An LCLS model of the EGF pathway (2)

We model the EGFR protein as the sequence RE1 · RE2 · RI1 · RI2

RE1 and RE2 are two extra–cellular domains

RI1 and RI2 are two intra–cellular domains

The rewrite rules of the model are

EGF |
(
RE1 ·x̃

)L c X 7→ EGF 1 |
(
R1

E1 ·x̃
)L c X (R1)(

R1
E1 ·RE2 ·x̃ ·R2

E1 ·RE2 ·ỹ
)L c X 7→

(
R1

E1 ·R3
E2 ·x̃ ·R2

E1 ·R3
E2 ·ỹ

)L c X (R2)(
R1

E2 ·RI1 ·x̃
)L c X 7→

(
R1

E2 ·PRI1 ·x̃
)L c X (R3)(

R1
E2 ·PRI1 ·RI2 ·x̃ ·R1

E2 ·PRI1 ·RI2 ·ỹ
)L c (SHC | X ) 7→(

R1
E2 ·PRI1 ·R2

I2 ·x̃ ·R1
E2 ·PRI1 ·RI2 ·ỹ

)L c (SHC 2 | X ) (R4)
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An LCLS model of the EGF pathway (3)

Let us write EGFR for RE1 · RE2 · RI1 · RI2

A possible evolution of the system is

EGF | EGF |
`
EGFR ·EGFR ·EGFR

´L c (SHC | SHC)

(R1)−−→ EGF 1 | EGF |
`
R1

E1 ·RE2 ·RI1 ·RI2 ·EGFR ·EGFR
´L c (SHC | SHC)

(R1)−−→ EGF 1 | EGF 2 |
`
R1

E1 ·RE2 ·RI1 ·RI2 ·EGFR ·R2
E1 ·RE2 ·RI1 ·RI2

´L c (SHC | SHC)

(R2)−−→ EGF 1 | EGF 2 |
`
R1

E1 ·R3
E2 ·RI1 ·RI2 ·EGFR ·R2

E1 ·R3
E2 ·RI1 ·RI2

´L c (SHC | SHC)

(R3)−−→ EGF 1 | EGF 2 |
`
R1

E1 ·R3
E2 ·PRI1 ·RI2 ·EGFR ·R2

E1 ·R3
E2 ·RI1 ·RI2

´L c (SHC | SHC)

(R3)−−→ EGF 1 | EGF 2 |
`
R1

E1 ·R3
E2 ·PRI1 ·RI2 ·EGFR ·R2

E1 ·R3
E2 ·PRI1 ·RI2

´L c (SHC | SHC)

(R4)−−→ EGF 1 | EGF 2 |
`
R1

E1 ·R3
E2 ·PRI1 ·R4

I2 ·EGFR ·R2
E1 ·R3

E2 ·PRI1 ·RI2

´L c (SHC 4 | SHC)

Paolo Milazzo (Università di Pisa) Formal Methods and Systems Biology Verona – January 22, 2008 50 / 53



Outline of the talk

1 Introduction
Cells are complex interactive systems
The EGF pathway and the lac operon

2 The Calculus of Looping Sequences (CLS)
Definition of CLS
The EGF pathway and the lac operon in CLS

3 Bisimulations in CLS
A labeled semantics for CLS
Bisimulations in CLS
Bisimulations applied to the CLS model of the lac operon

4 CLS variants
Stochastic CLS
LCLS

5 Future Work and References
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Current and future work
We developed a stochastic simulator based on Stochastic CLS

currently, we are developing an intermediate language for stochastic
simulation of biological systems (sSMSR)

high level formalisms (Stochastic CLS, π–calculus, etc...) can be
translated into sSMSR

we plan to develop analysis and verification techniques for sSMSR

In order to model cell division and differentiation, tissues, etc...

we are developing a spatial extension of CLS in which terms are
placed and can move in a 2D/3D space

We are translating Kohn’s Molecular Interaction Maps into CLS

Moreover:

we plan to study other behavioural equivalences (traces, testing, . . . )

we plan to use CLS to study (in collaboration with biologists) retinal
cell development and differentiation
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