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Introduction

Formal models for systems of interactive components can be easily used or
adapted for the modelling of biological phenomena

Examples: Petri Nets, π–calculus, Mobile Ambients

The modelling of biological systems allows:

1 the development of simulators

2 the verification of properties

We defined the Calculus of Looping Sequences (CLS): a formalism to
describe biochemical systems in cells

In this talk:

1 we recall the definition of CLS

2 we present bisimulation relations for CLS

3 we show the CLS model of a gene regulation process in E. Coli
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The Calculus of Looping Sequences (CLS)

We assume an alphabet E . Terms T and Sequences S of CLS are given
by the following grammar:

T ::= S
∣∣ (

S
)L c T

∣∣ T | T
S ::= ε

∣∣ a
∣∣ S · S

where a is a generic element of E , and ε is the empty sequence.

The operators are:
S · S : Sequencing(
S
)L

: Looping (S is closed and it can rotate)
T1 c T2 : Containment (T1 contains T2)

T |T : Parallel composition (juxtaposition)

Actually, looping and containment form a single binary operator
(
S
)L c T .
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Example of Terms

(i)

b

ca

b

ca

d e(ii)

b

ca

d e

f g

(iii)

(i)
(
a · b · c

)L c ε

(ii)
(
a · b · c

)L c
(
d · e

)L c ε

(iii)
(
a · b · c

)L c (f · g |
(
d · e

)L c ε)
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Structural Congruence

The Structural Congruence relations ≡S and ≡T are the least
congruence relations on sequences and on terms, respectively, satisfying
the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3

T | ε ≡T T
(
ε
)L c ε ≡T ε

(
S1 · S2

)L c T ≡T

(
S2 · S1

)L c T

We write ≡ for ≡T .
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Dinamics of the Calculus (1)
Let TV be the set of terms which may contain variables of three kinds:

term variables (X ,Y ,Z , . . .)

sequence variables (x̃ , ỹ , z̃ , . . .)

element variables (x , y , z , . . .)

Tσ denotes the term obtained by replacing any variable in T with the
corresponding term, sequence or element.

A Rewrite Rule is a pair (T ,T ′), denoted T 7→ T ′, where:

T ,T ′ ∈ TV
variables in T ′ are a subset of those in T

A rule T 7→ T ′ can be applied to all terms Tσ.

Example: a · x · a 7→ b · x · b
can be applied to a · c · a (producing b · c · b)

cannot be applied to a · c · c · a
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Bisimulations

Bisimilarity is widely accepted as the finest extensional behavioral
equivalence one may impose on systems.

Two systems are bisimilar if they can perform step by step the same
interactions with the environment.

Properties of a system can be verified by assessing the bisimilarity
with a system known to enjoy them.

Bisimilarities need semantics based on labeled transition relations
capturing the potential interactions with the environment.

In process calculi, transitions are usually labeled with actions.

In CLS labels are contexts in which rules can be applied.
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Labeled Semantics (1)

Contexts C are given by the following grammar:

C ::= �
∣∣ C | T

∣∣ T | C
∣∣ (

S
)L c C

where T ∈ T and S ∈ S. Context � is called the empty context.

Parallel Contexts CP are given by the following grammar:

CP ::= �
∣∣ CP | T

∣∣ T | CP .

where T ∈ T .

C [T ] is context application and C [C ′] is context composition.
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Labeled Semantics (2)

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
T 7→ T ′ ∈ R C [T ′′] ≡ Tσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′ C−→ T ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→
(
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP

T | T ′′ C−→ T ′ | T ′′

where the dual version of the (par) rule is omitted.

Rule (rule appl) describes the (potential) application of a rule.

T ′′ 6≡ ε in the premise implies that C cannot provide completely the
left hand side of the rewrite rule.

Example: let R = a | b 7→ c , we have a
� | b−−−→ c , but ε 6a|b−−→.
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Labeled Semantics (3)

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
T 7→ T ′ ∈ R C [T ′′] ≡ Tσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′ C−→ T ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→
(
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP

T | T ′′ C−→ T ′ | T ′′

where the dual version of the (par) rule is omitted.

Rule (cont) propagates �–labeled transitions from the inside to the
outside of a looping sequence.

Transition labeled with a non–empty context cannot be propagated.

Example: let R = a | b 7→ c , we have a
� | b−−−→ c , but

(
d
)L c a 6�|b−−→.
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Labeled Semantics (4)

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
T 7→ T ′ ∈ R C [T ′′] ≡ Tσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′ C−→ T ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→
(
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP

T | T ′′ C−→ T ′ | T ′′

where the dual version of the (par) rule is omitted.

Rule (par) propagates transitions labeled with parallel contexts in parallel
components.

Example: let R = (a)L c b 7→ c , we have b
(a)L c �−−−−−→ c , but

b | d 6(a)L c �−−−−−→ because R cannot be applied (a)L c (b | d)
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Bisimulations in CLS (1)

A binary relation R on terms is a strong bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′

1 =⇒ ∃T ′
2 s.t. T2

C−→ T ′
2and T ′

1RT ′
2

T2
C−→ T ′

2 =⇒ ∃T ′
1 s.t. T1

C−→ T ′
1 and T ′

2RT ′
1.

The strong bisimilarity ∼ is the largest of such relations.

A binary relation R on terms is a weak bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′

1 =⇒ ∃T ′
2 s.t. T2

C
=⇒ T ′

2and T ′
1RT ′

2

T2
C−→ T ′

2 =⇒ ∃T ′
1 s.t. T1

C
=⇒ T ′

1 and T ′
2RT ′

1.

The weak bisimilarity ≈ is the largest of such relations.

Theorem: Strong and weak bisimilarities are congruences.
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Bisimulations in CLS (2)

Consider the following set of rewrite rules:

R = { a | b 7→ c , d | b 7→ e , e 7→ e , c 7→ e , f 7→ a }

We have that a ∼ d , because

a
�|b−−→ c

�−→ e
�−→ e

�−→ . . .

d
�|b−−→ e

�−→ e
�−→ . . .

and f ≈ d , because

f
�−→ a

�|b−−→ c
�−→ e

�−→ e
�−→ . . .

On the other hand, f 6∼ e and f 6≈ e.

e
�−→ e

�−→ e
�−→ . . .
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Bisimulations in CLS (3)

Let us consider systems (T ,R). . .

A binary relation R is a strong bisimulation on systems if, given
(T1,R1) and (T2,R2) such that (T1,R1)R(T2,R2):

R1 : T1
C−→ T ′

1 =⇒ ∃T ′
2 s.t. R2 : T2

C−→ T ′
2 and (T ′

1,R1)R(T ′
2,R2)

R2 : T2
C−→ T ′

2 =⇒ ∃T ′
1 s.t. R1 : T1

C−→ T ′
1 and (R2,T

′
2)R(R1,T

′
1).

The strong bisimilarity on systems ∼ is the largest of such relations.

A binary relation R is a weak bisimulation on systems if, given
(T1,R1) and (T2,R2) such that (T1,R1)R(T2,R2):

R1 : T1
C−→ T ′

1 =⇒ ∃T ′
2 s.t. R2 : T2

C
=⇒ T ′

2 and (T ′
1,R1)R(T ′

2,R2)

R2 : T2
C−→ T ′

2 =⇒ ∃T ′
1 s.t. R1 : T1

C
=⇒ T ′

1 and (T ′
2,R2)R(T ′

1,R1)

The weak bisimilarity on systems ≈ is the largest of such relations.

Strong and weak bisimilarities on systems are NOT congruences.
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Bisimulations in CLS (4)

Consider the following sets of rewrite rules

R1 = {a | b 7→ c} R2 = {a | d 7→ c , b | e 7→ c}

We have that 〈a,R1〉 ≈ 〈e,R2〉 because

R1 : a
�|b−−→ c R2 : e

�|b−−→ c

and 〈b,R1〉 ≈ 〈d ,R2〉, because

R1 : b
�|a−−→ c R2 : d

�|a−−→ c

but 〈a | b,R1〉 6≈ 〈e | d ,R2〉, because

R1 : a | b �−→ c R2 : c | d 6 �−→
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The Lactose Operon in E.coli (1)

i p o z y a

DNA

mRNA

proteins
lac Repressor  beta-gal.  permease  transacet.

R

i p o z y a

R  RNA
Polime-
  rase

NO TRANSCRIPTION

a)

i p o z y a

R

  RNA
Polime-
  rase

TRANSCRIPTION

b)

LACTOSE
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The Lactose Operon in E.coli (2)

Ecoli ::=
(
m

)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Rules for DNA transcription/translation:

lacI · x̃ −→ lacI ′ · x̃ | repr (R1)

polym | x̃ · lacP · ỹ −→ x̃ · PP · ỹ (R2)

x̃ · PP · lacO · ỹ −→ x̃ · lacP · PO · ỹ (R3)

x̃ · PO · lacZ · ỹ −→ x̃ · lacO · PZ · ỹ (R4)

x̃ · PZ · lacY · ỹ −→ x̃ · lacZ · PY · ỹ | betagal (R5)

x̃ · PY · lacA −→ x̃ · lacY · PA | perm (R6)

x̃ · PA −→ x̃ · lacA | transac | polym (R7)
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The Lactose Operon in E.coli (3)

Ecoli ::=
(
m

)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Rules to describe the binding of the lac Repressor to gene o, and what
happens when lactose is present in the environment of the bacterium:

repr | x̃ · lacO · ỹ −→ x̃ · RO · ỹ (R8)

LACT |
(
m · x̃

)L c X −→
(
m · x̃

)L c (X | LACT ) (R9)

x̃ · RO · ỹ | LACT −→ x̃ · lacO · ỹ | RLACT (R10)(
x̃
)L c (perm | X ) −→

(
perm · x̃

)L c X (R11)

LACT |
(
perm · x̃

)L c X −→
(
perm · x̃

)L c (LACT | X ) (R12)

betagal | LACT −→ betagal | GLU | GAL (R13)
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The Lactose Operon in E.coli (4)

Ecoli ::=
(
m

)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Example:

Ecoli |LACT |LACT

→∗ (
m

)L c (lacI ′ · lacP · lacO · lacZ · lacY · lacA | polym | repr)|LACT |LACT

→∗ (
m

)L c (lacI ′ · lacP · RO · lacZ · lacY · lacA | polym)|LACT |LACT

→∗ (
m

)L c (lacI ′ · lacP · lacO · lacZ · lacY · lacA|polym|RLACT )|LACT

→∗ (
perm ·m

)L c (lacI ′−A|betagal |transac |polym|RLACT )|LACT

→∗ (
perm ·m

)L c (lacI ′−A|betagal |transac |polym|RLACT |GLU|GAL)
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Applying Bisimulations (1)

It can be easily proved that

lacI · lacP · lacO · lacZ · lacY · lacA
≈

lacP · lacO · lacZ · lacY · lacA | repr

and since weak bisimularity is a congruence the former can be replaced by
the latter in the model.
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Applying Bisimulations (2)
By using the weak bisimilarity on systems we can prove that from the state
in which the repressor is bound to the DNA we can reach a state in which
the enzymes are synthesized only if lactose appears in the environment.

We replace rule

x̃ · RO · ỹ | LACT −→ x̃ · lacO · ỹ | RLACT (R10)

with (
w̃

)L c (x̃ · RO · ỹ | LACT | X ) | START −→(
w̃

)L c (x̃ · lacO · ỹ | RLACT | X ) (R10bis)

The obtained model is bisimilar to (T1,R) where R is

T1 | LACT −→ T2 (R1’) T2 | START −→ T3 (R3’)

T2 | LACT −→ T2 (R2’) T3 | LACT −→ T3 (R4’)

that is a system satisfying the property.
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Conclusions

The Calculus of Looping Sequences can be used to describe biological
systems

The bisimulation relations we have defined can be used

to find equivalent reduced models

to verify properties

If we consider models in which the same set of rewrite rules is used, strong
and weak bisimulations are congruences.

We used bisimulations on a model of a real biological phenomenon:

to find an equivalent reduced model

to verify a causality property
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