
Semi-Indexing Semi-Structured Data in Tiny Space

Giuseppe Ottaviano
Dipartimento di Informatica

Università di Pisa
ottavian@di.unipi.it

Roberto Grossi
Dipartimento di Informatica

Università di Pisa
grossi@di.unipi.it

ABSTRACT
Semi-structured textual formats are gaining increasing pop-
ularity for the storage of document collections and rich logs.
Their flexibility comes at the cost of having to load and parse
a document entirely even if just a small part of it needs to be
accessed. For instance, in data analytics massive collections
are usually scanned sequentially, selecting a small number
of attributes from each document.
We propose a technique to attach to a raw, unparsed docu-
ment (even in compressed form) a “semi-index”: a succinct
data structure that supports operations on the document
tree at speed comparable with an in-memory deserialized
object, thus bridging textual formats with binary formats.
After describing the general technique, we focus on the JSON
format: our experiments show that avoiding the full loading
and parsing step can give speedups of up to 12 times for
on-disk documents using a small space overhead.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods; E.4 [Coding and
Information Theory]: Data Compaction and Compres-
sion

General Terms
Algorithms, Performance

Keywords
Semi-index, Semi-structured data, Succinct data structures

1. INTRODUCTION
Semi-structured data formats have enjoyed popularity in

the past decade and are virtually ubiquitous in Web tech-
nologies: extensibility and hierarchical organization—as op-
posed to flat tables or files—made them the format of choice
for documents, data interchange, document databases, and
configuration files.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

The field of applications of semi-structured data is rapidly
increasing. These formats are making their way into the
realm of storage of massive datasets. Their characteristics
of being schema-free makes them a perfect fit for the mantra
“Log first, ask questions later”, as the document schema is
often evolving. Natural applications are crawler logs, query
logs, user activity in social networks, to name a few.

In this domain JSON (JavaScript Object Notation, see
[21]) in particular has been gaining momentum: the for-
mat is so simple and self-evident that its formal specifica-
tion fits in a single page, and it is much less verbose than
XML. In fact, both CouchDB[4] and MongoDB [24], two
of the most used ([5, 25]) modern large-scale distributed
schema-free document databases, are based on JSON, and
Jaql [19] and Hive JSON SerDe [15] implement JSON I/O
for Hadoop. These systems all share the same paradigm:

(a) Data is conceptually stored as a sequence of records,
where each record is represented by a single (schema-
free) JSON document.

(b) The records are processed in MapReduce [7] fashion:
during the Map phase the records are loaded sequen-
tially and parsed, then the needed attributes are ex-
tracted for the computation of the Map itself and the
subsequent Reduce phase.

In part (b) the extracted data is usually a small fraction
of the records actually loaded and parsed: in logs such as
the ones mentioned above, a single record can easily exceed
hundreds of kilobytes, and it has to be loaded entirely even
if just a single attribute is needed. If the data is on disk, the
computation time is dominated by the I/O.

A typical way of addressing the problem of parsing docu-
ments and extracting attributes is to change the data repre-
sentation by switching to a binary, easily traversable format.
For instance XML has a standard binary representation, Bi-
nary XML ([3]), and more sophisticated schemes that en-
able more powerful traversal operations and/or compression
have been proposed in the literature (see [30]). Likewise
MongoDB uses BSON, a binary representation for JSON.
However, switching from a textual format to an ad-hoc bi-
nary format carries some drawbacks.

• In large-scale systems, the producer is often decou-
pled from the consumer, which gets the data through
append-only or immutable, possibly compressed, dis-
tributed filesystems, so using simple self-evident stan-
dard formats is highly preferable.

• Binary data is not as easy to manually inspect, debug
or process with scripting languages as textual data.

• If input/output is textual, back-and-forward conver-
sions are needed.

• If existing infrastructure is based on textual formats,
changing the storage format of already stored data can
be extremely costly.

In fact, despite their advantages binary formats have not
gained widespread adoption.

Surprisingly, even with a binary format it is not easy to
support all the tree operations without incurring a signifi-
cant space overhead. For example, BSON prepends to each
element its size in bytes, enabling fast forward traversal by
allowing to “skip” elements, but accessing the ith element of
an array cannot have sublinear I/O complexity.

Our contribution. In this paper we introduce the notion
of semi-indexing to speed up the access to the attributes of a
textual semi-structured document without altering its stor-
age format; instead, we accompany it with a small amount
of redundancy.

A semi-index is a succinct encoding of the parse tree of
the document together with a positional index that locates
the nodes of the tree on the unparsed document. Naviga-
tion of the document is achieved by navigating the succinct
parse tree and parsing on the fly just the leaf nodes that
are needed, by pointing the parser at the correct location
through the positional index. This way, a small part of the
document has to be accessed: the I/O time is greatly re-
duced if the documents are large, and on a slow medium such
as a disk or a compressed or encrypted filesystem. Specif-
ically, the I/O time is proportional to the number of tree
queries, regardless of the document size.

No explicit parsing tree is built, instead we employ a well-
known balanced parenthesized representation and a suitable
directory built on the latter. The resulting encoding is so
small that it can be computed once and stored along with
the document, without imposing a significant overhead.

We call our approach “semi-index” because it is an index
on the structure of the document, rather than on its content :
it represents a middleground between full indexing (where
the preprocessing time and space can be non-negligible be-
cause the full content is indexed) and streaming (where data
are not indexed at all).

The main novelty is that the document in its textual semi-
structured format (or raw data) is not altered in any way,
and can be considered a read-only random access oracle. The
combination of raw data + semi-index can thus support the
same operations as an optimized binary format, while main-
taining the advantages of keeping the raw data unaltered.

• Backward-compatibility: Existing parsers can just ig-
nore the semi-index and read the raw data.

• The semi-index does not need to be built by the pro-
ducer: the consumer can build/cache it for later use.

• The raw data does not need to be given in explicit
form, provided that a random-access primitive is given,
while the semi-index is small enough that it can easily
fit in fast memory. For example a compression format
with random access can be used on the documents. We
demonstrate this feature in the experimental analysis
by compressing blockwise the data with zlib.

A semi-index can be engineered in several ways depend-
ing on the format grammar and the succinct data struc-
tures adopted for the purpose. Although the semi-indexing
schema is general, we focus on a concrete implementation
using JSON as the underlying format for clarity.

In our experiments (Section 6) we show that query time is
very fast, and speedup using the precomputed semi-index on
a MapReduce-like computation ranges from 2 to 12 times.
Using a block-compressed input file further improves the
running time when the document size is large, by trading
I/O time for CPU time. This comes at the cost of a space
overhead caused by the storage of the semi-index, but on
our datasets the overhead does not exceed (and is typically
much less than) around 10% of the raw data size.

When comparing against the performance of BSON, our
algorithm is competitive on some datasets and better on
others. Overall, raw data + semi-index is never worse than
BSON, despite the latter is an optimized binary format.

To our surprise, even if the semi-index is built on the fly
right before attribute extraction, it is faster than parsing the
document: thus semi-indexing can be also thought of as a
fast parsing algorithm.

The main drawback of the semi-index is that it has a fixed
additive overhead of 150–300 bytes (depending on the imple-
mentation), making it unsuitable for very small individual
documents. This overhead can be however amortized for a
collection of documents. In our experiments we follow this
approach.

In summary, our contribution in this paper is to show how
to exploit our notion of semi-indexing to speed up sequential
access to a collection of semi-structured documents in a very
simple way. We believe that our paradigm is quite general
and can be applied to other formats as well.

Paper organization. In Section 2 we compare our ap-
proach with existing literature. In Section 3 we review the
tools and notations used in the paper. In Section 4 we
overview a general technique to build and query the semi-
index. In Section 5 we describe a specific representation for
JSON, adopting some data structures from the state of the
art ([2, 29]). In Section 6 we discuss the experimental results
and the practicality of the approach. Finally, in sections 7
and 8 we introduce a different application of the technique
and conclude giving future work directions.

2. RELATED WORK
A similar approach for comma-separated-values files is

presented in [17]. The authors describe a database engine
that skips the ordinary phase of loading the data into the
database by performing queries directly on the flat textual
files. To speed up the access to individual fields, a (sampled)
set of pointers to the corresponding locations in the file is
maintained, something similar to our positional index. This
approach, however, is suitable only for tabular data.

Virtually all the work on indexing semi-structured data
focuses on XML, but most techniques are easily adaptable
to other semi-structured data formats, including JSON. For
example, AgenceXML [6] and MarkLogic[16] convert JSON
documents internally into XML documents, and Saxon [23]
plans to follow the same route.

To the best of our knowledge, no work has been done on
indexes on the structure of the textual document, either for
XML or other formats. Rather, most works focus on pro-
viding indexes to support complex tree queries and queries

on the content, but all of them use an ad-hoc binary repre-
sentation of the data (see [13] for a survey on XML indexing
techniques).

For the storage of XML data several approaches were pro-
posed that simultaneously compress XML data while sup-
porting efficient traversal, and they usually exploit the sep-
aration of tree structure and content (see [30] for a survey
on XML storage schemes).

Some storage schemes employ succinct data structures:
for example [8] uses a succinct tree to represent the XML
structure, and [12] exploits compressed non-binary dictio-
naries to encode both the tree structure and the labels, while
supporting subpath search operations.

The work in [35] is the closest to this paper, as it uses
a balanced-parentheses succinct tree representation of the
document tree, but like the others it re-encodes the contents
of the document to a custom binary format and discards the
unparsed form.

Industrial XML parsers such as Xerces2 [1] keep in mem-
ory only a summary of the tree structure with pointers to
the textual XML, while parsing only the elements that are
needed. This technique, known as Lazy XML parsing, needs
however to scan the full document to parse the tree structure
every time the document is loaded, hence the I/O complexity
is no better than performing a full parse. Refinements of this
approach such as double-lazy parsing [11] try to overcome
the problem by splitting the XML file in several fragments
stored in different files that link to each other. This however
requires to alter the data, and it is also XML-specific. Be-
sides, each fragment that is accessed has to be fully scanned.
Semi-indexing is similar to lazy parsing in that a pre-parsing
is used to speed up the access to the document, but the re-
sult of semi-index preprocessing is small enough that can be
saved along the document, while in lazy parsing the prepro-
cessing has to be done every time the document is loaded.

3. BACKGROUND AND TOOLS

3.1 JSON format
JSON (JavaScript Object Notation) is a small fragment

of the Javascript syntax used to represent semi-structured
data. A JSON value can either be an atom (i.e. a string, a
number, a boolean, or a null), an object, or an array. An
object is an unordered list of key/value pairs, where a key is
a string. An array is an ordered list of values (so one can ask
for the ith value in it). A JSON document is just a value,
usually an object. The following figure shows an example of
a JSON document and its parsing.

{

key: value︷ ︸︸ ︷
"a"︸︷︷︸
string

: 1︸︷︷︸
num

,"b":{"l":[1,null︸ ︷︷ ︸
null

]

︸ ︷︷ ︸
array

,"v":true︸ ︷︷ ︸
bool

}

︸ ︷︷ ︸
object

}

The document tree of a JSON value is the tree where
the leaf nodes are the atoms and internal nodes are objects
and arrays. The queries usually supported on the tree are
the basic traversal operations, i.e. parent and ith child (and
labeled child for objects). We use the Javascript notation to
denote path queries, so for example in this document a is 1
and b.l[1] is null.

3.2 Succinct data structures
To encode and query the semi-index we employ succinct

data structures. A succinct data structure stores the input
data in the informational theoretical minimum number of
bits, and still supports some given operations in constant
time. We use two such data structures.

Elias-Fano encoding. The Elias-Fano representation of
monotone sequences [9, 10] is an encoding scheme to repre-
sent a non-decreasing sequence of m integers in [0..n) occu-
pying 2m+m

⌈
log n

m

⌉
+o(m) bits, while supporting constant-

time access to the ith integer. The representation can be
used to represent sparse bitvectors (i.e. where the number
m of 1s is small with respect to the size n of the bitvector),
by encoding the sequence of the positions of the 1s. In fact,
the representation can support all the operations defined by
Fully Indexable Dictionaries (FID, see [28]).

By analogy to FIDs, we call the access operation to the
ith integer Select(i), and we denote its implementation in
the pseudocode by select.

The scheme is very simple and elegant, and efficient prac-
tical implementations are described in [14, 27, 33]1.

BP. It is an acronym for balanced parentheses. They are
inductively defined as follows: an empty sequence is BP;
if α and β are sequences of BP, then also (α)β is a se-
quence of BP, where (and) are called mates. For example,
(()(()())) is a sequence of BP. Note that a sequence of
BP implicitly represents a tree, where each node corresponds
to a pair of mates. BP sequences are represented as bitvec-
tors, where 1 represents (and 0 represents).

A sequence S of 2m BP can be encoded in 2m+o(m) bits
[18, 26] so that the following operations, among others, are
supported in constant or nearly-constant time.

• Access(i) returns S[i]; we denote its implementation
with the square brackets operator [].

• FindClose(i), for a value i such that S[i] =(, returns
the position j > i such that S[j] =) is its mate; we
denote its implementation by find_close.

• FindOpen(i), for a value i such that S[i] =), returns
the position j < i such that S[j] =(is its mate.

• Rank((i) returns the pre-order index of the node corre-
sponding to the parenthesis at position i and its mate;
note that this is just the number of open parentheses
before i, and we denote its implementation by rank.

• Excess(i) returns the difference between the number
of (s and that of)s in the first i + 1 positions of S.
Note that since the parentheses are balanced this value
is always non-negative, and it is easy to show that it
equals 2Rank((i) − i.

• Child(i, q) returns the parenthesis that opens the qth
child of the node represented by the open parenthesis
at position i.

4. SEMI-INDEXING TECHNIQUE
We illustrate our technique with the JSON document shown

in the example of Section 3.1.
The most common way of handling textual semi-structured

data is to parse it into an in-memory tree where the leaf

1In [27] the data structure is called SDArray.

nodes contain the parsed atoms. The tree is then queried
for the requested attributes. Since the tree contains all the
relevant data, the raw document is no longer needed, as
shown in the figure below.

{}

"a" 1 "b" {}

"l" []

1 null

"v" true

in-memory tree

{ "a": 1, "b": { "l": [1, null], "v": true}}

We would like to create a structure that allows us to nav-
igate the document without having to parse it. One possible
approach could be to dump the parse tree, and to replace
the values in the nodes with pointers to the first character of
their corresponding phrases in the document. This clearly
requires to store also the raw data along with the resulting
“thinner” tree.

thin parse tree

{ "a": 1, "b": { "l": [1, null], "v": true}}

We can now navigate the parse tree, and parse just the
values corresponding to the leaves that are actually needed.
Note that if the grammar is LL(1)2, we do not need to store
the node type: it suffices to look at the first character of the
node to recognize the production. So we are left with the
tree data structure representing the topology of the parse
tree, and a pointer for each node to the first character of its
phrase in the raw text. This is very similar to the approach
adopted by lazy parsers for XML.

Still, this requires building explicitly the parse tree every
time the document is loaded. Instead, we will show how
a quick scan of the document is sufficient to produce a se-
quence of balanced parentheses plus a bitvector as shown in
the figure below (see Section 5 for details).

(()()()(()(()())()()))

110000100100001100001100100000010000100000

{"a": 1, "b": {"l": [1, null], "v": true}}

semi-index

2Most semi-structured data formats are LL(1), including
XML and JSON. If the grammar is not LL(1) an additional
logP bits per node may be needed, where P is the number
of productions.

This way we encode the same information as the thinner
parse tree without parsing the document and building its
parse tree. As we discuss in the experiments of Section 6,
scanning is much faster than parsing. We merely store two
binary sequences, encoding each parenthesis with a single
bit, augmented with the machinery to support the opera-
tions described in Section 3.2. Besides, the binary sequence
with the positions is sparse, so easy to encode in compressed
format using very small space. Thanks to their small encod-
ing, the two sequences can be computed just once and then
be stored for future use.

This scheme can be applied to other formats. For instance,
the XML semi-index would look like the following figure.

((()()()())()(()))

10000011001000100010001010010000000000000

<entry id="1" cat="c">t1t2</entry>

semi-index

Our approach is to employ a set of succinct structures
to replace the functionality of the thinner parse tree, and
obtain faster construction and query time (see Section 6).
We can thus define the semi-index.

Definition 4.1 A semi-index for a document D is a suc-
cinct encoding of (i) the topology of the parse tree T of D,
and (ii) the pointers that originate from each node of T to
the beginning of the corresponding phrase in D.

Let m denote the number of nodes in T . The general
template to build the semi-index using an event parser is
illustrated in Algorithm 13. By event parser we mean a
parser that simulates a depth-first traversal of the parse tree,
generating an open event when the visit enters a node and
a close event when it leaves it. (An example is the family
of SAX parsers for XML.) If the event parser uses constant
memory and is one-pass, so does Algorithm 1. Thus it is
possible to build the semi-index without having to build an
explicit parse tree in memory. In the pseudocode, (i) bp is
the balanced parentheses tree structure, and (ii) positions

is the Elias-Fano representation of the pointers.

def build_semi_index(s):
positions = EliasFanoSequence()
bp = BalancedParentheses()
for event, pos in parse_events(s):

if event == ’open’:
bp.append(1)
positions.append(pos)

elif event == ’close’:
bp.append(0)

Algorithm 1: Construction of semi-index using an
event parser

For the construction algorithm to be correct we need the
following observation.

3The pseudocode is actually working Python code, but we
omitted the auxiliary functions and classes for the sake of
presentation.

Observation 4.2 The sequence of pointers in a pre-order
visit of the parse tree T induces a non-decreasing sequence of
m positions in D. In other words, the sequence of positions
of open events in an event parsing is non-decreasing.

Observation 4.2 allows us to use the Elias-Fano encoding,
whose implementation is referred to as EliasFanoSequence in
Algorithm 1, for the positions.

Algorithm 2 shows the pseudocode for some tree opera-
tions. Operation get_node_pos returns the position of the
phrase in the document D corresponding to the node of T
represented by the parenthesis at position par_idx. Opera-
tion first_child returns the position of the parenthesis cor-
responding to the first child of the current node. Operation
next_child returns the position of the next sibling (if any).

def get_node_pos(bp, positions, par_idx):
node_idx = bp.rank(node)
pos = positions.select(node_idx)
return pos

def first_child(bp, par_idx):
return par_idx + 1

def next_sibling(bp, par_idx):
next = bp.find_close(par_idx) + 1
if bp[next]:

return next
else:

return None

Algorithm 2: Some tree operations on the semi-
index

We now discuss the space usage in our encoding. As shown
in our example, the tree topology can be encoded with the
balanced parentheses representation, thus taking 2m+o(m)
bits. Nodes are identified by the open parentheses, so that
Rank((i) gives the pre-order index of node i.

The pointers can be thus encoded in pre-order by using the
Elias-Fano representation, taking another 2m+m

⌈
log n

m

⌉
+

o(m) bits. Summing the two figures leads to the following
lemma.

Lemma 4.3 A semi-index of a document D of n bytes such
that the parse tree T has m nodes can be encoded in

4m+m
⌈
log

n

m

⌉
+ o(m) (1)

bits, while supporting each of the tree navigational operations
in O(1) time.

The bound in (1) compares favorably against an explicit
representation of the tree T and its text pointers: even if
space-conscious, it would require 2 node pointers plus one
text pointer, i.e. m(2 logm + logn) bits. For example, for
a reasonably sized 1MB document with density 0.2 (1 node
for each 5 bytes on average), the size of the data structure
would be 1.4MB, 140% of the document itself!

In practical implementation, the data structures that we
adopt use approximately 5.5m + m

⌈
log n

m

⌉
bits and have

O(logn) complexity, but they are practically faster than
data structures requiring theoretically constant time (see
[2]). The encoding of the example above then takes 262kB,
just 26.2% of the raw document. Even in case of a patholog-
ical high density document, i.e. n = m, the data structure
would occupy 5.5m bits, i.e. an 68.7% overhead. Real-world
documents, however, have very low densities (see Section 6).

5. ENGINEERING THE JSON SEMI-INDEX
In this section we describe a semi-index specifically tai-

lored for JSON. It slightly deviates from the general schema
presented in Section 4, since it exploits the simplicity of the
JSON grammar to gain a few more desirable properties, as
we will see shortly. As in the general scheme, we associate
two bitvectors to the JSON document, bp and positions.

• The structural elements of the document, i.e. the curly
brackets {}, the square brackets [], the comma , and
the colon : are marked in the bitvector positions,
which is encoded with the Elias-Fano representation.

• For each structural element a pair of parentheses is
appended to the bp (balanced parentheses) vector:

– Brackets { and [open their own node (the con-
tainer) and the first element of the list, so their
encoding is ((.

– Brackets } and] close the last element of the list
and their own node, so their encoding is)).4

– Comma , closes the current element and opens
the next, so its encoding is)(.

– Colon : is treated like the comma, so key/value
pairs are encoded simply as consecutive elements.

An example of the encoding is shown below: the JSON
document (top), the positions bitvector (middle), and the bp

bitvector (bottom). We implement bp as a binary sequence
where (is encoded by 1, and) is encoded by 0.

{"a": 1, "b": {"l": [1, null], "v": true}}

100010010000101000101010000011000010000011

(()()()((()((()()))()())))

This encoding allows a very simple algorithm for the con-
struction of the semi-index: a one-pass scan of the document
is sufficient, and it can be implemented in constant space
(in particular, no stack is needed). As a result, building the
semi-index is extremely fast.

def build_semi_index(json):
positions = EliasFanoBitVector()
bp = BalancedParentheses()
i = 0
while i < len(json):

c = json[i]
if c in ’[{’:

positions.append(1)
bp.extend([1, 1])

elif c in ’}]’:
positions.append(1)
bp.extend([0, 0])

elif c in ’,:’:
positions.append(1)
bp.extend([0, 1])

elif c == ’"’:
consume_string returns the position of
the matching ’"’
new_i = consume_string(json, i)
length = new_i - i + 1
i = new_i
positions.extend([0] * length)

else:
positions.append(0)

i += 1

Algorithm 3: Construction of JSON semi-index
4The empty object {} and array [] have encoding (()), so
they are special cases to be handled separately in navigation.

Our ad-hoc encoding gives us two further features. First,
each bit 1 in the bitvector positions is in one-to-one corre-
spondence with pairs of consecutive parentheses in bp: there
is no need to support a Rank operation to find the position
in bp corresponding to a 1 in positions, as it is sufficient to
divide by 2. Second, since the positions of closing elements
(},], ,) are marked in positions, it is possible to locate in
constant time both endpoints of the phrase that represents a
value in the JSON document, not just its starting position.

Navigation inside a JSON document is as follows. Find-
ing a key in an object is performed by iterating its subn-
odes in pairs and parsing the keys until the searched one is
found. The pseudocode for this operation can be found in
object_get, Algorithm 4.

def get_pos(node):
pos = positions.select(node / 2)
pos += node % 2
return pos

def object_get(json, node, key):
if node is odd, it is a comma, so skip it
node += node % 2
opening_pos = get_pos(node)
if json[opening_pos] != ’{’:

not an object
return None

empty objects are a special case
if json[opening_pos + 1] == ’}’:

return None

node = node + 1
node_pos = opening_pos + 1

while True:
if bp[node] == 0:

return None
node_close = bp.find_close(node)
node position after the colon
val_open = node_close + 1
check if current key matches
if parse(json, node_pos) == key:

return val_open
otherwise skip to next key/value pair
val_close = bp.find_close(val_open)
node = val_close + 1
skip the comma
node_pos = get_pos(node) + 1

Algorithm 4: Get position and object child by key

The query algorithm makes a number of probes to the
JSON document that is linear in the fanout of the object.
This is not much of a problem since the fanout is usually
small. Otherwise, if it is possible to ensure that the keys
are in sorted order, binary search can be used to reduce the
number of probes to the logarithm of the fanout.

Array access can be done similarly with forward iteration
through FindClose, with backwards iteration by jumping to
the parenthesis closing the container and iterating on the
contents with FindOpen, or with the ith child if bp supports
it. In any case, at most 3 accesses to the JSON document
are made: the I/O complexity is constant even if the runtime
complexity may be linear.

We remark that in the design of the engineered JSON
semi-index we have chosen simplicity over theoretical op-
timality. In general, other space/time/simplicity tradeoffs
can be achieved by composing together other succinct data
structures chosen from the vast repertoire in the literature,
thus giving rise to a wide range of variations of the semi-
indexing framework.

6. EXPERIMENTAL ANALYSIS
In this section we discuss the experimental analysis of the

semi-index described in Section 5. The benchmark is aimed
at the task of attribute extraction described in Section 1.

• Each dataset consists in a text file whose lines are
JSON documents. The file is read from disk.

• The query consists in a list of key/index paths, to de-
fine which we use the Javascript notation. For instance
given the following document

{"a": 1, "b": {"v": [2, "x"], "l": true}}

the query a,b.v[0],b.v[-1] returns [1, 2, "x"],
i.e. the list of the extracted values encoded as a JSON
list. Note that negative indices count from the end of
the array, so -1 is the last element.

• Each benchmark measures the time needed to run the
query on each document of the dataset and write the
returned list as a line in the output file.

Implementation and testing details. The algorithms
have been implemented in C++ and compiled with g++ 4.4.
The tests were run on a dual core Intel Core 2 Duo E8400
with 6MB L2 cache, 4GB RAM and a 7200RPM SATA hard
drive, running Linux 2.6.35 - 64bit. Before running each test
the kernel page caches were dropped to ensure that all the
data is read from disk. When not performing sequential
scan, the input files were memory-mapped to let the kernel
load lazily only the needed pages. For the construction of
the semi-index each dataset is considered as a single string
composed by the concatenation of all the documents, so a
single semi-index is built for each dataset and stored on a
separate file. The positions in the positional index are thus
absolute in the file, not relative to each single document.

The source code used for the experiments is available at
the URL https://github.com/ot/semi_index.

Succinct data structures. For the Select bitvectors
and the Elias-Fano encoding we implemented the broad-
word techniques described in [33], in particular rank9 for
the Rank (used in the Excess primitive in BP) and a one-
level hinted binary search for the Select. For the balanced
parentheses we implemented the Range Min-Max tree de-
scribed in [2]. With respect to the parameters described in
the paper, we traded some space for speed using smaller su-
perblock sizes. The excess forward and backward search on
64-bit words, that is in the inner loop of all the tree nav-
igation operations, was implemented using a combination
of lookup tables and broadword techniques to eliminate the
branches.

Document compression. To simulate the behavior on
compressed file systems we implemented a very simple block
compression scheme which we call gzra (for gzipped “ran-
dom access”). The file is split into 16kB blocks which are
compressed separately with zlib and indexed by an offset
table. On decompression, blocks are decompressed as they
are accessed. We keep an LRU cache of decompressed blocks
(in our experiments we use a cache of 8 blocks). The on-disk
representation is not optimized—it may be possible to shave
the I/O cost by aligning the compressed blocks to the disk
block boundaries.

https://github.com/ot/semi_index

wc

jso
nc

pp
bs

on

si
on

the
fly si

si
co

mpr

si
bu

ild
0

2

4

6

8

10

12

14

16
wp events

wc

jso
nc

pp
bs

on

si
on

the
fly si

si
co

mpr

si
bu

ild
0

10

20

30

40

50
delicious

wc

jso
nc

pp
bs

on

si
on

the
fly si

si
co

mpr

si
bu

ild
0

10

20

30

40

50

60

70

80

90
openlib authors

wc

jso
nc

pp
bs

on

si
on

the
fly si

si
co

mpr

si
bu

ild
0

10

20

30

40

50

60
wp history

wc

jso
nc

pp
bs

on

si
on

the
fly si

si
co

mpr

si
bu

ild
0

20

40

60

80

100

120

140

160
xmark

I/O time
CPU time

Figure 1: Wall clock times for each dataset as listed in Table 1. I/O time indicates the time the CPU waits
for data from disk, while in CPU time the CPU is busy (and the kernel may be prefetching pages from disk).

Dataset Wall clock time (seconds)

wc jsoncpp bson si_onthefly si si_compr si_build

wp_events 3.5 14.8 (4.29) 9.5 11.2 (3.23) 6.7 (1.94) 12.2 (3.55) 4.7 (1.35)
delicious 12.4 49.3 (3.96) 18.7 22.8 (1.83) 18.6 (1.49) 27.1 (2.18) 15.1 (1.21)
openlib_authors 15.0 82.9 (5.52) 48.0 53.0 (3.53) 28.4 (1.89) 48.4 (3.22) 19.3 (1.29)
wp_history 28.0 53.5 (1.91) 50.3 32.6 (1.16) 10.6 (0.38) 4.7 (0.17) 31.9 (1.14)
xmark 26.6 154.5 (5.80) 28.3 36.6 (1.38) 40.2 (1.51) 15.9 (0.60) 38.9 (1.46)

Table 1: Running times for each dataset. Numbers in parentheses are the runtimes normalized on wc time.
Numbers in bold are the ones within 10% from the best

file
siz

e

gz
siz

e

gz
ra

siz
e

si
siz

e

bs
on

siz
e

0

50

100

150

200

250

300

350

400

360

47 56

31

346

wp events

file
siz

e

gz
siz

e

gz
ra

siz
e

si
siz

e

bs
on

siz
e

0

200

400

600

800

1000

1200

1400

1297

186 217

107

1249

delicious

file
siz

e

gz
siz

e

gz
ra

siz
e

si
siz

e

bs
on

siz
e

0

200

400

600

800

1000

1200

1400

1600

1800

1627

194 217 177

1557

openlib authors

file
siz

e

gz
siz

e

gz
ra

siz
e

si
siz

e

bs
on

siz
e

0

500

1000

1500

2000

2500

3000 2927

446

768

10

2868
wp history

file
siz

e

gz
siz

e

gz
ra

siz
e

si
siz

e

bs
on

siz
e

0

500

1000

1500

2000

2500

3000

2719

640
751

295

2792

xmark

Figure 2: Space occupancy in MB of the file uncompressed (file_size), compressed with gzip (gz_size)
and compressed with gzra (gzra_size), encoded in BSON (bson_size), and of the semi-index (si_size)

Dataset Records Average kBytes Average nodes Semi-index overhead

wp_events 1000000 0.36 24.82 8.85%
delicious 1252973 1.04 61.28 8.31%
openlib_authors 6406158 0.25 22.00 10.90%
wp_history 23000 127.27 203.87 0.34%
xmark 1000 2719.47 221221.48 10.86%

Table 2: Number of documents, average document size, average number of nodes, and semi-index space
overhead (percent with respect to average document size) for each dataset used in the benchmark

Datasets. The experiments were performed on a col-
lection of datasets of different average document size and
density. On one extreme of the spectrum there are datasets
with small document size (wp_events), which should yield
little or no speedup, and very high density (xmark), which
should give a high semi-index overhead. On the other ex-
treme there is wp_history which has large documents and
relatively small density. Specifically:

The Wikipedia data was obtained by converting to JSON
the Wikipedia dumps [34], while we used the xmlgen tool
from XMark [31] and converted the output to JSON to gen-
erate synthetic data of very high density.

• wp_events: Each document represents the metadata
of one edit on Wikipedia.

• delicious [20]: Each document represents the meta-
data of the links bookmarked on Delicious in Septem-
ber 2009.

• openlib_authors [32]: Each document represents
an author record in The Open Library.

• wp_history: Each document contains the full his-
tory of a Wikipedia page, including the text of each
revision.

• xmark: Each document is generated using xmlgen
from XMark with scale factor chosen uniformly in the
range [0.025, 0.075).

Queries. The queries performed on each dataset are
shown in Table 3. We have chosen the queries to span sev-
eral depths in the document trees (the XPath dataset xmark
has deeper trees that allow for more complex queries). Some
queries access negative indices in arrays, to include the con-
tribution of the performance of backwards array iteration in
our tests.

Dataset Queries

wp_events
id

timestamp

title

delicious
links[0].href

tags[0].term

tags[-1].term

openlib_authors
name

last_modified.value

wp_history

id

title

revision[0].timestamp

revision[-1].timestamp

xmark

people.person[-1].name

regions.europe.item[0].quantity

regions.europe.item[-1].name

open_auctions.open_auction[0].current

Table 3: Queries performed on each dataset

Testing. For each dataset we measured the time needed
to perform the following tasks.

• wc: The Unix command that counts the number of
lines in a file. We use it as a baseline to measure the
I/O time needed to scan sequentially the file without
any processing of the data.

• jsoncpp: Query task reading each line, and parsing
it using the JSONCpp library [22] (one of the most
popular and efficient JSON C++ libraries). The re-
quested values are output by querying the in-memory
tree structure obtained from the parsing.

• bson: Query task using data pre-converted to BSON.

• si_onthefly: Query task reading each line, building
on the fly the semi-index, and using it to perform the
queries. Note that in this case the semi-index is not
precomputed.

• si: Query task using a precomputed semi-index from
a file on disk.

• si_compr: Like si, but instead of reading from the
uncompressed JSON file, the input is read from a gzra-
compressed file.

• si_build: Construction of the semi-index from the
JSON file.

Results. We summarize the running times for the above
tests in Figure 1 and Table 1, and the space overhead in
Figure 2 and Table 2, which also reports the statistics for
each file in the dataset. We now comment in some detail
these experimental findings.

A common feature on all the datasets is that the standard
load-and-parse scheme using the JSONCpp library, and im-
plemented as jsoncpp, has the worst performance. If time
efficiency is an issue, the other methods are preferable.

BSON is a good candidate in this sense, since it uses pre-
converted data, as implemented in bson, and always runs
faster than jsoncpp. It is interesting to compare bson with
our methods, which also run faster than jsoncpp.

Consider first the situation in which we do not use any
preprocessing on the data: when performing the queries,
we replace the full parsing of the documents with an on-
the-fly construction of the semi-index, as implemented in
si_onthefly. As shown in our tests, si_onthefly per-
forms remarkably well even if it has to load the full docu-
ment, as the semi-index construction is significantly faster
than a full parsing. Compared to bson, which uses a pre-
built index, the running times are slightly larger but quite
close, and the I/O times are simlar. Surprisingly, for file
wp_history, we have that si_onthefly is faster than
bson: a possible reason is that in the latter the value sizes
are interleaved with the values, causing a large I/O cost,
whereas the semi-index is entirely contained in few disk
blocks.

We now evaluate experimentally the benefit of using a pre-
built semi-index. The running times for si_build show
that the construction of the semi-index is very fast, and
mainly dominated by the I/O cost (as highlighted by the
comparison with wc).

Using the pre-computed semi-index, si can query the
dataset faster than bson, except for file xmark where it

is slightly slower: as we shall see, when this file is in com-
pressed format, the I/O time is significantly reduced. Also,
on wp_history querying the last element of an array re-
quires bson to scan all the file (as explained in the introduc-
tion), while si can jump to the correct position; overall si
is 5 times faster than bson on this dataset. Note that con-
trarily to bson, si require less time than wc in some cases
since it takes advantage of the semi-index to make random
accesses to the file and retrieve just the needed bits.

The space overhead of the pre-built semi-index is reported
in the last column of Table 2 and item si_size of Figure 2.
The semi-index takes between 8% and 10% of the uncom-
pressed input for all datasets except wp_history, where
the overhead is practically negligible because data is sparse.

If the overall space occupancy is an issue, we can opt for
a variant of our method si, as implemented in si_compr,
where the dataset is kept compressed using the gzra for-
mat previously discussed. Note that this format, which is a
variant of gzip, requires slightly more space but it allows
for random block access to compressed data (e.g. compare
items gz_size and gzra_size in Figure 2). When com-
paring to the space required by the binary format of bson
(item bson_size in Figure 2), we obtain a significant sav-
ing, where the total space occupancy of the semi-index and
the compressed dataset is the sum of the values of items
gzra_size and size_size in Figure 2.

Regarding its time performance, si_compr is slighter
slower than bson and si for sparse files, while it performs
better for dense files such as wp_history and xmark: in
the former case, the decompression cost dominates the ac-
cess cost, while in the latter the I/O cost is dominant and the
reduced file size improves it (still taking advantage of semi-
indexing). This is also why si_compr is faster than wc on
some files, and obtains a 12x speedup on wp_history over
jsoncpp. Note that on xmark the running times of si and
si_onthefly are comparable: the access pattern of the
queries that we tested touches a large part of the file pages
so there is no advantage in precomputing the semi-index, as
(almost) all the file is accessed anyway.

Summing up, for each dataset at least one among si and
si_compr has at least a 2x speedup. The graphs suggest
that compression enables better performance as the average
document size increases.

7. MEMORY-EFFICIENT PARSING
In this section we describe an alternative application of

the semi-indexing technique.
A fully deserialized document tree takes often much more

memory than the unserialized document itself. Hence in case
of big documents it is very likely that the textual (XML or
JSON) document fits in main memory but its deserialized
version doesn’t.

Industrial parsers such as Xerces2 [1] work around this
problem by loading in memory only the tree structure of
the document and going back to the unparsed document to
parse the required elements. This approach however requires
at least a pair of pointers per node, and usually much more.
As shown in Section 4 for dense documents a pointer-based
representation of the document tree can be more expensive
than the document itself.

Since the construction of the semi-index is extremely fast,
we suggest that a semi-index can be used in place of pointer-
based data structures for lazy parsing.

Figure 3 shows the running times for jsoncpp and si
construction and querying when the document is already in
main memory, hence with no I/O is involved. Note that
query times using the semi-index for in-memory documents
are just 10 times slower than by accessing a fully deserial-
ized tree using jsoncpp. This is very reasonable, since the
query time includes the time to parse the leaf attributes once
the semi-index has identified their position in the unparsed
document.

Thus the semi-index can be used as an alternative to ex-
plicit or lazy parsing in applications where memory is a con-
cern, for example on mobile devices.

wp
ev

en
ts

op
en

lib
au

tho
rs

de
lic

iou
s

wp
his

tor
y

xm
ar

k
10−1

100

101

102

103

104

105

106

jsoncpp parsing
si construction
jsoncpp query
si query

Figure 3: Timings (in microseconds, log-scale) for
in-memory parsing and query operations.

8. CONCLUSIONS
We have described semi-indexing, a technique to build a

data structure that enables navigation operations on tex-
tual semi-structured data without altering its representa-
tion. We engineered and implemented a specialization of
the technique of the JSON format.

Our analysis demonstrates that the semi-index for JSON
documents significantly outperforms the naive approach of
parsing each document entirely, and has better performance
than a binary format, without sacrificing too much storage
space.

The technique we described only addresses basic traver-
sal of the document tree. It would be interesting to devise
more powerful semi-indexing schemes that support complex
queries (à la XPath). Future work will focus on augmenting
the semi-index with other structures to support new opera-
tions, while maintaining a small space overhead by exploit-
ing the access to the raw document.

Acknowledgments
The authors would like to thank Luca Foschini for his in-
sightful comments and suggestions on a preliminary draft.

9. REFERENCES
[1] Apache Xerces2 XML Parser.

http://xerces.apache.org/xerces-j/.

http://xerces.apache.org/xerces-j/

[2] D. Arroyuelo, R. Cánovas, G. Navarro, and
K. Sadakane. Succinct trees in practice. In ALENEX,
pages 84–97, 2010.

[3] Binary XML.
http://en.wikipedia.org/wiki/Binary_XML.

[4] CouchDB. http://couchdb.apache.org/.

[5] CouchDB in the wild. http://wiki.apache.org/
couchdb/CouchDB_in_the_wild.

[6] A. Couthures. JSON for XForms. In Proc.
XMLPrague 2011, 2011.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[8] O. Delpratt, R. Raman, and N. Rahman. Engineering
succinct DOM. In EDBT, pages 49–60, 2008.

[9] P. Elias. Efficient storage and retrieval by content and
address of static files. Journal of the ACM (JACM),
21(2):246–260, 1974.

[10] R. Fano. On the number of bits required to implement
an associative memory. Memorandum 61. Computer
Structures Group, Project MAC, MIT, Cambridge,
Mass., nd, 1971.

[11] F. Farfán, V. Hristidis, and R. Rangaswami. 2LP: A
double-lazy XML parser. Inf. Syst., 34(1):145–163,
2009.

[12] P. Ferragina, F. Luccio, G. Manzini, and
S. Muthukrishnan. Compressing and indexing labeled
trees, with applications. J. ACM, 57(1), 2009.

[13] G. Gou and R. Chirkova. Efficiently Querying Large
XML Data Repositories: A Survey. IEEE
Transactions on Knowledge and Data Engineering,
19(10):1381–1403, 2007.

[14] R. Grossi and J. S. Vitter. Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. SIAM J. Comput., 35(2):378–407,
2005.

[15] Hive JSON SerDe. http:
//code.google.com/p/hive-json-serde/.

[16] J. Hunter. A JSON Facade on MarkLogic Server. In
Proc. XMLPrague 2011, 2011.

[17] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki.
Here are my Data Files. Here are my Queries. Where
are my Results? In 5th International Conference on
Innovative Data Systems Research (CIDR), 2011.

[18] G. Jacobson. Space-efficient static trees and graphs. In
FOCS, pages 549–554, 1989.

[19] Jaql. http://code.google.com/p/jaql/.

[20] JSON dump of Delicious bookmarks, September 2009.
http://infochimps.com/datasets/
delicious-bookmarks-september-2009.

[21] JSON specification. http://json.org/.

[22] JsonCpp. http://jsoncpp.sourceforge.net/.

[23] M. Kay. Ten Reasons Why Saxon XQuery is Fast.
IEEE Data Eng. Bull., 31(4):65–74, 2008.

[24] MongoDB. http://www.mongodb.org/.

[25] MongoDB Production Deployments.
http://www.mongodb.org/display/DOCS/
Production+Deployments.

[26] J. I. Munro and V. Raman. Succinct representation of
balanced parentheses, static trees and planar graphs.
In FOCS, pages 118–126, 1997.

[27] D. Okanohara and K. Sadakane. Practical
entropy-compressed rank/select dictionary. In
ALENEX, 2007.

[28] R. Raman, V. Raman, and S. R. Satti. Succinct
indexable dictionaries with applications to encoding
n-ary trees, prefix sums and multisets. ACM
Transactions on Algorithms, 3(4), 2007.

[29] K. Sadakane and G. Navarro. Fully-functional succinct
trees. In SODA, pages 134–149, 2010.

[30] S. Sakr. XML compression techniques: A survey and
comparison. J. Comput. Syst. Sci., 75(5):303–322,
2009.

[31] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. Xmark: A benchmark for
xml data management. In In VLDB, pages 974–985,
2002.

[32] The Open Library, JSON dump of author records.
http://infochimps.com/datasets/
the-open-library.

[33] S. Vigna. Broadword implementation of rank/select
queries. In WEA, pages 154–168, 2008.

[34] Wikipedia database dumps.
http://download.wikimedia.org/.

[35] R. K. Wong, F. Lam, and W. M. Shui. Querying and
maintaining a compact XML storage. In WWW, pages
1073–1082, 2007.

http://en.wikipedia.org/wiki/Binary_XML
http://couchdb.apache.org/
http://wiki.apache.org/couchdb/CouchDB_in_the_wild
http://wiki.apache.org/couchdb/CouchDB_in_the_wild
http://code.google.com/p/hive-json-serde/
http://code.google.com/p/hive-json-serde/
http://code.google.com/p/jaql/
http://infochimps.com/datasets/delicious-bookmarks-september-2009
http://infochimps.com/datasets/delicious-bookmarks-september-2009
http://json.org/
http://jsoncpp.sourceforge.net/
http://www.mongodb.org/
http://www.mongodb.org/display/DOCS/Production+Deployments
http://www.mongodb.org/display/DOCS/Production+Deployments
http://infochimps.com/datasets/the-open-library
http://infochimps.com/datasets/the-open-library
http://download.wikimedia.org/

	Introduction
	Related work
	Background and tools
	JSON format
	Succinct data structures

	Semi-indexing Technique
	Engineering the JSON Semi-Index
	Experimental analysis
	Memory-efficient parsing
	Conclusions
	References

