Abstract

We study the problem of maintaining sequences of strings under insertion/deletion and indexed queries in compressed space. We introduce a new data structure, the Wavelet Trie, that supports efficient operations in space close to the information-theoretic lower bound.

Rank/Select Sequences

Let $S = \{s_0, \ldots, s_{n-1}\}$ sequence of symbols from alphabet S_{set}.

- Access(i): access the i-th symbol s_i
- Rank(s, pos): count the number of occurrences of s before position pos
- Select(s, idx): find the position of the idx-th occurrence of s

Can use Rank to count the number of occurrences of a symbol in an interval of the sequence, Select to iterate all the occurrences of a symbol.

Example: $S = \text{abracadabra}$, $S_{\text{set}} = \{a, b, c, d, r\}$.

- Access(0) = a
- Rank(a, 3) = 1
- Rank(a, 4) = 2
- Select(a, 2) = 5

“Easy” for the binary case, $S_{\text{set}} \subset \{0, 1\}^\ast$.

Dynamic sequences

A data structure for storing sequences is dynamic if it supports the following operations:

- Insert(s, pos): insert the symbol s immediately before s_{pos}
- Delete(pos): delete the symbol at position pos

We define Append as a special case of Insert:

- Append(s): append the symbol s at the end of the sequence

We call a data structure that only supports Append append-only.

Example scenarios: logging, time series, column-oriented databases, ...

Wavelet Trees

Wavelet Trees reduce queries on alphabet S_{set} to queries on bitvectors. Example for $S_{\text{set}} = \{a, b, c, d, r\}$: $S = \text{abracadabra}$:

- Balanced tree built on S_{set}
- Each node splits the alphabet into two subsets
- At each node, sequence split into two subsequences
- At each node, Os in correspondence with left subset, 1s with right subset
- Support Access and Rank by performing Rank operations top-down on bitvectors, Select by bottom-up Select

By using dynamic bitvectors on the nodes, Insert and Delete can be supported, but the alphabet S_{set} must be set a priori.

This limitation prevents the use of dynamic Wavelet Trees for large alphabets and database applications.

The Wavelet Trie

We consider the problem of sequences of binary strings, i.e. $S_{\text{set}} \subset \{0, 1\}^\ast$.

No loss of generality: non-binary strings, integers, ... can be binarized.

Example: $S = (0001, 0011, 00100, 0100, 00100, 0100)$.

- Rank(0100, 2) = 0
- Rank(0100, 3) = 1
- Select(0100, 2) = 6

We introduce the Wavelet Trie on S:

- Tree structure is the Patricia Trie on S_{set}. Each node corresponds to a subsequence with a common prefix
- α is the longest common prefix of the subsequence
- Each subsequence is partitioned based on the first bit after α
- Bitvector β discriminates between left and right subsequence
- Same operations as Wavelet Tree

New prefix operations

The Wavelet Trie enables two new operations:

- RankPrefix(p, pos): count the strings prefixed by p before position pos
- SelectPrefix(p, idx): find the position of idx-th string prefixed by p

Example application: S is a sequence of URLs, find the number of URLs from a given hostname in a given range, or enumerate them.

String set updating

The Patricia trie structure enables updates to the alphabet S_{set}. When an unseen string is inserted, an existing node is split. The new node is given a constant bitvector.

For example, Insert($\ldots \gamma \lambda \alpha$, pos) performs the following operations:

Delete is symmetric. To support efficient bitvector initialization with a constant sequence, we introduce new dynamic compressed bitvector data structures.

This yields the first dynamic compressed sequence data structure that efficiently supports a dynamic alphabet.

Time and space

<table>
<thead>
<tr>
<th>Query</th>
<th>Append</th>
<th>Insert</th>
<th>Delete</th>
<th>Space (in bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>$O(</td>
<td>s</td>
<td>+ h_s)$</td>
<td>=</td>
</tr>
<tr>
<td>Append-only</td>
<td>$O(</td>
<td>s</td>
<td>+ h_s)$</td>
<td>$O(</td>
</tr>
<tr>
<td>Fully-dynamic</td>
<td>$O(</td>
<td>s</td>
<td>+ h_s \log n)$</td>
<td>$O(</td>
</tr>
</tbody>
</table>

- Sequence of n strings $\langle s_0, \ldots, s_{n-1} \rangle$. h_s: number of nodes traversed in the trie for string s.
- Average height
- LB: information theoretic lower bound $LT + nH_s$, where LT is the lower bound for the set of strings S_{set}
- PT: space for dynamic Patricia trie on the set of strings S_{set}