Pisa KDD Laboratory
htto.//www-kdd.isti.cnr.it

+
Constraint-based Mining

Francesco Bonchi

e-mail: francesco.bonchi@isti.cnr.it

homepage: http.//www-kdd.isti.cnr.it/~bonchi/
TDM — 11Maggio 06

TOM -11/05

Algorithm 1 Apriori

Input: D, o
Output: Th(Cireqip.o7)
: Cr— it |iel}; k1
while C} # () do
Li, — count(D, C})
Cri1 < generate_apriori(Ly)
k4 4+
Th(Cpreqp,01) < Uy L

TOM -11/05

Is Apriori Fast Enough — Any Performance
Bottlenecks?

The core of the Apriori algorithm:

» Use frequent (k — 1)-itemsets to generate candidate frequent
k-itemsets

» Use database scan and pattern matching to collect counts
for the candidate itemsets

The bottleneck of Apriori: candidate generation

» Huge candidate sets:
= 10 frequent 1-itemset will generate 107 candidate 2-itemsets

= To discover a frequent pattern of size 100, e.g., {a,, @, ..., 8,yo}, ONE
needs to generate 2790 =~ 1030 candidates.

= Multiple scans of database:
» Needs (n +1) scans, n is the length of the longest pattern

TOM -11/05 3

Mining Frequent Patterns
Without Candidate Generation

» Compress a large database into a compact,
Frequent-Pattern tree (FP-tree) structure
= highly condensed, but complete for frequent pattern
mining
» avoid costly database scans

» Develop an efficient, FP-tree-based frequent
pattern mining method

» A divide-and-conquer methodology: decompose
mining tasks into smaller ones

» Avoid candidate generation: sub-database test only!

TOM -11/05

How to Construct FP-tree from a Transactional
Database?

TID Items bought (ordered) frequent items

100 {facdgim,p}
200 {a, b, c, [, I, m, 0}
300 {b,f hJj, o}

400 {b, ¢, k, s, p}

500 la,f,¢c, e, 1, p,m n}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

TOM -11/05

{f,c,a,m,p}
{f; C) a) b) m}
{f, b}

{c, b, p}

{f, ¢, a, m, p}

min_support =3

Header Table

Item frequency

4

/
c
a
b
m
p

W W W KN

head //>f' 4| -~ el
B g /// |
45| 3] b:14] b1
I [e
—‘\\\\3 a:3 E p:1
R | 7
1 /
\pm2Jtb:1|
\

Benefits of the FP-tree Structure

= Completeness:

never breaks a long pattern of any transaction

» preserves complete information for frequent pattern

mining

= Compactness

TOM -11/05

reduce irrelevant information—infrequent items are gone

frequency descending ordering: more frequent items are
more likely to be shared

never be larger than the original database (if not count
node-links and counts)

Mining Frequent Patterns Using FP-tree

= (General idea (divide-and-conquer)

» Recursively grow frequent pattern path using the FP-
ree

= Method

» for each item, construct its conditional pattern-base,
and then its conditional FP-tree

» Repeat the process on each newly created conditional
FP-tree

= Until the resulting FP-tree is empty, or it contains only

one path (single path will generate all the combinations of its
sub-paths, each of which is a frequent pattern)

TOM -11/05

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the
FP-tree

2) Construct conditional FP-tree from each conditional
pattern-base

3) Recursively mine conditional FP-trees and grow
frequent patterns obtained so far

4) If the conditional FP-tree contains a single path, simply
enumerate all the patterns

TOM -11/05

Step 1: From FP-tree to Conditional Pattern Base

= Starting at the frequent header table in the FP-tree
» Traverse the FP-tree by following the link of each frequent item

» Accumulate all of transformed prefix paths of that item to form a
conditional pattern base

{} Conditional pattern bases
Header Tabl
cader Table - item cond. pattern base
Item_frequency head /”:'j"4 -7 C'i] ¢ f:3
f A 1 ¢ ,
c 4 ——A-s| c:34] b:14] b:1 a Je:3
a 3 -~ | Yoo b fea:l, f:1, c:1
sl - ! :
fﬂ ; . \i ;3 ’,' 1; 1 m fea:2, feab:1
p 3 o\ - 2\:.; b1 / p feam:2, cb:1
\ \ //
\ | ’{' /|’/
S p:2m:l

TOM -11/05

Properties of FP-tree for Conditional Pattern
Base Construction

= Node-link property
= For any frequent item a, all the possible frequent
patterns that contain a; can be obtained by following a;'s
node-links, starting from a;'s head in the FP-tree header

» Prefix path property
= Jo calculate the frequent patterns for a node a; in a path

P, only the prefix sub-path of a;in P need to be
accumulated, and its frequency count should carry the

same count as node a..

TOM -11/05

10

Step 2: Construct Conditional FP-tree

» for each pattern-base
» Accumulate the count for each item in the base
» Construct the FP-tree for the frequent items of the pattern

base
{}\ m-conditional pattern
Header Table base:
Item frequency head 3 | e fea:2, feab:1
f 4 17 //\, \ All frequent patterns
c 4 —1=> 31 b3l b1 {} concerning m
] A 1

a 3 i A e e T S
b 3 TN a3 | [21.'] f:3 -> fm, cm, am,
m 3 7\ RS / | fem, fam, cam,

3 NP2 b:1' il c:3
P \ | = 'I feam

S Y
p:2 T m:l a3
TOM -11/05 m-conditional FP-tree 1

Mining Frequent Patterns by Creating Conditional

Pattern Bases

Item | Conditional pattern-base | Conditional FP-tree
P {(fcam:2), (cb:1)} {(c:3)}Ip
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}{m
b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}a
c {(f:3)} {(f:3)}c
f Empty Empty

TOM -11/05

12

Step 3: recursively mine the conditional FP-tree

{}
|
{ Cond. pattern base of “am”: (fc:3) f:3
| |
-3
f:3)
| am-conditional FP-tree
c:3 {}
| Cond. pattern base of “cm”: (f:3) |
a:3 f-'3

m-conditional FP-tree
cm-conditional FP-tree

{}
|
Cond. pattern base of “cam”: (f:3) f:3

cam-conditional FP-tree

TOM -11/05 13

Single FP-tree Path Generation

» Suppose an FP-tree T has a single path P

= The complete set of frequent pattern of T can be
generated by enumeration of all the combinations of the
sub-paths of P

TOM -11/05

U
|

J:3

|
c:3 4

I
a:3

m-conditional FP-tree

All frequent patterns
concerning m

m,

fm, cm, am,
fem, fam, cam,
fcam

14

Principles of Frequent Pattern Growth

= Pattern growth property

» [et a be a frequent itemset in DB, B be a's
conditional pattern base, and S be an itemset in B.
Then o U B is a frequent itemset in DB iff 5 is
frequent in B.

» “abcdef ”is a frequent pattern, if and only if
= “abcde " is a frequent pattern, and

= “f7is frequent in the set of transactions containing
“abcde ”

TOM -11/05 15

TOM -11/05

Why Constraints?

= Frequent pattern mining usually produces too many solution
patterns. This situation is harmful for two reasons:
1. Performance: mining is usually inefficient or, often, simply unfeasible

2. Ildentification of fragments of interesting knowledge blurred within a
huge quantity of small, mostly useless patterns, is an hard task.

= (Constraints are the solution to both these problems:

1. they can be pushed in the frequent pattern computation exploiting them
in pruning the search space, thus reducing time and resources
requirements;

2. they provide to the user guidance over the mining process and a way of
focussing on the interesting knowledge.

With constraints we obtain less patterns which are more
Interesting. Indeed constraints are the way we use to define
what is “interesting’.

TOM -11/05 17

Problem Definition

= |={x,, ..., X,} setof distinct literals (called items)

» Xcl, X2, [X] =k, Xis called k-itemset

= A fransaction is a couple (tID, X) where X is an itemset

= A transaction database TDB is a set of transactions

= An itemset X is contained in a transaction (tID, Y) if Xc Y

= Given a TDB the subset of transactions of TDB in which X is contained is named
TDB[X].

» The support of an itemset X , written supprpg(X) is the cardinality of TDB[X].

= Given a user-defined min_sup an itemset X is frequent in TDB if its support is no less
than min_sup.

We indicate the frequency constraint with C.,

Given a constraint C, let Th(C) = {X| C(X)} denote the set of all itemsets X
that satisfy C.

The frequent itemsets mining problem requires to compute Th(Cy,,)
The constrained frequent itemsets mining problem requires to compute:
Th(Cy,) N Th(C).

TOM -11/05

Constrained Frequent Pattern Mining:
A Mining Query Optimization Problem

= @Given a frequent pattern mining query with a set of constraints C, the
algorithm should be
= sound: it only finds frequent sets that satisfy the given constraints C
= complete: all frequent sets satisfying the given constraints C are
found

» A naive solution (generateé&test)
= @Generate all frequent sets, and then test them for constraint
satisfaction

= More efficient approaches:
» Analyze the properties of constraints comprehensively

» Push them as deeply as possible inside the frequent pattern
computation.

TOM -11/05

19

Anti-Monotonicity and Succinctness

A first work defining classes of constraints which exhibit nice
properties [Ng et al. SIGMOD’98].

Anti-monotonicity and Succinctness are introduced

CAP, an Apriori-like algorithm which exploits anti-
monotonicity and succinctness of constraints

4 classes of constraints + associated computational strategy
1. Constraints that are anti-monotone but not succinct
2. Constraints that are both anti-monotone and succinct
3. Constraints that are succinct but not anti-monotone
4. Constraints that are neither

TOM -11/05

20

Anti-Monotonicity in Constraint-Based Mining

= Anti-monotonicity:

» When an intemset S satisfies the constraint, so does any
of its subset

» frequency is an anti-monotone constraint.

= "Apriori property”: if an itemset X does not satisfy Cy.,, then
no superset of X can satisfy Cy.,,

= sum(S.Price) <v is anti-monotone
» Very easy to push in the frequent itemset computation

TOM -11/05 21

Succinctness in Constraint-Based Mining

= Succinctness:

= QGiven A, the set of items satisfying a succinct constraint C, then any
set S satisfying C is based on A,, i.e., S contains a subset
belonging to A,

= |dea: whether an itemset S satisfies constraint C can be determined
based on the singleton items which are in S

= min(S.Price) <v is succinct

= sum(S.Price) > v is not succinct

» Optimization: If C is succinct, C is pre-counting pushable (can be
satisfied at candidate-generation time).

= Substitute the usual “Generate-Apriori” procedure with a special
candidate generation procedure.

TOM -11/05 22

CAP — computational strategies

» 4 classes of constraints + associated computational strategy
1. Constraints that are anti-monotone but not succinct

» Check them in conjunction with frequency as a unique anti-monotone
constraint

2. Constraints that are both anti-monotone and succinct

= Can be pushed at preprocessing time: min(S.Price) > v just start the
computation with candidates all singleton items having price > v

3. Constraints that are succinct but not anti-monotone
» Use the special candidate-generation function

4. Constraints that are neither

= /nduce a weaker constraint which is either anti-monotone and/or
succinct

TOM -11/05 23

Converting “Tough” Constraints

» Introduced in [Pei and Han KDD’00, ICDE’01]

= [et R be an order of items
= (Convertible anti-monotone

= [fan itemset S violates a constraint C, so does every itemset
having S as a prefix w.r.t. R

» Ex. avg(S) <v w.r.t. item value descending order

= Convertible monotone

= [fan itemset S satisfies constraint C, so does every itemset having
S as a prefix w.r.t. R

» Ex.avg(S)=>v w.r.t item value descending order

TOM -11/05 24

Converting “Tough” Constraints

= Examine C: avg(S.profit) > 25 ftem | Profit

a 40

» Order items in value-descending order 0

=<a,f,gd b, hc e> -20

10

= [f an itemset afb violates C 230

= So does afbh, afb* 30

20

SO | (O |fo | O

= [t becomes anti-monotone!

-10

= Authors state that convertible constraints can not be pushed
in Apriori but they can be handled by FP-Growth approach.

= Two FP-Growth-based algorithms:
= FICA and FICM

TOM -11/05

Strongly Convertible Constraints

= avg(X) =25 is convertible anti-monotone w.r.t. item
value descending order R: <a, f, g, d, b, h, c, e>

= [f an itemset af violates a constraint C, so does
every itemset with af as prefix, such as afd

Item

Profit

40

0)

= avg(X) =25 is convertible monotone w.r.t. item

-20

value ascending order R'': <e, ¢, h, b, d, g, f, a>

10

» /f an itemset d satisfies a constraint C, so does

-30

itemsets df and dfa, which having d as a prefix

30

20

SO [~ O [QA|O | O

-10

Thus, avg(X) = 25 is strongly convertible

TOM -11/05

26

Monotonicity in Constraint-Based Mining

= Monotonicity

» When an intemset S satisfies the constraint, so does any
of its superset

= sum(S.Price) > v is monotone
» min(S.Price) <v is monotone

» They behave exactly the opposite of frequency ...
= How to push them in the Apriori computation?

TOM -11/05

27

Classification of Constraints

Monotone

convertible

Convertible ' Convertible
anti-monotone monotone

Inconvertible

TOM -11/05

28

gl
TOM -11/05 29

Our Problem ...

... lo compute itemsets which satisfy a conjunction of
anti-monotone and monotone constraints.

Th(Cjreq) N Th(Car)

Why Monotone Constraints?

1. They’re the most useful in order to discover local high-value patterns (for
instance very expansive or very large itemsets which can be found only

with a very small min-sup)

2. We know how to exploit the other kinds of constraints (antimonotone,
succinct) since ‘98 [Ng et al. SIGMOD’98], while for monotone constraints

the situation is more complex ...

TOM -11/05 30

e EEEE——
Characterizing the search space

D - :
1tem | price
a,b,c,d,e T
b,c . >
b 18
b,c, d e c 9
a, b c, d d 4 2
a,b,c,e (& 14 - -
b,c,d.e Cy [a '?l b °'| | ¢ | | d "'| L e]

Cy = sum(X.prices) > 33

FThp (Cﬁneq[D’:g] A Car)={(ab, 3), (abc, 3), (bcde, 3, (bee, 4), (bde, 3)}

TOM -11/05 = 31

AMVs. M

State of art before ExAnte: when dealing with a conjunction of AM and M
constraints we face a tradeoff between AM and M pruning.

Tradeoff: pushing M constraints into the computation can help pruning the
search space, but at the same time can lead to a reduction of AM pruning
opportunities.

Our observation: this is true only if we focus exclusively on the search
space of itemsets. Reasoning on both the search space and the input TDB
together we can find the real sinergy of AM and M pruning.

The real sinergy: do not exploit M constraints directly to prune the search
space, but use them to prune the data, which in turn induces a much
stronger pruning of the search space.

The real sinergy of AM and M pruning lies in Data Reduction ...

TOM -11/05

32

ExAnte u-reduction

@ Definition [u-reduction]:

Given a transaction database TDB and a monotone constraint C,,,
we define the u-reduction of TDB as the dataset resulting from
pruning the transactions that do not satisfy C,,.

,UJ[TDB]CM — Th(CM) NTDB

@ Example: C,,= sum(X.price) > 55

fom Tico tID | Itemset | Total price

: N . 1 bedg 58
{) 3 2 a,b,d,e 63
c 14 f bﬁcld!g!h ZE)

. I oy~ =4 T
(: 38 5} c,d,f.g 65
f 15 6 a,b,c,d,e 7
h | 12 S 49

TOM -11, ..

ExAnte o-reduction

@ Definition [a-reduction]:
Given a transaction database TDB, a transaction <tID,X> and a

frequency constraint C, [TDB], we define the a-reduction <tID,X>
as the subset of items in X that satisfy C,,,[TDB].

al(tID, X)c;, . ,,rpB) = F1NX
Where:
Fi = {I € Items|{I} € Th(Cyreq|TDB])}

We define the a-reduction of TDB as the dataset resulting from the
a-reduction of all transactions in TDB.

9 Examp/e.' [tems = {a,j bj C, dj €, fj (]} X = {Cl’zj C, d: f: Q}

TH(Cpreg) = {{a), (01 {0}, {a B, {ar} (o). {0, b))
Fiy ={a,b,c}

a[(tID, X)le,,., = F1NX ={a,c}

TOM -11/05

34

ExAnte Properties

THEOREM 1 (pu-REDUCTION CORRECTNESS). (Given a
transaction database T'DEB, a monotone constraint Cpr, and
a frequency constraint Cyreq, we have that:

VX € Th(Cfreq|T'DB]) N Th(Car) :
supprpe(X) = SUPPu[TDB¢,, (X).

PROOF. Since X € Th(Ca), all transactions containing
X will also satisfy Cps for the monotonicity property. In
other words: TDB|X| C u|T'DB|c,,. This implies that:

SUPPTDB(X) = SUpPPu[TDB]¢,, (X)
[]

TOM -11/05 b=d® 35

ExAnte Properties

THEOREM 2 (a-REDUCTION CORRECTNESS). Given a
transaction database 1'DB, a monotone constraint Cyr, and
a frequency constraint Cfreq, we have that:

VX € Th(Ctreq[TDB]) N Th(Car) :
supprpr(X) = SUPPa[T DBy, .. (X).

PROOF. Since X € Th(Cfreq), all subsets of X will be
frequent (by the anti-monotonicity of frequency). Therefore
no subset of X will be a-pruned (in particular, no l-itemsets
in X'). This implies that:

SUP}?TDB(X) — Suppa[TDB]gfrﬂq (X)
[]

TOM -11/05 ¥ 36

A Fix-Point Computation

Shorter
transactions

Less frequent
1-itemsets

Less
fransactions
which satisfy ¢,

ntil a fix-poi
is reache

Less
Transactions
in TOB

TOM -11/05 37

TOM -11/C

ExAnte Algorithm

Procedure: ExAnte(T'DB,Cps, min_supp)

1.
2.

=

- S UNNC I

10.

12.
13.
14.
15.

I := 0;
forall tuples t in TDB do
if Cps(¢) then forall items i in ¢ do
i.count+-+; if i.count > man_supp then I .= I U i;
old_number_interesting_items := |I[tems|;
while |I| < old_number_interesting_items do
TDB := a[TDB|cy,.,;
TDB := p[TDB|c,,;
old_number_interesting_items := |I|;
I :=0;
forall tuples ¢t in TDB do
forall items ¢ in ¢ do
ir.count + +;
if i.count > min_supp then I := I U i;

end while

38

ExAnte Preprocessing Example

: : tID | Itemset | Total price
item | price 1 bo,d \5& 55
a 5 bl
R e -
SO 3 | bedxh Ry 5§ |52
4 AeE \31
2 38 5 C.aXX e S
P 6 | Xbcdx IR 52
. ; bt Tty
h 19 8 b.,c,d 52
9 ke N—t+
Item Support
X % 3 t T
b 7 X 4 4
C 5 5 5 4
d 7 X 5 4
X M 3 t
X 3 3 1 1
X % 5 3 t
TOM -11/05 X 2 2 T 7

» Min_sup =4
» C,= sum(X.price) > 45

39

Number of alive transactions

TOM -11/05

10x10°

8x10°8

6x10°8

4x1068

2x10°8

Experimental Results

Dataset "IBM", Cardinality constraint

- min_supp = 0.1

min_supp = 0.05

- min_supp = 0.025
- min_supp = 0.01

Cardinality threshold

40

Xperimental Hesults

Dataset "IBM", Cardinality constraint

18000

16000

14000

12000

10000

8000

6000

Number of alive 1-itemsets

4000

2000

—&— min_supp = 0,05
BN o T I‘I"IiI"I_EUIJp =0,025

TOM -11/05

4 6
Cardinality threshold

TOM -11/05

Candidate itemsets generated

Experimental Results

Dataset "ltalian™

—&— Aprion
------- - ExAnteApriori sum(prices) > 50k

B6x10° B \.\, —-—%—— ExAnteApriori sum(prices) = 150k
* w) —-=57— ExAnteApriori sum(prices) > 100k
"-.D — l—- ExAnteAprior avg(prices) > 25k
5x106 - L
k =5
. [}
4x10° - * i}
.D‘.
: - 0.
3x10° % D
N So
- E \R (=5
2x10° 1 ¥ v, Q.
L | o
v ¥
! 5
1x10% S .‘!. y “m o
0
0,00 0,02 0,04 0,06 0,08 0,10 0,12

Minimum support (%)

42

TOM -11/05

60000

50000

10000

Experimental Results

Dataset "ltalian”

—&8— Apriori
-k ExAnteApriori Sum > 150k
--%¥-- ExAnteApriorn Avg > 25k

43

ExAnte Property (Monotone Data Reduction)

= ExAnte Property: a transaction which does not satisfy a M
constraint can be pruned away from TDB, since it will never
contribute to the support of any solution itemset.

= We call it Monotone Data Reduction and indicate it as [{-reduction.

= [evel 1- Antimonotone Data Reduction of Items ((X-reduction): a
singleton item which is not frequent can be pruned away from all
fransactions in TDB.

= The two components strengthen each other !!!

= ExAnte fixpoint computation. ess frequen
itemsets a
A
Less

Transactions _ The Shorter
in TDB Virtuous ransaction
& Cycle

I'd

Less
transactions
which satisfy C

TOM -11/05 44

ExAMiner: key idea and basic data reductions

= To exploit the real sinergy of AM and M pruning at all levels of a level-
wise computation (generalizing Apriori algorithm with M constraints).

= Coupling U-reduction with AM data reductions at all levels .
= Atthe generic level k:

[GC,] Global Antimonotone Data Reduction of Items: a singleton item
which is not subset of at least k frequent k-itemsets can be pruned away
from all transactions in TDB.

[TC,] Antimonotone Data Reduction of Transactions: a transaction
which is not superset of at least k+1 candidate k-itemsets can be pruned

away from TDB.

[LOy] Local Antimonotone Data Reduction of Items: given an item i and a
transaction X, if the number of candidate k-itemsets which are superset of i
and subset of X is less than k, then i can be pruned away from transaction

X

TOM -11/05 45

ExAMiner — Count & Reduce

» ExAMiner Algorithm s Aprigs iag where the usuaRCount”
routine ig.8 ONQy_a " quIth sy rEStussoduine— .
ﬂ-‘ieaueﬁ& =@”: each transaction, when tetched from TDB
through two seTies of reductions and tests: yes
yes
v'only if it syrvives the first phase, it is used to count the sypport of
cand,- @ T,
v’ eachtrapsaction which arrives to the counting phase, is thef reduced
again as mtich as possible, and only if it survives this sed®hd phase it is
written to%Bk” C D
~
J 12 La
Ga,, | T>T W fT ndl K

Read trans T r/te trans T”

ye
TDB, i ‘ y “yes ‘
TOM -11

MU~reduction

Further Pruning Opportunities

. When dealing with the Cardinality Monotone Constraint: C,, = card(S) >n
we can exploit stronger pruning at very low computational price.

= Atthe generic level k:

- Enhanced Data Reduction of Items: a singleton item which is not

subset of at least (b —1) frequent k-itemsets can be pruned away from all
transactions in TDB.

- Generators Pruning: let L, be the set of frequent k-itemsets, and let S,
be the set of itemsets in L, which contain at least a singleton item which
does not appear in at least (k _ 1) frequent k-itemsets.

In order to generate the set of candidates for the next iteration C,,, do not
use the whole set of generators L, ; use L,\ S, instead.

. This is the first proposal of pruning of the generators ...

TOM -11/05 47

TO

Further Pruning Opportunities

Enhanced Local Antimonotone Data Reduction of Items: given an item
I and a transaction X, if the number of candidate k-itemsets which are
superset of i and subset of X is less than ("';’ - }) then i can be pruned

away from transaction X.

Similar pruning enhancement can be obtained also for all other monotone
constraints, inducing weaker conditions from the cardinality based
condition.

Example: C,, = sum(S.price) >m

For each item i:

1. Compute the maximum value of n for which the number of frequent k-itemsets
containing i is greater than (Zii)

(this value is an upper bound for the maximum size of a frequent itemset containing i)
1. From this value induce the maximum sum of price for a frequent itemset containing i

2. Ifthis sum is less than m, prune away i from all transactions.

-11/05 48

ExAMiner implementations

Count: —
Count and AM reduce:

Count, AM and M reduce: & -
Count, AM and M reduce (fixpoint): M

OO

TOM -11/05

ERAMineRET

49

Dataset Synt, min_sup = 1100, sum(prices) > 2500

2500000 1 g-—-9 -0 -—0—@—90—9—90—90—0 90000
.\.

2000000 {
: \-
Q \0 0 o 0 0 0 0 0 @ -0 @
2 | v
G 1500000 - v — -y
S @ G&T
= (@) ExAnte - G&T
o) v v AMpruning
g 1000000 + — - — ExAMiner2
Q v
S
>
Z

500000 - v

._\ v
v Voyg
0 Vv Vv Vv Yy
0 2 6 8 10 12
lteration

TOM -11/05

50

Dataset Synt, min_sup = 1200, sum(prices) > m

1600000
o G&T
B o ExAnte - G&T
1400000 - ’\~\.\ v ExAMiner0
'~ — -—y-—-- ExAMiner1
e — - @ { — ®— ExAMiner2
S ~-@m.| — —m— — DualMiner
g 1200000 A V' — —— — ExAnte-DualMiner
é - \\ T—.
E 1000000 g T~
c V—. o — ™~ ~
- V- — T — -
o N — \\ T ~— \\\
800000 - T~ B T
~.. ——
e — .
600000 -~ I 4
v
| | | | | | |
2200 2300 2400 2500 2600 2700 2800
m

TOM -11/05

51

A very general idea

» Mine frequent connected subgraphs

= Containing at least 4 nodes

RN g e
N

.

TN

TOM -11/05

A very general idea

» Mine frequent connected subgraphs

= Containing at least 4 nodes

RSN g e
N

.

TN

TOM -11/05

A very general idea

» Mine frequent connected subgraphs

= Containing at least 4 nodes

RN e
D el 4

TOM -11/05

54

(on-going work)

TOM -11/05

Loose Anti-monotone Constraints

Motivations:

1. There are interesting constraints which are not convertible (e.g. variance,
standard deviation etc...): can we push them in the frequant pattern

computation?

For convertible constraints FICA and FICM solutions not really satisfactory

Is it really true that we can not push tough (e.g. convertible) constraints in an
Ariori-like frequent pattern computation?

@ D

A new class of constraints ...

Anti-monotonicity:

When an intemset S satisfies the constraint, so does any of its subset ...

Loose Anti-monotonicity:
When an (k+1)-intemset S, satisfies the constraint, so does at least one
of its k-subset...

TOM -11/05

56

Class Characterization

= Convertibe Anti-monotone constraints are Loose Anti-monotone
constraints.

= There are many interesting constraints which are not Convertible but
are Loose Anti-monotone

» Example: var(X.profit) <n
Not Convertible ...

Loose Anti-monotone:

given an itemset X which satisfies the constraint, let i € X be the
element of X with larger distance for the avg(X), then the itemset
X \{i} has a variance which smaller than var(X), thus it satisfies
the constraint.

TOM -11/05 57

TOM -11/05

Classification of Constraints

58

Classification of Constraints

Constraint Anti-monotone|Monotone|Succinct|Convertible|Loose-.A4
min(S.A) > v ves no yes strongly yVes
min(S.A) < wv 1no ves yes strongly yVes
mazx(S.A) > v 1no ves yes strongly yVes
mazx(S.A) < v ves no yes strongly yVes
count(S) < wv ves no weakly A Ves
count(S) > v o Ves weakly M k= v

sum(S.A) < v (Vie S.i.A > 0) ves 1no no A ves
sum(S.A) 2 v (Vie S.i.A > 0) no yves no M 1o
sum(S.A) < v (v >0,Vi €S, i.ABO) 1no 1o no A yes
sum(S.A) > v (v >0,Vi € 5,i.A00) 1no 1o no M 110
sum(S.A) < v (v<0,¥Vi €S,i.ABO) 1no 1o no M 110
sum(S.A) > v (v <0,¥Vi €5,i.A00) 1no 1o no A yes
range(S.A) < v ves 1no no strongly ves
range(S.A) > v no yves no strongly k> 2
avg(S.A)fv 1o 1no 1no strongly ves
median(S.A)fv 1o 1no 1no strongly Ves
var(S.A)dv 1o 1no no no yes
std(S.A)fv 1o 1o no no Ves
md(S.A)6v 1o 1no no no yes

Table 1. Classification of commonly used constraints (where 6 € {>, <} and k denotes
itemsets cardinality).

TOM -11/05

A First Interesting Property

Given the conjunction of frequency with a Loose Anti-monotone

constraint.

At iteration k:

Loose Antimonotone Data Reduction of Transactions: a transaction
which is not superset of at least one solution k-itemsets can be pruned

away from TDB.

Example: avg(X.profit) > 15
t=<a,b,cder>
avg(t) = 20

k=3
t covers 3 frequent itemsets: <b,c,d>, <b,d,e>, <c,d,e>
t can be pruned away from TDB

TOM -11/05

Item

Profit

a

40

o

5

20

5

15

35

20

SO ([(~|0O0|QA|O

10

60

dataset size (bytes)

TOM -11/05

Dataset BMS-POS, 0 =400, Cy 4 = var(X.S) < m

10

10

-
o

-
[a»]

RETTELELTE e BB EE N e . e e = m=1e+008 |

2]

(%3]

L e i 21+ 004 |3
........... ---------_A._m=1e+005:

........... 00056666 655150 000000 6666666100 50080666666 6666 830058 5606068666 Baaaa B | = i ¢ 0T

N | : ; | : L | == m=1e+010

...

...

10°
1

61

TOM -11,u2

Run time (sec.)

Dataset BMS-POS, o = 300, Coypny = avg(X.5) = m

.1

10 T | PE—— T TR |

..

“& ExAMiner-LAM |1
-=— ExAMiner |
—— Fic-A

A FP-Growth

—
=

ANVG threshold m

62

References

Bonchi, Lucchese “Pushing Tougher Constraints” (PAKDD’05)
Bonchi, Goethals “FP-Bonsai: the Art of Growing and Pruning Small FP-
Trees” (PAKDD'04)

Bonchi, Giannotti, Mazzanti, Pedreschi. “ExAnte: a Preprocessing Algorithm
for Constrained Frequent Pattern Mining” (PKDD’03)

Bonchi, Giannotti, Mazzanti, Pedreschi. “Adaptive Constraint Pushing in
Frequent Pattern Mining” (PKDDO03)

Bonchi, Giannotti, Mazzanti, Pedreschi. “ExAMiner: Optimized Level-wise
Frequent Pattern Mining with Monotone Constraints” (ICDM’03)

Han, Pei, Yin: “Mining frequent patterns without candidate generation”
(SIGMOD’00)

Pei, Han "Can We Push More Constraints into Frequent Pattern Mining ?*
(KDD'00)

Ng, Lakshmanan, Han, Pang “Exploratory Mining and Pruning Optimizations
of Constrained Association Rules” (SIGMOD’98)

TOM -11/05 63

