116 LINEAR-TIME CONSTRUCTION OF SUFFIX TREES

6.4. Generalized suffix tree for a set of strings

We have so far seen methods to build a suffix tree for a single string in linear time. Those
methods are easily extended to represent the suffixes of a set {S1, $2...., S.} of strings.
Those suffixes are represented in a tree called a generalized suffix tree, which will be used
in many applications.

A conceptually easy way to build a generalized suffix tree is to append a different end
of string marker to each string in the set, then concatenate all the strings together, and
build a suffix tree for the concatenated string. The end of string markers must be symbols
that are not used in any of the strings. The resulting suffix tree will have one leaf for each
suffix of the concatenated string and is built in time proportional to the sum of all the
string lengths. The leaf numbers can easily be converted to two numbers, one identifying
a string S; and the other a starting position in §;.

One defect with this way of constructing a generalized suffix tree is that the tree
represents substrings (of the concatenated string) that span more than one of the original
strings. These “synthetic” suffixes are not generally of interest. However, because each
end of string marker is distinct and is not in any of the original strings, the label on any
path from the root to an internal node must be a substring of one of the original strings.
Hence by reducing the second index of the label on leaf edges, without changing any other
parts of the tree, all the unwanted synthetic suffixes are removed.

Under closer examination, the above method can be simulated without first concatenat-
ing the strings. We describe the simulation using Ukkonen’s algorithm and two strings S|
and S,, assumed to be distinct. First build a suffix tree for S (assuming an added terminal
character). Then starting at the root of this tree, match 5; (again assuming the same termi-
nal character has been added) against a path in the tree until a mismatch occurs. Suppose
that the first i characters of S, match. The tree at this point encodes all the suffixes ot Si,
and it implicitly encodes every suffix of the string S>{1..i}. Essentially, the first i phases
of Ukkonen’s algorithm for S, have been executed on top of the tree for ;. So, with that
current tree, resume Ukkonen’s algorithm on S, in phase i 4 1. That is, walk up at most
one node from the end of S>[1..i], etc. When S, is fully processed the tree will encode all
the suffixes of S, and all the suffixes of S but will have no synthetic suffixes. Repeating
this approach for each of the strings in the set creates the generalized suffix tree in time
proportional to the sum of the lengths of all the strings in the set.

There are two minor subtleties with the second approach. One is that the compressed
labels on different edges may refer to different strings. Hence the number of symbols per
edge increases from two to three, but otherwise causes no problem. The second subilety is
that suffixes from two strings may be identical, although it will still be true that no suffix
is a prefix of any other. In this case, a leaf must indicate all of the strings and starting
positions of the associated suffix.

As an example, if we add the string babxba to the tree for xabxa (shown in Figure 6.1).
the result is the generalized suffix tree shown in Figure 6.11.

6.5. Practical implementation issues

The implementation details already discussed in this chapter turn naive, quadratic (or even
cubic) time algorithms into algorithms that run in O(m) worst-case time, assuming a fixed
alphabet ¥. But to make suffix trees truly practical, more attention to implementation is
needed, particularly as the size of the alphabet grows. There are problems nicely solved

6.5. PRACTICAL IMPLEMENTATION ISSUES

117

X a bxa $

2,3 2,1

Figure 6.11: Generalized suffix
indicates the string; the second

2,2
tree for strings Sy = xabxa and S =

babxba. The first number at a leaf
number indicates the starting position o

f the suffix in that string.

