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INTRODUCTION:

Many computational processes involve the detection of repeated patterns within a structure such as
a string, tree or array. Parsing algorithms usually contain procedures for detecting matches in certain
portions of the input string. Similarly, in the construction of symbol tables, matching entries are checked
for. Then again, the optimization process in a compiler involves a search for repeated expressions. In
processes which modify large files or data bases a check is often made to see if a given item is present,
or to find all items in the file that contain a given item. When two lists of items are to be combined it is
often desired that items with the same keys be placed together but that no other order of storing keys is
required., Finally, it may be possible to compress the amount of storage required to store a structure
with many repeated patterns by storing one copy of each pattern together with the locations of the pattern
within the structure rather than storing the complete structure. In all of these problems a part of the pro-
cess involves the detection of repeated patterns.

In this paper we look at a number of matching problems and devise general techniques for attacking
such problems. In particular, we describe a strategy for constructing efficient algorithms for solving two
types of matching problems. We use this strategy to develop explicit algorithms for these two problems
applied to strings (where the patterns are substrings) and arrays (where the patterns are subarrays or
blocks). We also develop algorithms for these and related problems for trees, where the patterns are
subtrees, Certain special cases of these algorithms are also discussed.

Although we do not claim that these algorithms are optimal, we analyze each algorithm to estimate
its computational cost. This provides some basis for choosing which algorithm is most desirable in any
given situation,

I, THE TWO MATCHING PROBLEMS:

If we call the object (string, tree or array) we are dealing with a structure S, then the types of
structures we are interested in are labeled, directed and oriented. The labels in the string or array, or
on the nodes of the tree,can be assumed to be elements of some alphabet = ={¢,, 0,***, 0 }. The repeated
patterns are then substructures which can be specified by a single nonnegative integer parameter d which
we call the depth of the substructure. (E.g., length d substrings, d X d subarrays, and depth d sub-
trees) A related problem for strings is treated in [1].

Problem 1: Depth d Matches:

Find all depth d substructures of S which occur at least twice in S (possibly overlapping), and
find the position in S of each such repeated substructure.

Problem 2: Maximum Matches:

Find the maximum depth D for which Shas a repeated depth D substructure and solve Problem 1
for D.

In these problem statements the meanings of a structure S and a substructure of S are not precise.

We now specify these meanings for the structures of interest here, For a string X Ky X the direction

and orientation are simply an ordering from the beginning to the end, and the positions in the string are de-
noted by the indices 1, 2, *+-, n, A substructure of depth d is a substring XXyt XL of length d.
For a two dimensional array of size nX n

xnl XnZ T xnn
*21%22 s *2n
*11%12 T *1n
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the direction and orientation are along the coordinate directions in increasing order of indices. The posi-
tions in the array are denoted by the ordered pairs of indices (i,j) 1 41, j £n. A substructure of depth
d isa dXd block.

Xitd-1,j F1+d-1, j+1 cor *i+d-1,j+d-1

. . .

41,5 T4, 41 X141, j4d-1

%, Myl - . i, j+d-1
This is readily generalized to higher dimensional arrays. Problem 1 for arrays can also be generalized
to treat nonsquare blocks. In this paper, however, we restrict our attention to the case in which the size

can be specified by a single depth parameter. The trees we consider are rooted,binary and oriented; the
nodes may also be labeled by elements of X:

A tree T is specified by:

1. a finite set N (the nodes)

2. an element n_eN (the root)

3. partial functions L: N — N - {no}
R: N—N - {no}

and a function F: N- {no} —- N
such that,

(a) if y = L(x) or y =R{(x) then x = F(y),
(b) for all x, and all positive integers k, F (x) # x. (Here F (x) denotes the result of iterating
F k times.)
If L(x) and R(x) are both undefined then x is a leaf, If there is an integer k such that for every
leaf x F™{x) =ng then the tree is a full tree. A depth d substructure of a tree T is a full subtree with
k = d. Some simple examples illustrate matching problems on these structures.

Example 1:  String: 001100101

Here = = {0,1}. For d = 3 there are repeated patterns 001 starting in positions 1 and 5 and no
repeated patterns for d = 4.

Example 2: Here Z = {a,b,c} A recurring 2X2 pattern: b c
c ¢ b ¢ ¢ a b
b b a b b Its occurrences: (1,1), (1,4) and (3,3).
Array:
b ¢ ¢ b ¢

a b b a b
There are some other repeated 2X2 patterns but no repeated 3X3 patterns as the reader may check.
Example 3: Tree: Here Z = {a, b, ¢}, and the subtree
is repeated with roots at

nodes 3 and 4.

Subtree is repeated with roots at nodes

5 and 7.

b b

b c b b b b Subtree is repeated with roots at nodes

g8° o 100 N2 1354 15

2 and 6, No subtrees of depth

3 are repeated.
a C
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II, FINDING REPEATED SUBSTRINGS IN STRINGS:

In solving Problems 1 and 2 for strings we accept as input any finite string S over the given alphabet
Z. We give two techniques for solving Problem 1; one of which also yields a solution to Problem 2,
Throughout our description substrings are specified by length and by the position in S where they begin.

A: A Family of Equivalence Relations:

Our first solution technique employs a family of equivalence relations on the set of positions

{1,2,...,n} of the input string S = X X, eee X {each xieE).

Definition 1 Given S =X K e X positions i and j of S are k-equivalent {(ke{l,2,..., n}

and i,je{l,2,...,n-k+1}) ~- written iEkj -- precisely when the length k substrings of S starting
at positions i and j are identical; that is, when Xperr X < xj s xj+k—1.

Henceforth, we assume iEkj is well defined when used without further mention of the boundary
conditions.

B: String Algorithms:

Our algorithms are based on the following observation.

Lemma l: For integers 1i,j,a,b with b £a we have iEa+bj precisely when iEaj and i+bEaj+b.q‘
Our first algorithm is based on Lemma 1.

Algorithm 1: To solve Problem 1 for length d substrings over string S=x

(1) Scan S to construct the relation El' | log

(2) Use Lemma 1 to construct, successively, the relations E,, E4, E8’ R ’Er where r=2 2
If d is a power of 2 then end: d=r; otherwise d< 2r.

(3) Use Lemma 1 to construct the relation Eq4 from the relation E..

s X O

1x2 n
d)f

An obvious modification of Algorithm 1 yields a solution to Problem 2.

Algorithm 2: To solve Problem 2 for input string S = XX, X G

(1) Scan S to construct the relation E_.

(2) Use Lemma 1 to construct, successively,the relations EZ’E ’E8’ e ,Er, where r is the
least power of 2 such that Er is trivial (i.e., the identity rélation).

/2
5r/8;

(3) Perform a binary search to solve the problem. That is, use Er to get E If this latter

3r/4°

is nontrivial use it to get E and so on.

71_/8; otherwise, use Er

E
/2 to get
It should be clear that the final equivalence relation constructed by each algorithm solves the desired
problem. In fact, the equivalence relation E, classifies each substring of length k, whether it is a
repeated substring or not.

It is a straight forward matter to verify that Algorithm 1 requires [logzd]§ "constructions' of
relations, while Algorithm 2 requires, at worst, 2[1og2n] such constructions. We claim that each such
construction can be performed in order n "steps'.Y (In fact, the reader will see from our de scriptions
that constructing the relation E; from its predecessor requires order n-i steps.)

C: Equivalence Relation Construction:

We organize the data representation for the classes of each equivalence relation E; as follows. The
classes of E; are labeled 1,2, 3, etc.; of course, at most min (n (j)‘ Z)k) labels are n(ee)ded. The relation
Eyx is represented as an n-k+1 place vector Vl( ). vz(k),. v£112k+1’ with each vik being the label of
the equivalence class of Ep to which position i belongs.

Assume we are to construct E. .p from E, using the above representation. We use a scheme
reminiscent of a radix sort. Say that E, has e, classes. Assume that we have at our disposal the

a .
vector v stored as an indexed array; and further we have 2e, pushdown stores, initially empty,

e

* An alternate equivalent lemma can be stated:

Lemma: For integers i,j,a,b we have iE precisely when iEaj and i+a Ebj+ a.

i
a+b

Lemma 1 is the preferred form to use in the algorithms to be derived since they require less stor-
age space at no extra cost in operation count than analogous algorithms derived from the alternate
lemma. This may be easily checked by the reader,

t | @] denotes the integer part of q.
§ T gl denotes the least integer greater than or equal to q.

¥ This claim is transparent for the construction of El’ so we consider only the construction of higher
index relations.
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available; call them P(1),.-+P(ey) and Q{1),--- Q(ey).

STEP1: Sortthe vector v(a) using the P-pushdown stores; that is, run through v(a), PUSHing index i
onto P(via ). This gives us an explicit representation of the classes of E,, one class in each
P-pushdown store,

STEP 2: In succession, POP each P(j) until it is empty. As the number d is POPped from P (i), PUSH
it onto the Q-pushdown store Q(v §+b) providing that d+b € n-a+1l. This gives us the classes of
E_ shifted so that integers d and e occur on the same Q-stack precisely when d+b E, e+b,
Note, moreover, that the entries on each stack Q(i) appear in blocks of a-equivalent numbers.

STEP 3: Finally construct v{a+b), Successively POP each Q-stack until empty. Start with a variable
class counter c n)it1a11y set to 1, As each integer d is POPped from a given stack Q{i) test
whether or not is equal to ve » where e is the integer just previously POPpe_;i from the
same stack, If th1s is so, then dE ;e and d+bE_je+tb so dE,,pe; therefore set vq =c. Other-
wise, we have d+bEje+b but d ﬁ e; therefore, set v4 (a+b) _ =c+1, and increment ¢ to c+1,

When stack Q(i) is exhausted, increment ¢ to c+1 before beginning to POP Q(i+1)

d 1is the first integer from a Q stack,set v3+b = ¢ automatically.

« Whenever

The reader can easily verify the validity of the preceding procedure, hence of our claim that
each relation construction can be effected in order n steps; of course, a ''step'’ can involve accessing a
linear array or POPping or PUSHing any of the required stacks.,

D: Direct Calculation of d-Equivalence:

The solution to Problem 1 given by Algorithm 1 has the shortcoming of requiring one to save relation

E, where a =max {k IZk £ d}, d being the desired length, We describe now a method for calculating
d-equivalence directly. Moreover, if both d and the alphabet size s are sufficiently small, one can
justifiably claim this method to operate in linear time.

The method employs a class of labeled directed graphs which we shall designate (s, d)-graphs,*
s belng the size of the alphabet =, and d the length of the repetitions sought.
Definition 2 For given integers s,d, the (s,d)-graph Gg ,d is specified by:

(1) the set of nodes VS a=10,1,---,s —1},
(2) for ke{0,1,+-+,s- 1}, the k-labeled edges {({v, s-v+k{mod s ))IveV d}
,

As an example,
G2 ; 2ppears as follows: O
td

A brief consideration of the (s,d)-graphs leads one to the following solution to Problem 1.

Algorithm 3: To solve Problem 1 for length d and for input string S = X Xyeeex over alphabet
z = {0'1,02,- .o ,O‘S}.

Conventions: Imagine that we have, associated with each node v of GS s a bucket BV
capable of containing any finite set of integers. In the course of visiting nodes of Gy ,d and of
scanning S, let us denote by N the node most recently visited and by P the pos1t1on in S most

recently scanned. Further, assign to each o ¢Z a unique ''value' denoted |[o|, from the set
{0,+++,s-1}.

Procedure:
(1) Scan the first d symbols XXy v e Xy of S. (Haltif n< d.) Determine the 'start-node'' of

S in G to be node

s,d d
N=3|x |- 3K,
k=1 "%
Set P to d.

* These graphs are also called DeBruijn graphs,
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(2) Drop P-d+1 into bucket BN.

(3) Scan symbol P+1 of S, call it Xp, 1 if it exists. If n-d < P+1, then halt. Otherwise,
respecify P by P+1 and N by(s-N+| xP+1|Xmod sd). Go to Step (2).

Upon halting, each bucket B, will contain the starting positions in S of the string S(v), where v)
is that substring of S which under the value function yields the length d s-ary representation of integer
v.

It is clear that two options emerge in implementing this algorithm. One can opt to conserve space
by constructing on the fly those nodes of Gs,d which are actually visited in processing S. The costofa
transition under this option is a computation of the form s-N+ |x| (mod sd). Alternatively, one can ''pre-
condition'" the computation by constructing a transition table for Gg 4 and use this table to effect trans-
itions. At a cost of s locations, transitions are thereby simplified. If the algorithm is to be performed
on a large number of inputs, the preconditioned version is by far the preferred one.

E: Special Cases:

One can easily construct variants of Problems 1 and 2, which are solved by simple variants of our
three algorithms, We mention two such variants.

Problem 3: Given strings S and T over X find all occurrences of S in T,

This problem can be viewed as finding the -class containing 1 of the string S $ T, where

E
length (S)
$ ¢ Z. Either algorithm 1 or 3 thus yields a solution.

Problem 4: To decide, given a length d and a string S, whether or not S has a length d
repeated pattern.

This problem is most easily solved by a variant of Algorithm 3 which, in place of buckets, drops
pebbles at nodes of Gs,d as they are visited., Thus one merely traverses Gs,d as in the algorithm,
halting with a positive response if a pebble-laden node is ever visited (i.e. if any node is ever revisited).
A variant of Algorithm 1 is also possible, to determine whether d-equivalence is, or is not, trivial.

III. FINDING REPEATED BLOCKS IN ARRAYS:

In solving Problems 1 and 2 for arrays we accept as input any finite nXn array S$ having eéntries
from the given alphabet Z,  The generalization to higher dimensional arrays should be obvious from our
description of the two dimensional case. We look for repeated square dXd blocks (or subarrays) in S.

Our algorithms are based on the equivalence relation technique described in the previous section.
Throughout our description a dXd block is specified by its size d and its starting position (lower left
corner) (i,j) in S,

Definition3  Given an nXn array S, S = [Xij] (i,je {1, 2,*++,n} ) we say that positions (i, j)
and (k,{) areb-equivalent (be {1,2,7**,n} and i, j, k, 2¢ {1,2,°°*,n-b+1}) -~ written as
(1,3 Ep(k, £)~-precisely when the bXb blocks of S having starting positions (i,jy and (k,¥)
are identical; that is, when

X on = qu for me {i,i+1,***,itb-1}
ne {j,j+l,-++,j+b-1}
pe {k,k+tl,-«+,ktb-1}
q¢ {lnﬂ"‘l:"‘:‘“’b"l}-

Whenever (i,j) Ey (k, 1) is used later in this section we shall assume it is well defined without
stating the end conditions.

A Array Algorithms :

Our algorithms are based on the following lemma.

Lemma 2: For integers i, j, k, £, a, b with b £a we have (i,j) Ezip(k,£) precisely when all
four of the following a-equivalences hold.

) (4,)) B, (k, &) (i)  (i,j+b) E, (k, £+Db)
(i)  (i+b,j) E, (k+b, £) (iv)  (i+b, j+b) E, (k+b, £+b)

This result can be readily seen through the following diagram.
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With the condition that a ®b the four aXa blocks completely ''cover' the (a+b)X (a+b) block so that
equivalence of the pieces implies equivalence of the whole block. Of course, alternative ''covering"
lemmas should readily occur to the reader,

With this lemma we can solve Problems 1 and 2 in exactly the same manner as done for strings in
Algorithms 1 and 2. The constructions of new equivalence relations is done as before except that to get
the next relation a successive refinement over four relations is required rather than over two relations.

Let the equivalence relations indicated by conditions (i) through (iv) of Lemma 2 be called Rl’ RZ’
R3 and Ry, respectively, and be represented like we previously discussed for strings. To construct the
new relation E, , we first combine R; with R, giving an equivalence relation R'. Next we combine

R' with R3 giving R'; finally combining R'" with Ry gives E_ 4.

Thus, the algorithm to solve Problem 1 is readily seen to require 3[1og2d] combinations of
relations, and the algorithm to solve Problem 2 requires at most 6| logyn| such combinations. From the

method of combining relations we see that the combination of two relations to form a relation E, requires
order (n-a)? steps.

v, TREES:
A: Unlabeled Trees :

In this section we generalize the results of Section II by investigating the identification and classifi-

cation of repeated occurrences of a given tree as a subtree of a larger tree. The trees we consider are
rooted, binary and oriented.

We retain the notational conventions of Section I; hence a tree is specified by the set N, the element
nge N, and the functions L, R, and F.

Example :

N = {A, B, C, D, E} n, = A
x L(x) R (x) F(x)
A B C -
B - - A
C D - A
D - E C
E - - D

L{x) is called the left son of x, R{x), the right son of x, and F(x), the father of x. If y = L(x)
for some x then y is a left son; if y = R(x) for some x then y is a right son. Every node excep
ng is either a left son or a right son. If L{x) and R(x) are both undefined then x is a leaf. If x = F(y)
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k
then x is a descendant of y and y is an ancestor of x. Every node is a descendant of ng. If ng=F (x)
then k is the depth of x, denoted by &(x).
We are concerned with strings of 0's and 1l's. The symbol A denotes the null sequence and

denotes concatenation. + is often omitted when no confusion can result.) If x is a string then fg(x)
denotes the length of x, xR denotes the reversal of x, and _x denotesthe string

£
. = {x if fg(x) £ 2

£ the prefix of x of length £ if Zg(x) > 4.

We associate with each node x a string s(x) indicating how x is reached from the root ngy; s{x)
is called the sequence of x. The recursive definition of s(x) is as follows:
s{ng) = A s{L{x)) = 0- s(x) s(R(x)) = 1+ s(x).
The equivalence relation E, on N is defined by:
xE,y if 1[ s(x)] = l[s(y)].

We assume that T is represented by a data structure which permits F(x), L{x) or R(x) each to be
computed in one step. Clearly, a variant of Algorithm 1 in Section II can be used to compute the relation
E, in O(#(N) log {£) steps.

The unique tree U, which has Zk leaves, each of depth k, is called the full tree of depth k. A
tree with exactly one lealff is called a path.

In order to define the expected execution time of certain algorithms we shall wish to consider trees
drawn at random from a probability distribution over the set of all trees with a given number of nodes,
We do not define a specific distribution, but we do assume that two trees which have the same structure
but differ in their left-right orientation (i.e., they have the same root and set of nodes, and the same
function F) are equally probable. This implies that, if a node x of depth k is chosen at random ina
random tree, then the probability that s{x) is a particular string of k 0's and 1l's is 27 .

We often deal with several trees simultaneously; entities associated with these trees will be disting-
uished by primes,

The trees T and T' are called isomorphic if there is a one-one correspondence
¢: N— N! such that, for all xeN, s(x) = s'(¢(x)).

The tree T' is called a subtree of T rooted at y if:
(a) NTC N (b) for each xeN', s(x) = s'(x).s(y)

A subtree of T is determined by its set of nodes. No two subtrees of T with the same root are
isomorphic,

In this section we construct algorithms to solve the following problem:

Problem5: Given trees T and T', find R(T, T'), the set of roots of subtrees of T which are
isomorphic to TI'.

First we consider two special cases.
Case l; T!' =0

The following simple algorithm solves Problem 5: Examine the nodes of T _imsuch an order that,
for every x, x is examined before F{(x) is examined. Assign each node x a number Nk(x) as follows:

If I{x) is undefined or R(x) is undefined then Ny(x) = 0, else Ny{x) = min(k, Ny ( L{x)}+, Ni(R(x)) + 1)
Then R(T, T') = {xINk(x) =k}.
Case 21 T! is a path with leaf z of depth £ . Then apply the following algorithm.

(1) Combine T and T' into a single tree T', such that ng and n'o, the roots of T and T',
are the left and right sons of n"o, the root of T''.
Specifically, T" = (NuN'y {n”o}, n"o, ', R", F")
1 = J— 1" - 1 = n'l " - e 1
where L'{x) = ny, x =n'y R'(x) = n'y, x ="y F{x) n' o, xe{no,no}
I{x)}, xeN R(x), xeN F(x), xeN-{no}
L¥(x), xeN", R'(x), xeN', FY(x), xeN'—{h'D}.

(2) Compute the equivalence relation EH! over N'',
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(3) R(T, T') = {FXx)|xeN and xE" z}.
Hence, in this case, Problem 5 can be solved in O((#(N)+ £) log £) steps.
The key to our general algorithms for solving Problem 5 is the following observation.
Lemma 3: xeR(T,T') if and only if, for every leaf yeN', there exists a z¢N such that
5'(y)
F z) = x and s{(z)] = s'
(2) iy [S(2)] = s'()

Let A' = {s'y)|y is a leaf of T'}.
For each xeN define Clx) = #({(z,k)|F(z) = x and ([st=)] €A,
Then the following is a restatement of Lemma 3.
Lemma 4: xe¢R(T,T') if and only if Clx) = #{A").
Thus our central problem is to give an efficient algorithm for computing the function C(x).

We offer two algorithms._ Let 7 denote the maximum depth of any leaf of T'. The first
algorithm is appropriate when 2l<< #(N).
Algorithm 4: _
(1) (Preprocessing) For each of the 2£+ 1-1 strings X of length less than or equal to 1_, compute
M(X) = {k|k £ £g(X) and kXeA'}.
(2) Compute the equivalence relation El— over N, For each equivalence class, choose a represen-

tative w and compute M(} s{w) ) = pw).
(3) For each zeN, set C(z) = 0.

(4) For each zeN, let w be the representative of the equivalence class containing z; for each
kep{w), increment C(Fk(x)) by 1.
(5) Stop. xeR(T, T') if and only if C(x) = #A").
The execution of Algorithm 4 requires O(Zl + #{N} log 1o+ }Z{ C(x) ) steps. Below we obtain an
upper bound on }Z{) C(x) and also an upper bound on the expected value of ?{C(x), assuming that T is

drawn at random from trees with #(N) nodes.

Our second algorithm for computing R(T, T') depends on an important construction. We can con-
struct from T' a unique tree T such that there is an "anti—isomorphism":' from T' onto T;i.e., there
is a one-one function ¢ from N! onto N such that, for each xeN', s (p(x)) = [s'(x)]R.

Figure 1 gives two examples of this construction.

4
(@) J (b) v. v
v v v
T T T=T
Figure 1 -- Two examples of an anti-isomorphism

Each node ¢(x) e'\N such that x is a leaf of T' is marked. In the figure a check mark is placed
beside each marked node.

The following algorithm determines R(T, T').
Algorithm 5:
(1) (Preprocessing) Construct % and determine the marked nodes.

(2) Examine the nodes of T in such an order that, for every x, F{(x) is examined before x.
Associate with each node x a set P(x)C N as follows:
P(3)) = N

P(I(x)) = {F(y) |yeP(x) and y isa left son}.
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P(R(x)) = {F(y)|yeP(x) and y is a right son},

(3) STOP. R(T,T") = M P(x)
{x|x is marked}

Example 4:
T T
P(l) = {A: B,C¢,D,E, F,G, H 1,1, K} P(3) = {A’ E}
P(Z) = {Av B, E, F, D, J} P(4) = {A}
P(5) = {B, A, E, D} P(6) = {A, B}

R(T, T') = P(3)nP(4)nP(6) = {A}.
Let X(T) denote the number of leaves of T.
Theorem 1t Suppose T is chosen at random from the trees with #(N) leaves. Then

i) The expected value of ZT#(P(x)) is % #(N)» 2 Z—KX‘)
ne N

-8t
ii) The expected value of X __C(x) is £ #(N).Z 2 8(x)
xe N x a leaf of T!

-
iii) The expected value of #R(T,T')) is <[#HN)-Z 2 8'(x) ] +2(TY
x a leaf of Tt

These results permit an easy evaluation of the expected execution times of Algorithm 4 and
Algorithm 5.

It is also possible to place an upper bound on the number of occurrences in T of subtrees isomor-
phic to T', knowing only the number of nodes of T. For each node xe¢N', let A(x) denote the number
of descendants of x (recall that x is a descendant of itself)., Define

8(T') = 1 + max [min (A (L'(x)), A (RYx))],
xeN' "=

where A(LYx)) =0 if LYx) is undefined, and A(RYx))=0 if R'(x) is undefined.
Theorem 2 #HN) 2 #(N) + (R(T, T')-1) max (0(TY, A (T))
Continuing Example 4, we have: 8(TY) = 3, )\("\i‘) = 2, #N') = 7.

Thus #(N) 27 + 3(R(T,T")-1) = 4+ 3R(T,T".
Any tree with at least two subtrees isomorphic to T' must have at least 10 nodes.

B: Labeled Trees:

We now consider trees in which each node is label ed with one of a finite set of values. A labeled
tree is a pair (T,f). such that T = (N, ny, L, R, F) is a tree and f is a '(total) function with domain N,

The labeled trees (T',f') and (T', f'') are isomorphic if the trees T' and T' are isomorphic and,
moreover, the isomorphism @: N — N

between these trees preserves the labeling; i.e., for all xeN', fY{x) = f'(¢(x)).
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If (T,f) is a labeled tree and (T'!,f') is a labeled tree suchthat T' is a subtree of T and, for
all xeN', fY(x) = f{x), then (T',f') is a labeled subtree of (T,f). The labeling function f' is said to
be inherited from (T,f).

We seek algorithms to solve the following two problems.

Problem 6: Given the labeled trees (T',f') and (T",{"), determine R{T',{'"), (T, £"), the set of
roots of the labeled subtrees of (T!,f!') which are isomorphic to (T",{").

Problem 7: Given the labeled tree (T,f) and the tree T', find all the subtrees of T isomorphic
to T', and classify them into their isomorphism types as labeled trees. A more precise statement
of the requirement is as follows: for xeR(T, T, let T'X) be the subtree rooted at x and isomor-

phic to T', and let f(x) be the labeling that T(X) inherits from f. Compute a function hT £ T
E at
with domain R(T, T!'), such that h (y) if and only if (T(x),f(x)) is isomorphic

{x) =h :
o (T(Y),f(Y)), T,f,T T,f, T

When the identities of T, f and T' are clear from context, we write h instead of hT £
E Bt 4

Before describing the algorithms we propose for the solution of Problems 6 and 7, we require an
alternative way of talking about equivalence relations over a finite set D. We consider functions with
domain D, All that will be important about such a function f is the equivalence relation it determines
over D, in which x and y are equivalent iff f(x) = f(y). Two functions which determine the same
equivalence relation (and hence differ only in the names of the elements in their images) will be regarded
as identical. Now, given functions f and g, the function fXg has the following defining property

(fxXg)(x) = (fXg)(y) if and only if f(x) = f{y) and glx) = gly).

The operation 'X' is commutative and associative.

The construction of fXg is essentially the process of taking the common refinement of two equiva-
lence relations, and the algorithm given in Section Il performs this process in O #(D)) steps.

The following is a simple method to solve Problem 6 when T is a full tree Uk. .

Algorithm 62

(1) Join (T',f') and (T",f') into a single labeled tree (T,f} specified as follows:
i) T =(N,ng,L,R,F) where N =N'u N"u {no}, nly = I{ng) and n'y = R{ng) ;

ii) Both (T',f') and (T',f") are labeled subtrees of (T,f), and f{ng) is distinct from all other
labels.

For i=0,1:

(2) Define the labeling functions: o.(x) = 1-i if x = n" The i's take care
' 0 is x isa ?eft son of matching n'',
1 if x is a right son with both left
2 if x=n and right sons.

and define g = f Xo,. 0

Consider the'labeled trees (T, gi).
{3) Compute the following functions with domain the set of nodes of depth > ki

2 k
hx) = glx) X g(FxDX g(F (x))x --+ X g(F (=) ).

Let Ei be the equivalence relation induced by hi on its domain.

(4) For each equivalence class C.1 in the relation Ei’ compute Fk(Ci) = {Fk(x) Ixe Ci}'
k.
(5) R((TY, M, (TN = U [ NF (CL] - {n"}.
ie {0,1} {C In"oe FK(C)}

Most of the work in this algorithm occurs in Step 3; Algorithm 1 given in Section II shows that Step 3
can be performed in O(#(N) log k) steps.

We next consider the solution of Problem 7 when both T and T' are full trees. Suppose T = U, and
T'= Uk' We also assume that the following convenient addressing scheme is used for T = (N, ng, L,R, F):

x
N={1,2,-".21+1—1} n0=1 I{x) = 2x, R(x) = 2x+1, F(x) = l_Z_J‘
Note that R(T,T") = {x|2Kx £24+1. 1},
The idea of the following algorithm is to "push'' all the information about node labels in each copy

of Uk down to the leaves (Step 1), across to the leftmost leaf {Step 2) and then up to the root (Step 3).
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Algorithm 7:
(1) This step computes a sequence of functions PR -PYRLENY- The domain Dj of
gj:{zlz is a multiple of ZJ}. For j=1, 2,---,k

Set gj(x) = f(x) X f(%) s xeDj Set f{z) = gj(z) » 2D

The domain of e, is D

(2) This step computes a sequence of functions e RTL f 5

l’eZ’
For j=1, 2,-+,k :

Set e (x) = f(x) X fx+237Y) xeDj. Then st f(x) = e(x)

(3) Set hUPf,’Uk(x) = f(2kx) , xeR(U,, Up).
Algorithm 7 requires o2 - -Zlk) +#(N) ) steps.

Next we consider general approaches to the solution of Problem 7 when T' is an arbitrary tree,
The next algorithm is appropriate when R(T, T') is known and has small cardinality,

Algorithm 8:

(1) (Preprocessing) Construct a sequence XXy,
(a) x. =n! (b) each element of N' occurs in the sequence
15 %0 1

(c}) for eath i, X T L(xi) or x

. ,xp of elements of N' such that

S R(xi) or x,

o1 = TiE).

+

Standard methods of traversing trees serve to construct such segquences,
The minimum length of such a sequence is 2 #(N!) - 1, Let i ,i_,e0.,i be the positions
in the sequence where a node occurs for the first time, where n = #N?),

(2) For each yeR(T,T'):
Let ¢ be the isomorphism from T' onto a subtree of T rooted at v,
Construct the sequence Ve Vpette ,yp such that vy = ga(xi), i=1,2,¢¢0,p. This can be done

by traversing the subtree in the same manner that T' was traversed to produce the sequence

xl,xz,--‘,xp; i.e., L(yi) if X%,17 L(xi)
Vit 1 Rly;) if =, ) = Rix)
F(Yi) if X, " F(xi).

(3) For yeR(T,TY")

Set hT’f,T,(y) = f(yil) x f(YiZ) X see X f(yin).

This algorithm can be executed in O({2#(N"))-1) . #(R({T, T')) steps once R{T,T'} is known.
Finally, we present a theorem which suggests a recursive approach to the computation of

hT £ T1° This approach is especially applicable when T! itself contains a large number of isomorphic
t Bt

copies of a subtree T'". The idea is that we can ''push' the information contained in the copies of T'" wup
to the roots of these copies, and then throw away those nodes in T! whose information has been pushed to

such a root, obtaining a smaller tree T™, which may be considered instead of T!.

Examﬁ\
Tl

Tll T m
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Let T" be a subtree of T', and let (T,f) be a labeled tree. Suppose we compute h and

T,f,T"

define a new labeling function for T:

1 = "

fi(x) = f(x) X hT,f, r]..,,(x) , xeR(T,T")

f(x) »  x¢R(T,T"),
where the image of f is assumed to be disjoint from the image of f X hT £ "
— t It d

Let N = {xeN' Ix is an ancestor of some yeN' such that either ye¢R(T!,T'") or y does not occur in any

subtree of T' isomorphic to T'}.
Let T™ be any subtree of T' whose set of nodes N™ contains N,
Theorem 3.

hr gt = Pr g Tm

The possibilities for recursive application of Theorem 3 should be obvious.
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