
Evolving Cellular Automata with Genetic Algorithms

Aureliano Rama

Dipartimento di Informatica
Università di Pisa, Italy

Pisa – July 23rd , 2009



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Genetic Algorithms

A Genetic Algorithm (GA) is a search algorithm on a string space: each
string encode a chromosome, the instruction on how to perform
calculation.
The name comes from the way in which new candidate solutions are
produced:

a set of candidate solutions is valued using a fitness function

a new set is produced by selecting only the fittest solutions (selection)

some genetic operators (mutation, cross-over, split, swap, . . . ) are
applied to them



This seminar

This seminar will show how GAs can be used to find Cellular Automata
that perform global computation without need for global coordination.

Cellular Automata, as we will see, are small, local machines whose relative
position are fixed and who can communicate with a few of their neighbors.

The goal is to obtain from this local machines, some kind of collective
computation.

Even more, we want this behavior to emerge “naturally”, as the machines
compete for the best performance.



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Cellular Automaton

A Cellular Automaton

is a discrete computation model, first detailed by Von Neumann

consisting of a regular grid of cells, each with

a state from a finite (often small) set of States
a finite subset of the cells, called its neighborhood

and a state update function, producing next state from the from the
cell’s and its neighborhood’s states

Gosper’s Glider Gun

creating “gliders”

in Conway’s Game of Life.



One-Dimension CA

A one-dimensional cellular automaton consists of

a lattice of N identical Finite State Machines (cells)

with an identical topology of local connections to other cells
(neighborhood, η)

along with boundary conditions.

Each cell obeys the same transition rule φ that gives the updated states
st+1
i = φ(ηt

i ).

We use st = st
0s

t
1 · · · st

N−1 to denote a configuration of cell state, called a
CA state.



One-Dimension CA

Rule Table φ:

Neighborhood η: 000 001 010 011 100 101 110 111
Output bit φ(η): 0 1 1 1 0 1 1 0

Lattice Configuration (with N=11):

1 0 1 0 0 1 1 0 0 1 0︸ ︷︷ ︸
↓

φ(η)

↓︷︸︸︷
1 1 1 0 1 1 1 0 1 1 1



Space-Time Diagrams

A space-time diagram illustrating the typical behavior of the well studied
elementary CA (ECA) 110.



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Density Classification

For One-Dimensional Cellular Automata, the Density Classification Task is
defined as follows:

Definition

Density Classification is the task of determining if ρ0 > ρc for a fixed
ρc

where ρ0 is the fraction of 1s in the initial configuration IC

and within a maximum of Tmax time steps:

I if ρ0 > ρc , the entire lattice should relax to a fixed point of all 1s

I otherwise, it should relax to a fixed point of all 0s

. The task is undefined for ρ0 = ρc .

The task is obviously trivial for Von-Neumann achitectures where the IC is
in a global state (like an array).



Other Distributed Problems

Other distributed problems like

Consensus

Leader Election

Byzantine Agreement

are inherently different from DCT: they need to agree on a particular value
held initially by one of the processes.

They do not consider the whole initial state as a parameter for the output.

I Moreover, many solutions to these problems assume sophisticated
computational and memory capabilities on the single process.



DCT: A Non-Trivial Distributed Problem

I The Density Classification is a non trivial task for Cellular Automata.

I It is actually believed to be unsolvable.

I We are interested in the best partial solutions: CAs that solves a lot
of cases out of a big selection.

I We use a performance measure called P I
N , that is the fraction of ICs

correctly classified by the CA over I randomly choosen ICs and with a
lattice of N.



Näıve Candidate Solution: φmaj

One näıve candidate solution for the ρc = 0.5 problem is the “majority
vote” CA:

Every cell output the majority state of its neighborhood.

P104

149 = 0.0 : it doesn’t classify
correctly any IC (other than the
fixed point themselves).



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Genetic Algorithms

A Genetic Algorithm (GA) is a search algorithm with the following
properties:

a population of chromosomes

a fitness function

a selection method wrt the fitness

genetic operators (like mutation and crossover) to apply to the new
population

I The chromosomes are usually strings and each represents a candidate
solution in the search space



Evolving Cellular Automata Rules

We evolve Cellular Automata rules φ by enconding their outputs as
sequences of 128 bit.

- We use a population of 100, with initial population chosen at random.

- For each generation, we choose I = 100 random IC and we iterate
every CA’s φ function over it.

- The fitness function used for selection is the fraction of those IC
correctly classify at the end (at most Tmax time steps) by each CA.

- A number of the highest fitness CAs (the Elite) is copied to the new
population

- The remaining part of the new population is created by applying
Crossover and Mutation to the Elite CAs.



Evolving Cellular Automata Rules

I While the evolution used P100
149 as performance meter

I the actual performance of the population is valued on a much larger
set of ICs: I = 104.

A trivial CA whose rule outputs always 0 (or 1) will correctly classify half
of the population

I P I
N = 0.5

We want to use GAs to evolve CAs that have performance well above
chance.



Default Strategy

In the initial population there’s always some high-(or low-)ρ individual
whose immediately “high” performance of 0.5 will spread quickly.



Default Strategy

Sometimes evolution is unable to get anything better than this in the
given time frame.



Block-Expanding Strategy

The block expanding strategy

will default to a fixed point of all 1s (or all 0s)

unless there is a large enough block of 0s (or of 1s).

“Large enough” is tipically of the order of the neighborhood.

I Block-expanding strategies rely on the presence of these blocks to be
an heuristic for the value of ρ0.

Since there is a statistical correlation, once found these strategies quickly
take over the population.

But these are not examples of collective computation.



Block-Expanding Strategy



Block-Expanding Strategy



Embedded-Particle Strategy

To have true Collective Computation (and to perform with high
performances in the ρc = 1/2 task) our CAs must achieve:

sophisticated coordination

information transfert

Embedded-Particle Strategies, evolved only rarely by the GA, do achieve
these traits.

This CAs reach performances over 75% by means of stationary boundaries
and expanding regions.



Embedded-Particle Strategy

Details of the EP Strategy behavior:

The stationary boundaries appears when a region of 1s on the left
encounters a region of 0s on the right.

Whenever a region of 0s on the left encounters a region of 1s on the
right, a checkerboard region grows with equal speed in both
directions.

When this checkerboard region encounters a vertical boundary, it start
to collapse, faster than the expanding rate.

At the end, only a larger black (or white) region will remain.



Embedded-Particle Strategy



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Understanding Collective Computation

How (and why) does this work?

At a closer analysis the role of the checkerboard region (01)+ is to decide
which of two adiacent region (0s and 1s) is larger.

This is obtained by cutting off the smaller, so that the larger can continue
to expand.

I The net decision is that the density in the region was in fact below or
above ρc = 1/2!

The black-white boundary and the checkerboard region can be seen as
signals indicating “ambiguous” density regions.
Each of these boundaries has a local density at exactly ρc = 1/2.



Understanding Collective Computation

With a method based on a computational mechanics framework
[Crutchfield, 94] we can classify different pattern that appears in CA
space-time behaviou, using concepts from computation and dynamical
systems theories.
They aim to reveal the intrinsic information-processing structures
embedded in dynamical processes.

We want to discover patterns in terms of which a CA’s behavior can be
decomposed.
Then the boundaries between patterns (also called domains) can be seen
as particles with a proper dynamics.



Understanding Collective Computation

After a short condensation time, domains (and hence particles) become
evident to the eye, once we filter out the domains themselves.



Computational Strategy for φpar

The interactions between all these particles are complex, transferring
geometrical information and allowing classification of the density of large
regions.

Regular Domains

Λ0 = {0+} Λ1 = {1+} Λ2 = {(01)+}
Particles (Velocities)

α ∼ Λ0Λ1 (−) β ∼ Λ1Λ1 (0) γ ∼ Λ0Λ2 (−1)
δ ∼ Λ2Λ0 (−3) η ∼ Λ1Λ2 (3) µ ∼ Λ2Λ1 (1)

Interactions

decay α→ γ + µ

react β + γ → η, µ+ β → δ, η + δ → β

annihilate η + µ→ ∅, γ + δ → ∅



Significance of the Particle-Level Description

I In principle, these CAs are completely described by the 128 bits in
their lookup tables.

However this is a too low-level description to be useful understanding of
how a given CA performs the ρc = 1/2 task.

In Dynamical System Theory, a basic principle is that (for non-linear
systems) the local space-time equations of motion do not directly
determine the system’s long term behavior.

I Only over a number of iteration, there emerge domains, particles and
interactions.



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Evolutionary History of φpar

φpar ’s ancestor’s humble origin was as a default CA.

This partial tree of the φpar ’s
evolutionary history shows the
advent of different strategies



Evolutionary History of φpar

As the GA discover each new strategy, the overall performances of the CAs
increase sharply.



Exaptation: adaptively neutral traits becomes important

As last note, let’s look at a space-time diagram for φ8:

There can be seen the first appearance of the Λ2 = {(01)+} domain. Here
is completely neutral (removing it does not change the performance) but
it’s going to become the essential trait to develop the particle-strategy
later on.



Outline

1 Introduction

2 Cellular Automata

3 A Computational Task for Cellular Automata: Density Classification

4 Evolving Cellular Automata with Genetic Algorithms

5 Computational Mechanisms

6 Evolution

7 Conclusions



Wrap-up

Genetic Algorithms are very special serch methods: they can forge their
way in uncharted lands.

Even more, they are able to discover and exploit hidden structures in the
domain they are exploring.

As the evolutionary biologists have discovered in the last 150 years (since
Darwin’s Origin of Species), the incremental evolution is an incredible
powerful force, especially in environment where all parts (preys and
predators, friends and foes) try their best to survive at others’ expenses:
this last idea has started to be esplored by advanced topics like Spatial
CoEvolution and Conceptual Spaces.



Quick References

I Mitchell - An introduction to Genetic Algorithm

I Crutchfield, Mitchell, Das - The Evolutionary Design of Collective
Computation in Cellular Automata

I Crutchfield - The Calculi of Emergence: Computation, Dynamics and
Induction

I Horijik, Crutchfield, Mitchell - Mechanisms of Emergent Computation
in Cellular Automata

I Marques-Pita, Mitchell, Rocha - The Role of Conceptual Structures in
Designing Cellular Automata to Perform Collective Computation



End

Thank you.


	Title
	Introduction
	Cellular Automata
	A Computational Task for Cellular Automata: Density Classification
	Evolving Cellular Automata with Genetic Algorithms
	Computational Mechanisms
	Evolution
	Conclusions



