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Abstract

Molecular Interaction Maps are a graphical formalism used by biologists to
describe complex interactions between molecules. We provide a formal de-
scription of MIMs using process algebras and determine its computational
power.
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Introduction

Molecular Interaction Maps are a graphical formalism used by biologists to
describe complex interactions between molecules. They allow biologists and
chemists to model large, complex systems with tens of molecules interacting
with one another in many different ways, creating products, moving molecules
between cells and membranes, synthetizing proteins and RNA fragments.

The motivation behind the creation of the MIM graphic formalism was
mainly to have a tool to easily depict and explain those complex systems to
colleagues and students.

MIMs, however, are a powerful tool that can be used, modifying its syn-
tax, to describe complex system of any kind. In order for this to be really
useful, we provide a formal description of MIMs using process algebras and
we determine its computational power.

In chapter 1, we describe the prerequisites to our work. The Structural
Operational Semantics is a generalization of Operational Semantics, which
can be applied to programming or specification languages to obtain a de-
scription of the language component and their interactions through formal
rules. Process Algebras represent a natural modeling for concurrent systems
to whom they give very strong mathematical foundation. We devolve some
space to describe a couple of interesting PA properties (like bisimilarity) that
have a direct interest in our work.

In chapter 2, Molecular Interaction Maps are described in details. First
we talk about the modeling needs they helped to solve, then we sketch the
graphic formalism and finally we point out some of the intricacies that an
ambiguous (but powerful) design poses to any attempt in formally describing
them or in computer simulating their evolution.

In chapter 3, we give formal syntax and semantics to MIMs, keeping the
original meaning where possible and choosing the next best approximation
when not.

In chapter 4, we describe our result on computational power of MIM (and
hence of our formalism) using Petri Nets as a well known modeling tool whose
computational power has been studied for long time.
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In chapter 5, finally, we sketch a very simple example on how a real life
MIM is translated in our calculus.



Chapter 1

Prerequisites

These introductory section will sketch some of the prerequisites upon which
out work is based. Structural Operational Semantics is a powerful tool to
describe and give meaning to a formal language. Process Algebras allow us
to have strong mathematical foundations for our work.

1.1 Structural Operational Semantics (SOS)

Structural operational semantics (SOS) provides a framework to give an op-
erational semantics to programming and specification languages. In particu-
lar, because of its intuitive appeal and flexibility, SOS has found considerable
application in the study of the semantics of concurrent processes, where the
methods of denotational semantics appear to be difficult to apply in general.

SOS was introduced by Gordon Plotkin in [29] as a logical means to
defining operational semantics. The basic idea behind SOS is to define the
behavior of a program in terms of the behavior of its parts, thus providing a
structural, i.e., syntax oriented and inductive, view on operational semantics.
An SOS specification defines the behavior of a program in terms of a (set of)
transition relation(s). SOS specifications take the form of a set of inference
rules which define the valid transitions of a composite piece of syntax in
terms of the transitions of its components.

In particular, SOS generates a labelled transition system, whose states are
the closed terms over an algebraic signature, and whose transitions between
states are obtained inductively from a collection of so-called transition rules

of the form B2 A typical example of a transition rule is:
conclusion

a
x—x

zly = 2|y
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stipulating that if ¢ > ¢’ holds for certain closed terms t and t’, then so does
t|u > t'|lu for each closed term u. In general, validity of the premises of a
transition rule, under a certain substitution, implies validity of the conclusion
of this rule under the same substitution.

Clearly systems have some behavior and it is that which we wish to de-
scribe. In an operational semantics one focuses on the operations the system
can perform whether internally or interactively with some supersystem or
the outside world. For in our discrete (digital) computer systems behavior
consists of elementary steps which are occurrences of operations. Such ele-
mentary steps are called here (and also in many other situations in Computer
Science) transitions (= moves). Thus a transition steps from one configura-
tion to another and as a first idea we take it to be a binary relation between
configurations.

Definition (Transition System). A Transition System (ts) is a structure
<I',—> where I is a set (of elements v called configurations) and — ¢ I'xI’
is a binary relation (called the transition relation). Read v — 7' as saying
that there is a transition from the configuration v to the configuration +’.
(Other notations sometimes seen are + ,= and ).

Definition (Terminal Transition System). A Terminal Transition System
(tts) is a structure <I', —, T > where <I', —> is a ts, and 7' ¢ I" (the set of
final configurations) satisfy VyeT,V+' e[ .y >~/

A point to watch is to make a distinction between internal and exter-
nal behavior. Internally a system’s behavior is nothing but the sum of its
transitions. (We ignore here the fact that often these transitions make sense
only at a certain level; what counts as one transition for one purpose may
in fact consist of many steps when viewed in more detail. Part of the spirit
of our method is to choose steps of the appropriate “size”.) However exter-
nally many of the transitions produce no detectable effect. It is a matter of
experience to choose the right definition of external behavior. Often two or
more definitions of behavior (or of having the same behavior) are possible
for a given transition system. Indeed on occasion one must turn the problem
around and look for a transition system which makes it possible to obtain an
expected notion of behavior.

Transition systems in general do not give the opportunity of saying very
much about any individual transition. By adding the possibility of such
information we arrive at a definition.

Definition (Labelled Transition System). A Labelled Transition System
(Its) is a structure < I'; A, —> where T is a set of configurations and A is a
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set of actions (or labels or operations) and —c I' x A x I is the transition
relation.

We write a transition as 7 — ~/ where 7,7 are configurations and a is
an action. The idea is that an action can give information about what went
on in the configuration during the transition (internal actions) or about the
interaction between the system and its environment (external actions) (or
both). The labels are particularly useful for specifying distributed systems
where the actions may relate to the communications between sub-systems.
The idea of Labelled Terminal Transition Systems < I', A, —,T > is pretty
obvious.

Definition (Reflexive Transitive Closure). For any lts, let v and 7’ be con-
figurations and take x = ay ...ay € A* then:

!

¥y = 371,...,7;{.71&72...&»%:7
where k£ > 0.

With the reflexive transitive closure, we have a way to simulate a com-
plete execution of a system.

Recently, SOS has been successfully applied as a formal tool to establish
results that hold for classes of process description languages. This has allowed
for the generalization of well-known results in the field of process algebra,
and for the development of a meta-theory for process calculi based on the
realization that many of the existent results in this field only depend upon
general semantic properties of language constructs.

1.2 Process Algebras

The term process algebra is used in different meanings [6]. First of all,
consider the word “process”. It refers to behavior of a system. A system is
anything showing behavior, in particular the execution of a software system,
the actions of a machine or even the actions of a human being. Behavior is the
total of events or actions that a system can perform, the order in which they
can be executed and maybe other aspects of this execution such as timing or
probabilities. Always, we describe certain aspects of behavior, disregarding
other aspects, so we are considering an abstraction or idealization of the
“real” behavior. Rather, we can say that we have an observation of behavior,
and an action is the chosen unit of observation. Usually, the actions are



CHAPTER 1. PREREQUISITES 4

thought to be discrete: occurrence is at some moment in time, and different
actions are separated in time. This is why a process is sometimes also called
a discrete event system.

The word “algebra” denotes that we take an algebraic/axiomatic ap-
proach in talking about behavior. That is, we use the methods and tech-
niques of universal algebra.

The simplest model of behavior is to see behavior as an input/output
function. A value or input is given at the beginning of the process, and at
some moment there is a value as outcome or output.

When dealing with interacting systems, we say we are doing concurrency
theory, so concurrency theory is the theory of interacting, parallel and/or
distributed systems. When talking about process algebra, we usually consider
it as an approach to concurrency theory, so a process algebra will usually (but
not necessarily) have parallel composition as a basic operator.

Thus, we can say that process algebra is the study of the behavior of par-
allel or distributed systems by algebraic means. It offers means to describe
or specify such systems, and thus it has means to talk about parallel com-
position. Besides this, it can usually also talk about alternative composition
(choice) and sequential composition (sequencing). Moreover, we can reason
about such systems using algebra, i.e. equational reasoning. By means of
this equational reasoning, we can do verification, i.e. we can establish that a
system satisfies a certain property.

What are these basic laws of process algebra? We can list some, that
are usually called structural or static laws. We start out from a given set
of atomic actions, and use the basic operators to compose these into more
complicated processes. As basic operators, we use + denoting alternative
composition, ; denoting sequential composition and — denoting parallel com-
position. Usually, there are also neutral elements for some or all of these op-
erators, but we do not consider these here. Some basic laws are the following
(+ binding weakest, ; binding strongest).

— X + y =y + x (commutativity of alternative composition)

— x+ (y +2) = (x +y) + z (associativity of alternative composition)
— X + x = x (idempotency of alternative composition)

— (x+v¥); z=x;z + y; z (right distributivity of + over ;)

— (x;¥); z = x; (v; z) (associativity of sequential composition)

— X —y =y — x (commutativity of parallel composition)
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— (x —y) —2z=x— (y — 2) (associativity of parallel composition)

So, we can say that any mathematical structure with three binary operations
satisfying these 7 laws is a process algebra.

The notion of equivalence studied is usually not language equivalence.
Prominent among the equivalences studied is the notion of bisimulation. A
bisimulation is a binary relation between state transition systems, associating
systems which behave in the same way in the sense that one system simulates
the other and vice-versa. Intuitively two systems are bisimilar if they match
each other’s moves. In this sense, each of the systems cannot be distinguished
from the other by an observer.

Formally, given a labelled state transition system (.S, \, »), a bisimulation
relation is a binary relation R over S (i.e., R ¢ S x §) such that both R
and R are simulations. Or equivalently R is a bisimulation if for every pair
of elements p,q € S with (p,q) € R, Va € A:

Vp'eS:ipop =3¢eS g
and symmetrically,
V@'eS:qo>qg =3 eSS p>y

Given two states p,q € S, p is bisimilar to ¢, written p ~ ¢, if there is a
bisimulation R such that (p,q) € R.



Chapter 2

Molecular Interaction Maps

Molecular Interaction Maps (MIMs) is a graphic formalism to model chemical
and biological interactions between molecules in a schematic way.

A MIM is a powerful diagram convention that is capable of flexible rep-
resentation of networks containing multi-protein complexes, protein modifi-
cations, and enzymes that are substrates of other enzymes. This graphical
representation makes it possible to view all of the many interactions in which
a given molecule may be involved, and it can portray competing interactions,
which are common in bioregulatory networks [23].

MIMs, also known as Kohn maps, were firstly described by Kurt W. Kohn
in a 1999 article (see [22]) in order to create a tool to organize the known
interactions in the form of a diagram. The choice of a map was based on the
idea that the eye could catch important features out of a graphical depiction
more than from a list of equations. Hence, MIMs were born with the target
of transmitting the important facts of a given process more than as formal,
unambiguous language to describe it.

2.1 Needs and Motivations for MIMs

The complexity of the molecular interactions implicated in cell regulatory
networks! challenges human comprehension. Before MIMs, diagrams of molec-
ular interactions were often lacking clearness or incomplete. The preparation
of more comprehensive regulatory network diagrams were both difficult and
urgent. The difficulties were not due merely to the large number of reactions,
already present in familiar metabolic diagrams, but rather to complexities

La cell regulatory network is a collection of molecules or complexes in a cell which
interact with each other and with other substances in the cell, governing the production
and degradation of new complexes and molecules.
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that rarely occur in classical pathway diagrams, such as multisubunit com-
plexes, protein modifications, enzymes that are modified by other enzymes,
and protein domains whose function is regulated by other domains of the
same molecule.

Why do biologists need molecular interaction maps? First, it is often dif-
ficult to keep in mind all of the known interactions that may be pertinent to
a particular experimental or theoretical question, and a molecular interaction
map can be used in much the same way as a road map or electronic circuit
diagram. Second, molecular interaction maps can suggest new interpreta-
tions or questions for experiment. Third, the act of preparing a molecular
interaction map imposes a discipline of logic and critique to the formulation
of functional models. Finally, the diagram convention provides a shorthand
for recording complicated findings or hypotheses.

Another kind of difficulty in preparing useful maps is the incompleteness
and uncertainty of knowledge, as well as the limited scope of applicability
of some interactions. An important aspect of molecular interaction maps is
that they are linked to an annotation list that summarizes current informa-
tion relevant to particular interactions and provides references. A molecular
interaction map can therefore function also as a review. The maps can be up-
dated interactively via the Internet and thus can provide a current summary
of an area.

2.2 MIMs explained

In a MIM, each named molecule is shown only once to facilitate tracing all
the known interactions of any given molecular species. A variety of defined
connecting lines serve to describe the interactions between the molecules.
Because each molecular species in a diagram should appear only once, inter-
actions must be indicated by several types of lines connecting the species.
The different types of interaction lines are distinguished by different kinds
of arrowheads or other line endings, as summarized in Figure 2.2. Multi-
molecular complexes or modified forms are depicted by “nodes” placed on
the lines. A line may originate either at a named molecular species or at a
node, and may terminate at a molecular species, a node, or at another line.
Lines that cross do no imply an interaction.

A unique aspect of the MIM notation is that it can show all of the known
interactions and allow the unknown contingencies (effects of one interaction
on another) to be left unspecified until those details become available. In
this sense, MIM diagrams are “heuristic”. A heuristic MIM therefore may
not provide all the information required for computer simulation. Particular
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models for computer simulation can, however, be extracted from heuristic
MIMs and formulated in “explicit” diagrams using a subset of the MIM
symbols [23].

Heuristic MIMs are “canonical” in that they are not restricted to a par-
ticular cell type or cell state, and they do not indicate a particular sequence
of events. Rather, they show the interactions that can occur if the relevant
molecules are present in the same place at the same time.

Molecules within a cell can interact with each other in different ways: let’s
see a couple of examples of possible biochemical reactions using an intuitive
equation notation:

A+B->A:B Molecules A and B bind together, forming a new com-
plex molecule, called a dimer, named A:B; this reaction is termed “complex-
ation”, the reverse reaction is termed “decomplexation”; if a molecule of a
certain species binds to a molecule of the same species, the complex is named
homodimer;

A - pA A phosphate p is added to a molecule A, this modification
is termed “phosphorylation”. In an equivalent manner, other modifications
can apply to a molecule, in particular to proteins, such as acetylation, ubiq-
uitination, etc. A modification usually activates an otherwise metabolically
inert molecule, that, once modified, becomes ready to interact with other
molecules. Note that the phosphate p is not shown on the left side of the
reaction: it is considered to be quite common and always available if needed.

2.3 MIM Syntax

Here below we will sketch MIM syntax as designed by Kohn. For a exhaustive
explanation refer to [23].

2.3.1 Molecular Species and Interactions

As said, MIM maps are simple graphs whose nodes represents molecules and
arcs interactions between them. Each molecule generally appears only once
on a map, so that it can gather all the interactions involving such molecule
in one place. As said, molecular species can be of two kinds: elementary or
complex. Complex molecular species are combinations or modifications of
elementary species. In Figure 2.1 A, B and C are elementary species while
x,y and z are complex ones. Depending on the scale adopted, an elementary
species can represent either a single atom or a group of bounded proteins:
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Figure 2.1: A simple Molecular Interaction Map

what it matters is that in that map, the species is considered “atomic”, hence
its internal structure is not important for the map at hand.

Interactions

Figure 2.2 lists all actual interactions, as last defined in [23]. Note that this
can change in time, as biologists can decide to “merge” interactions now
considered different, to split up one interaction in more specialized ones or
extend the meaning of interactions now restricted to some kind of molecules
to different ones (and changing the symbols in the process). The latter is
what brought the creation of the covalent bond (Figure 2.2f) that was not
present in [22].

Noncovalent (reversible) binding between molecular species is denoted by
a line with barbed arrowheads at both ends (Figure 2.2a).

Covalent modification (phosphorylation, acetylation, myristoylation, ubig-
uitination, and so on) is represented by a line with a barbed arrowhead at
one end pointing to the modification site (Figure 2.2b). The bond cleavage
symbol (Figure 2.2f) is used to show dephosphorylation by a phosphatase.
(The zig-zag symbol indicates a reaction that catalyzes bond cleavage.)

Covalent binding between proteins or between sites within the same pro-
tein sometimes require a symmetrical symbol, for which purpose the double-
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Figure 2.2: Molecular interaction symbols

line symbol shown in Figure 2.2¢ has been recently adopted.

Degradation is indicated by a filled triangle pointing to a null symbol
(stoichiometric conversion to debris) as in Figure 2.2g.

Stoichiometric reaction (reactants converted to a corresponding number of
product molecules) is indicated by a filled triangle arrowhead (Figure 2.2d).
This symbol can be used also for translocation events, because molecules
disappear from one location and reappear in another location, logically the
equivalent of a stoichiometric reaction.

Any reaction that involves molecules on a different side of a membrane
(cell membrane, nucleic membrane, etc. .. ), called a reaction in-trans, make
use of the splitted line (Figure 2.2h).

Production of a molecular species without loss of macromolecular reac-
tants (as in transcription or translation) is indicated by an open triangle
arrowhead pointing to a molecular species (small ubiquitous molecules, such
as ATP or phosphate group, can usually be ignored)(Figure 2.2e). Produc-
tion by transcription is indicated by an open triangle at the end of a hooked
line (Figure 2.2i).

2.3.2 Contingencies

Figure 2.3 shows the four different contingencies that can be applied to any
interaction. A contingency is a modification of the reaction and hence is
an arrow that point from a molecular species to an interaction arrow. Fig.
2.3a shows the inhibition arrow: the interaction pointed is inhibited if the
molecular species is present. Fig 2.3b shows the stimulation arrow: the
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Figure 2.3: Contingency symbols

interaction is stimulated, that means that it’s reaction rate is increased if the
molecule connected by the arrow is present in the system. Fig. 2.3c depicts
the necessity arrow: this is the dual of the inhibition and means that if the
complex connected is not present, the reaction cannot happen. Last is the
catalysis arrows (Fig. 2.3d) that describe a situation where a reaction has a
different rate whether the molecular group connected by the arrow is present
or not (typically, high when present and very low when not).

2.3.3 Interpretation of Maps

Kohn’s maps are ambiguous. This, in biologists’ view, is a feature more than
a problem, as it allows a scientist to describe multiple interaction scenarios
using a single map which can be read in different ways. This is a feature
when you’re using the map as a knowledge vehicle, whose captions are used
to explain complex maps to students or peers. But it is a problem when you
want to computer simulate the reactions described by the map. Let’s see
how and why maps are ambiguous, how biologists solve the problem when
doing simulations and how we will tackle it in a different way.

Ambiguities

The most important ambiguities comes from different possible interpretations
that the same map can describe. Figure 2.1 shows a very simple map but
it hides some important choices that must be done before a simulation is
possible:

1. can the phosphate group p link with B even if B is already in a bond
with A?

2. can B modified by p (pB) still connect with A?
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Figure 2.4: MIM of Figure 2.1 with mutual inhibitions to solve some ambi-
guities

3. can C' connect either with A:B or with A:pB?

These questions must be answered before any attempt to computer simulate
the map can be done. To do that, it enough to add contingencies to enable or
disable any spurious reaction. Figure 2.4 shows how we can solve problems
1) and 2) by adding the corresponding inhibitions. Actually, problem 3) will
be solved by a syntax choice: if C' was to complexate with A:pB, the arrow
should have been placed against z. If the arrow points to z that means that
C' can only link with A:B.

Rewrite rules

In many cases, the method used to solve the ambiguities are “rewrite rules”:
those are rules, like the one used above, that modify the map to prohibit
some interactions, to force an order to reactions’ sequence or to eliminate
some of the symbols from the map. This last method is suggested by Kohn
himself in [23]: to prepare a computer simulation-ready map, he “preprocess”
the diagram and remove all the interactions that are not allowed or forbidden
(given the actual molecule quantities). In the thesis [17] we can find a way to
rewrite the stimulation and the catalysis contingencies using only the other
two (inhibition and necessity). We will use that result to include in out
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semantics only those two contingencies. The thesis [24] instead uses reaction
rate modifications to express contingencies, not much differently from what
Kohn proposes. Our approach will be slightly different: we want a clear and
unambiguous semantics, hence we will hold on to a strict interpretation of
connections (like said before about solving problem 3) and we will require
all the reduction rules to have a single interpretation, hence forcing slightly
differences from the “canonical” maps.



Chapter 3
MIM-Calculus

In previous chapter we presented MIMs and all the basic formalism needed
for our work. Here we will define formally our calculus, by giving definitions
of its syntax and semantics..

3.1 Syntax and Semantics

We define any molecular kind (simple or complex) as a process.

3.1.1 Syntax

A process has a name and a (possibly empty) set of rules. The name describes
the different elementary molecules that the process holds and the order and
the interaction that were used to group them. The rules describe all (and
every) interactions that the process can undertake. If a rule is not present
in the set, than the process cannot enter in that reaction. Processes can be
placed in parallel by the I operator: processes in parallel can interact as long
as there is a rule that allows them to.

Definition (Syntax). MIM-Calculus’ processes’ syntax is:
P = N {r}N [Py 1Pyl c| o
where N is a complex name, whose syntax is

N = A,B,"' | ®|N13N2 | CN|N1N2

14
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and where r is a rule, whose syntax is

roim e | N | 1,72 | {{r}N} - | N
"’ Nn AN N NGY | N AN N b AN
NN N T {r}N}
S S | == |——>|r 1

(Na b NG} (Nnh vy VnbINGE (NG (NG}

and ¢ is a small compound, like a phosphate or an ubiquitin, that cannot
be considered an autonomous molecule but that sometime reacts with bigger
processes:

ci=plul-

In this syntax, each term (or process) has a name that can be an ele-
mentary name A, B,... or a composition of them through the complexation
operator : or the covalent operator  or the void name & (the void name
is sometimes used to model interactions that originate from the environment
or from unseen or unknown processes).

The set of rules can be empty or it can contains any number of rules in par-
allel. All the rules in a given set have the same priority. Every rule must
explicitly lists all the contingencies affecting it, expressed by the two sets
on its lower part: N, is the set of the necessities (the names that must be
present in the system for the reaction to be allowed) and N is the set of the
inhibitions (the names that must NOT be in system or else the reaction is
forbidden).

Given the syntax definition, a string that describe the processes of Figure 2.4
is the following:

B A p A:B
{—>®’pB ;L}A | {—)Q,pB 1y Q-,A:-B }B | {7@’}0

c
where = {—}.
3,2
This is an unambiguous term, whose evolution can be computer simulated.

Note that in absence of reaction rates, the probability of the complexation
between A and B or of the phosphorylation of B is the same.
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3.1.2 Structural Congruence

The structural congruence of the new semantics is as follow:

P|Q=Q|P

(P1Q)IR=P[(2|R) (3.1)
P|®'p5p
{e} N =N
N12N25N22N1 (32)
NlNQENQNl
7‘1|T257‘2|7“1

(rilr2) [ra=r| (r2]73) (3.3)

rle=sr

This congruence rules give us a way to manipulate terms so that their mean-
ing stay unchanged. Besides the obvious ones, there are a couple that deserve
a little explanation: equations 3.2 tell us that the complexation order or the
covalent order of names are irrelevant to the meaning of the term. For ex-
ample, in the term described above, A: B is exactly the same as B:A.

3.1.3 Reduction semantics

This semantics gives the processes the rules with which they evolve. First we
give meaning to all the symbols in the syntax then we introduce the reduction
rules that show how processes are combined together through the interaction
rules.

N1.XN2.Y
(—

}

p = {X|—>u} pho = {Y|—>u} pz = {pl

Complexation
,U/I'Nl |M2-N2 E)M?”NI'N? ( P )
N1.XN2.Y
1o = {p Yop = {Xl—w} fi2 = {Yl i
(Decomplexation)

,U,O.Nl-NQ ﬁ ,Uq.Nl | ,LLQ.NQ

[ X
=X ==}, 1o = {pl=#}

| N 7 po.cN

(Covalent Modification)



CHAPTER 3. MIM-CALCULUS 17

= {ul=%)

1=
(Covalent Link)

,Ul'Nl | ,U2-N2 E’ M3-N1N2

cN. w
MI:{X|¢’2}7M2:{K:F}HU/3:{W M
NI Ny, Iq Ny, I

— (cCleavage)
w1 N1 | po.cNs —c | 1 N | a3 No
NoN-
= {X[ 5" e = {Y| u} ps = {W| u} = {M|:F}
N,I
(Cleavage)

M1-N1 | M4-N2N3 ﬁ’ ,Ul-Nl | M2-N2 | Mg-/\/zs

{(n-N)i,i>1}

N,I

po = {X| }
1r0-No o pr Ny | | s NG

(Stoichiometric Conversion)

{(nN)isiz1}
po = {X |TD}
’ (LossLess Production)

MO-/\/O E’ MOJ\/O | ,ul.Nl | | Mi.N

These rules give us a way to interpret all the symbols that where introduced
in the syntax. As you can see, the semantics mimics the equivalent MIM
interaction.

So the = arrow and its dual, the <= arrow, describe the complexation-
decomplexation interaction that in MIM is depicted by the double arrow
line (Figure 2.2a). As you can see, rule (Complexation) describe a situa-
tion where two process are in parallel in the system and they both have a
rule to complexate one with the other. Note that the process produced by
the application of this rule has been given the complementary decomplex-
ation rule to return to the original situation. For the same reason, in rule
(Decomplexation) the products of the decomplexation have again the com-
plexation rule.

Note that in both case, the sets of necessities and inhibitions have been in-
herited by the system evolution step: for these reactions to happen in this
execution of the system, those contingencies must be respected by the whole
environment. The other reactions are pretty much similar, with two notable
exceptions. First, the covalent link and the covalent modification are not
reversible. The unbonding must be executed by a third complex with that
capability (cleavage). Second, the production and the conversion rules can
have multiple molecules as their final products. This is somehow different
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from canonical MIMs where in both cases a structural limit is posed on the
quantities of products: the stoichiometric conversion must preserve the total
atomic mass (hence the name) while the lossless production must preserve
the total energy in the reaction. These limits comes from physical and chem-
ical preservation laws that cannot be represented in our calculus. It’s up to
the user to write meaningful equations or not.

The last two rules of the semantics give us a way to interpret a system
with multiple processes in parallel (rule (Conditions)) interacting with each
other, with their sets of necessities and inhibitions that get checked and
simplified at each step by the rule (Conditions) and that must be completely
solved in order to apply the execution step to the system as a whole (rule
(Final)). The function namesOf is used to extract the list of names from the
current environment in order to be checked against the necessities and the
inhibitions sets.

PP

)

Q. = namesOf(Q),Q, nI = &,
P, =namesOf(P),P,n 1 =@,

N"= N~ Qn (C diti )
ondailrtions
PlQ 7 Pi|Q
P—>P1
PQ—;ilpl (Flnal)

where the function namesOf: P — {n e N'} is defined as follow:

g if Q=0p
namesOf(Q) ={ N; unamesOf(P;) if Q=N; I P,
N UnamesOf(P;) if Q={r}.N; 1 P



Chapter 4

Turing Equivalence of
MIM-Calculus

In this chapter we want to show that MIM-Calculus is Turing equivalent by
showing that the MIMs themselves are Turing equivalent.

To this end, we will show two results: first, MIMs without inhibition con-
tingency have the same computational power of Petri Nets (which are NOT
Turing equivalent). Second, if we add the inhibition contingency to MIMs
and the inhibition arc to PN, the equivalence between them holds. And since
inhibited Petri Nets are Turing equivalent (see [28]), this demonstrate that
MIMs are actually Turing equivalent. In order to proceed, we will introduce
Petri Nets formally and informally in a way convenient to our goal.

4.1 Petri Nets

A petri net is an abstract formal model of information flow. It can be de-
scribed formally or via graphical intuitive representation.

Definition (Petri Nets). Petri Nets are tuples {P,T, 1,0} where:
P is a set of Places

T is a set of Transitions

P and T must be disjoint: PnT =g

I is a function: I €T x £(P)

O is a function: O €T x f(P)

Such a description designs a static net, whose properties are equivalent
to a graph with P and T nodes and I and O the arcs, respectively in input
to and in output from a given transition. Marked petri nets (also known as

19



CHAPTER 4. TURING EQUIVALENCE OF MIM-CALCULUS 20

standard petri nets, or PN) are petri nets with “weights” associated to places
via a marking function pu.

Definition (Marked Petri Nets). Marked Petri Nets are tuples { P, T, 1,0, u}
where P,T', I and O are defined exactly as for Petri Nets and where p is the
marking function for the places: pc P xN

Marked petri net are what normally is considered a Petri net and they can
be “executed”, that means that the p function can be modified by choosing
one of the “enabled” transition and “firing” it!, hence augmenting or dimin-
ishing the marking value of the places specified by the I and O function.

Definition (Execution). Executing one step of a standard petri net is ob-
tained producing a new marking p; from marking pu.

w(p) =1 if pel(ty) ApéO(to)
wi(p) =1 u(p)+1 if peO(ty) Ap ¢ I(to) (Execution)
pu(p) else

where ¢, is chosen from all the enabled? transition ¢¢ € 7. The new marked
petri net resulting from “firing” transition ¢y is then the tuple { P, T, 1,0, j1}.

Intuitively, a petri net is a graph. Figure 4.1 shows a simple Petri net. The
pictorial representation of a Petri net as a graph used in this illustration is
common practice in Petri net research. The Petri net graph models the static
properties of a system, much as a flowchart represents the static properties
of a computer program [28].

The graph contains two types of nodes: circles (called places) and bars
(called transitions). These nodes, places and transitions, are connected by
directed arcs from places to transitions and from transitions to places. If an
arc is directed from node i to node j (either from a place to a transition or
a transition to a place), then i is an input to j, and j is an output of i. In
Figure 4.1, for example, place p; is an input to transition ¢,, while places py
and p3 are outputs of transition t,.

In addition to the static properties represented by the graph, a Petri net
has dynamic properties that result from its execution. Assume that the ex-
ecution of a computer program represented by a flowchart is exhibited by

Lthis is not the most common definition, since choosing one transition to be fired takes
away the possibility of parallel firings in mutually independent but enabled transitions.
However, this doesn’t interfere with the computational power issues at hand here (see [25]
for reference).

Za transition ¢ is enabled if “Vp e I(t) - p(p) > 17.
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Figure 4.1: A simple graph representing a Petri Net

placing a marker on the flowchart to mark the instruction being executed,
and that as the execution progresses, the marker moves around the flowchart.
Similarly, the execution of a Petri net is controlled by the position and move-
ment of markers (called tokens) in the Petri net. Tokens, indicated by black
dots, reside in the circles representing the places of the net. A Petri net with
tokens is a marked Petri net.

The use of the tokens rather resembles a board game. These are the rules:
Tokens are moved by the firing of the transitions of the net. A transition
must be enabled in order to fire. (A transition is enabled when all of its
input places have a token in them.) The transition fires by removing the
enabling tokens from their input places and generating new tokens which are
deposited in the output places of the transition.

In the marked Petri net of Figure 4.2, for example, the transition t, is
enabled since it has a token in its input place (p;) Transition 5, on the other
hand, is not enabled since one of its inputs (p3) does not have a token. If ¢,
fires, the marked Petri net of Figure 4.3 results. The firing of transition t,
removes the enabling token from place p; and puts tokens in py and ps, the
two outputs of .

The distribution of tokens in a marked Petri net defines the state of the
net and is called its marking. The marking may change as a result of the firing
of transitions. In different markings, different transitions may be enabled.
For example, in the marked net of Figure 4.3 three transitions are enabled:
t1, t3, and t5, none of which were enabled in the marking of Figure 4.2. In
this situation, we have a choice as to which transition will fire next.
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Figure 4.2: A marked Petri Net

Figure 4.3: The marking resulting from firing transition ¢y in Figure 4.2.
Note that the token in p; was removed and tokens were added to ps and ps
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4.2 Turing Equivalence by Reduction to Petri
Net

Establishing the computational power of a given formalism is often not an
easy task. The easiest way to accomplish this is normally to “reduce” the
formalism to another one whose computational power is already known.

Normally we “reduce” problems: A < B (A is reducible to B) means that
each and every solution to A can be found by solving B and translating the
solution somehow. Hence, solving problem A cannot be harder than solving
problem B.

Since a formalism is a method to model problems, we can extend the idea
of reduction: to reduce a formalism A to another formalism B (A € B) means
that every problem written in formalism A can be modeled through formalism
B, given a simple translation process. Hence, if we know the computational
power of B, and A c B, problems in A can be solved with at most the same
effort.

A Turing-equivalent system is one that can simulate, and be simulated
by, a universal Turing machine. So, if B is Turing-equivalent and A c B, we
can say that problems in A can be solved by a universal Turing machine.
On the other hand, if we show that B £ A, we demonstrate that A can solve
any problem solvable by a universal Turing machine. So, showing that B is
Turing-equivalent and that both A€ B and B £ A relations hold, is enough
to demonstrate that A is Turing-equivalent as well.

Petri nets, with their modeling properties and extensive literature, are a
perfect candidate for this. Since their introduction in 1962, a large number of
results about Petri Nets properties have been proved. Many concentrate on
their computational power (and the computational power of PNs extended
in a way or another). Here we will need only a couple of results:

- Standard Petri Nets are not Turing equivalent;
- Petri Nets extended with an inhibition arcs® are Turing equivalent (see

[28]).

4.2.1 Equivalence of Non-Inhibited MIMs and Stan-
dard Petri Nets

We will reduce MIMs without the inhibition contingency to Petri Nets and
vice-versa. We will be doing this by a structural approach: for each MIM and

3also called “negative context conditions” since they are read but not consumed by the
transition, see [25]
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A Q
P:Q
n a -
decomp
(a) MIM Graphic Notation (b) Petri Net

Figure 4.4: Complexation and Decomplexation Interactions modeled through
different notations

Petri Net primitive? we will give an equivalent model in the other formalism,
hence demonstrating the equivalence by a loose type of structural induction
on the rules (loose mainly because we don’t bother to prove that all those
pieces are necessary).

Reduction of MIMs to Standard Petri Nets

MIM primitives are elementary species, complex species and all the differ-
ent interactions. Each of these can be mapped onto a petri net structure:
elementary and complex species can be represented by labeled places while
interactions can be modeled through transitions and their input and output
arcs. By modeling all elements of MIM with equivalent Petri Net, we demon-
strate that MIM £ PN and so we show that solving a problem described in
MIM notation cannot be harder than solving a problem described in PN no-
tation. This is enough to assert that MIMs are NOT Turing Equivalent. So,
here below you can find each MIM interaction both in MIM graphic notation
and in its equivalent petri net.

The complexation (and the decomplexation) of two elementary species A
and B into the complex species A: B in MIM can be seen in Figure 4.4a. In
Figure 4.4b the equivalent petri net can be observed: note how the two transi-
tions comp and decomp describe precisely the double interaction synthesized
in the double arrow of MIMs. As you can see, we are only describing struc-

4we use a somehow intuitive concept of primitive: primitives are constituent elements

who can be (or not) necessary to model the formalism, but that are sufficient to.
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(a) MIM Graphic Notation (b) Petri Net

Figure 4.5: Stoichiometric Conversion modeled through different notations

(a) MIM Graphic Notation (b) Petri Net

Figure 4.6: Lossless Production modeled through different notations

tural properties: the petri net is not marked and so it cannot be “executed”
in the same way as the MIM of figure 4.4a cannot be simulated without
knowing the exact quantities of reactants A and B in the environment.

Stoichiometric Conversion rule can be seen in Figure 4.5a. The rule de-
termines how a species P converts to different species ();. The petri net in
Fig.4.5b is pretty self-explanatory.

Lossless Production rule can be seen in Figure 4.6a. The rule determines
how a species P produces different species (); without being consumed. Fig-
ure 4.6b depicts the equivalent petri net, where transition “prod” consume
and reproduce a token in the place P. As explained in [25], this is not exactly
the same as if P would simply stay put and produce the ;. However, we
are not interested in parallel computation properties here and so we can ig-
nore the difference. Even more, with the petri net rule Execution we decided
that our petri net would fire only one transition at a time hence avoid-
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degr

&

P

(a) MIM Graphic Notation (b) Petri Net

Figure 4.7: Product Degradation modeled through different notations

ing the problem altogether. Note that we still can have concurrency and
non-determinism, as multiple transitions (or multiple interactions, in case
of MIM) can be enabled at a given time, and which one will fire is totally
unknowable beforehand.

Figure 4.7 shows both MIM and petri net notation for the Product Degra-
dation rule. Note that this could be seen as a particular case of Stoichiometric
Conversion, where molecule P transforms in the null complex @.

Figure 4.8 describes the covalent link and modification interactions along
with the respective cleavages and their equivalent PNs.

Reduction of Standard Petri Nets to MIMs

Now we want to model Standard Petri Nets with MIMs. We are not interested
in the efficiency of the simulated model hence we can introduce artifacts that
will help in the translation.

We take into consideration only two PN primitive structures [30], Syn-
chronization (Figure 4.9a) and Concurrency (Figure 4.9b), since the others
are transformed into MIM by reversing the MIM modeling we presented ear-
lier (see page 23).

Since we are modeling PNs with MIMs, we are forced to model transitions
that can have any number of inputting and outputting arcs with rules that
can take at most two input (the covalent link, see rule (Covalent Link)) and
any number of output (the stoichiometric conversion, see rule (Stoichiometric Conversion)).
So while transition with multiple output (the Concurrency primitive) will be
easily drawn with a MIM (see Figure 4.13), transition with multiple input
(the Synchronization primitive) will require some modifications. In partic-
ular, we will need to consume all the inputs by “eating” at most two at a
time.

To do so preserving the semantics, we will have to introduce a global
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5 coval
—>
cleavage
(a) Link with MIM (b) Link with Petri Net
covalMod

p:

R PR
S S

pCleavage

(¢) Modification with MIM (d) Modification with Petri Net

Figure 4.8: Covalent Link, Modification and Cleavage modeled through dif-
ferent notations

“lock”, a predefined place with an initial marking of 1 that is in input to all
PN’s transitions (see Figure 4.10a). Since each transition must consume the
lock to fire (and it must replace it afterward, obviously), this simple trick is
able to serialize the firings. While the lock has the token, every transition
that would be enabled without the lock is still enabled and while the lock
has no token, only the transition that took it can execute. This is precisely
what always happens in a Petri Net with the definition of execution we gave
in page 20 but we will need the locking mechanism when some transitions
will be expanded in more than one step. Taking the lock means disabling all
the other transitions: this way the transition being fired can complete all the
steps it needs to do to simulate the original transition it models (a kind of
“atomic” action, a protected sequence of steps that cannot be interrupted)
thus preserving the semantics of the original PN.
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P i
l Synchronization
A B

Concurrency
R C
(a) Synchronization (b) Concurrency

Figure 4.9: Two Petri Nets primitives

Lock

Concurrency
Yy
l Synchronization \

|
=0 OO0

C

(a) Synchronization (b) Concurrency

Figure 4.10: Synchronization and Concurrency with explicit lock
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Figure 4.11: Synchronization through multiple steps and lock
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Figure 4.12: Synchronization modeled with MIM
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ops
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Figure 4.13: Concurrency modeled with MIM

To be able to correctly simulate the synchronization primitive, we intro-
duce a new special kind of arc, dual to the inhibitor arc, the necessity arc
(an arc with a filled circle as head): this arc when inputting in a transition,
disables the transition if the source place is empty and enables it when is not
empty (just like normal arcs) but then firing the transition does not consume
any token off the place.

With this new arc, we can model our synchronization primitive through
multiple binary steps, the first being the most important (see Figure 4.11):
the transition synchronization is enabled if and only if places A, B, C and
lock have each at least a token, but only the lock is consumed, thus dis-
abling all other transitions and guaranteeing the atomicity of the whole pro-
cess. Next steps will each consume one of the input tokens, whose presence
is assured by the necessity arcs and the fact that all other transitions are
disabled, while the last one produces the end result and returns the lock, ex-
iting the protected section and re-enabling the rest of the transitions. Figure
4.12 shows the equivalent MIM.

As said above, the concurrency primitive is modeled naturally from the
original PN (Figure 4.10b): the equivalent MIM can be seen in Figure 4.13.

4.2.2 Equivalence of Inhibited MIMs and Inhibited Petri
Nets

This last part of our demonstration is actually pretty easy.
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{

Figure 4.14: An inhibited Petri Net: transition ¢ cannot fire if place R has a
token

Figure 4.16: An simple Petri Net equivalent to MIM of Figure 2.4
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PN to MIM: For any inhibition arc in the PN (an inhibition arc goes
from a place to a transition, see Figure 4.14), in the equivalent MIM we
add an inhibition contingency arrow from the correspondent complex to the
correspondent interaction. More formally, V inhibition arc from a place P
inputting in a transition T, where in the resulting MIM T is modeled by
interaction R and P by complex A, we add to the MIM an inhibition contin-
gency arrow starting from A and pointing to R.

MIM to PN: For any inhibition contingency arrow in the MIM, in the
equivalent PN we add an inhibition arc from the correspondent place to
the correspondent transition. More formally, ¥V inhibition contingency arrow
from complex A to an interaction R, where in the resulting PN R is modeled
by transition T and A by place P, we introduce in the PN an inhibitory arc
starting from P and inputting in T.

To make it even clearer, let’s use a previous example: Figure 2.1 shows
a simple MIM and Figure 2.4 shows that same MIM with explicit mutual
inhibition. In figure 4.15 you will find a PN equivalent to the former example.
In the figure 4.16 we added the inhibition arcs, in the same way the inhibition
contingencies were added in the latter example, obtaining an equivalent petri
net.



Chapter 5

Example

5.1 Example of translation

We took this example from [5](Figure 3c) because it is listed as an example
of an explicit MIM, which can be used for computer simulation: In Kohn’s
words: “The model encoded in this MIM can be used for simulations of
the phosphorylation process”. This MIM depicts the phosphorylation of the

p
>@g

Figure 5.1: The phosphorylation of the retinoblastoma protein (Rb) by a
cyclin-dependent kinase (cdk)

retinoblastoma protein (Rb) by a cyclin-dependent kinase (cdk). Rb forms
a complex with E2F to create the Rb-E2F complex. This complex can be
bound by cdk to create a complex Rb-E2F-cdk, which can then dissociate
into E2F, cdk, and the phosphorylated form of Rb.

The concentration of E2F is determined by its rate of synthesis (line
leading to E2F) and its rate of degradation in the proteasome; the explicit
stages of the latter process are binding of E2F to the proteasome and creation

33
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of an E2F-proteasome complex, followed by the disappearance of E2F from
the complex.

Here below, you find the processes of the system: in the long line the
initial agents (corresponding to the elementary molecules in the MIM), on
their side the complex molecules that can be created at some stage during
the simulation (corresponding to complex molecules, indicated on the MIM
by a small black circle).

5. Rb: o F
fo- @ 1 1RO v e EsF 1 pg.cdk 1 pg.Proteasome Wo.Es F': Proteasome
ps.cdk:(Rb: E5F)

Here below you will find the rule set for each process in the system. Note
that most of the complexity of MIM-Calculus lies in these set of rules.

po.EoF o
Ho = Ha = {—’HG}
Hi = {E’%,L s = {Elf,m}
pe = s} g = Lbroteasome y
W3 = {M’m} L7 = {pﬁ,ug.cdk,w,EQF:}



Chapter 6

Conclusions

In this work we described a graphic formalism called Molecular Interaction
Maps, used by biologists and chemists to describe large, complex system of
interacting molecules, proteins and cells. MIMs can be easily used to give
lots of details about such a complex system in a intuitive manner, so that
students and colleagues can concentrate on the meaning more than on some
difficult syntax.

Later we developed a non-graphical equivalent language for MIMs, based
on a Process Algebra approach and called MIM-Calculus. To MIM-Calculus
we gave a strict syntax, a structural equivalence and an operational semantics
to simulate MIM’s behavior.

Finally, we demonstrated that MIMs and hence MIM-Calculus are Turing
equivalent by using Petri Nets as a graphic formalism whose computability
power is well known. To do so, we constructively simulated MIMs with
Petri Nets and vice-versa, thus proving that MIMs with only the necessity
contingency are equivalent to Petri Net (hence not Turing equivalent) and
by adding the inhibition contingency to MIM (and the inhibition arc to Petri
Net) they reach the Turing equivalence.
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