Service and Resource Discovery Supports
over P2P Overlays

Emanuele Carlini

Pisa, Italy
e.carlini @isti.cnr.it

Massimo Coppola, Patrizio Dazzi,
IMT Lucca, Italy, and ISTI-CNR Domenico Laforenza, Susanna Martinelli
Institute of Information Science and
Technologies ISTI-CNR, Pisa, Italy

Laura Ricci
Computer Science Dept.
University of Pisa, Italy

ricci@di.unipi.it

{m.coppola, d.laforenza, p.dazzi,
s.martinelli } @isti.cnr.it

Abstract—We describe the main architecture and the
design principles of the Service/Resource Discovery System
(SRDS), a component of the XtreemOS Operating System.
XtreemOS is a Linux extension that enables manage-
ment and exploitation as single platform of computational
resources provided by federated Virtual Organizations.
The SRDS provides scalable and fault-tolerant directory
services supporting many of the platform functionalities,
ranging from dynamic resource location and job control
to system and application-oriented directory services.

The key challenge of the SRDS design is to provide
the common metaphor of the directory service, meeting
the scalability requirements of a Grid-aware Operating
system, and at the same time enjoy extendability and
configurability, especially with respect to the quality of
service provided. The SRDS design combines different
peer to peer structured overlay networks, exploiting their
peculiar strengths. We describe the implementation and
our design of the namespace abstraction as implemented
on top of multiple overlay networks. Finally, we show test
results of the SRDS on top of a subset of the Grid5000
platform.

I. INTRODUCTION

Exploiting a large amount of geographically scattered
computing resources has been made technically feasi-
ble in recent years, thanks to the development effort
spent in the Grid communities [1]. Nevertheless, daily
exploitation of more and more distributed resources in
a dynamically changing environment quickly becomes
unpractical, due to the number of low-level tasks that
have to be performed.

XtreemOS (http://www.xtreemos.eu, [2]) is a research
project funded by European Commission, aiming at pro-
ducing an Open-Source, Grid-enabled Operating System.
The XtreemOS approach consists in developing a whole

9781-4244-3941-6/09/$25.00 (©2009 IEEE

Operating System abstraction layered on top of the
computing resources, so that the end-users no longer
need to confront with middlewares. POSIX applications
shall be transparently run over remote resources, and a
specific API is available to developers willing to exploit
the advanced services provided by the platform in Grid-
aware applications.

XtreemOS goes beyond the experiences made with
Grid middlewares and looks at the concrete challenges
presented by scalable management of large computa-
tional platforms, dispersed among countless adminis-
trative domains. XtreemOS goal is to exploit the con-
vergence of results in the SOA and Cloud computing
research fields. In forming Virtual Organizations (VOs),
XtreemOS allows to federate resources from multiple
institutions and that spread over geographic networks.
Large clusters, single workstations as well as mobile
devices can cooperate through a common security and
authorization infrastructure [3].

It is obvious that such a system has to provide efficient
interconnections across its components, and allow the
exploitation of individual system nodes hiding the effects
of scale. Providing highly available and scalable mecha-
nisms that allow communication, information spreading
and retrieval is one of the tasks of the project. This in-
cludes the implementation of the Service/Resource Dis-
covery System (SRDS), a directory service with resource
location features suited to multi-VO environments.

Peer-to-peer (P2P) networks are almost a perfect
match for these requirements, as they sport fault toler-
ance, scalability, low overhead. While their adoption is
straightforward, exploiting them efficiently in the general
case is less obvious. The SRDS has several kinds of
clients, both modules of XtreemOS and applications, and
a varied set of tasks (e.g. locating resources, providing

generic directory services, range-based and multidimen-
sional constrained queries).

No single P2P approach can cope with the diversity
of requirements, and still provide always the optimal
tradeoff. This is especially true as in some cases the
balance between the acceptable overhead and the func-
tionalities needed is also application-dependent. In order
to provide extendibility (ease to support new XtreemOS
modules) as well as configurability (allow modules and
applications to choose the best trade off) we designed the
SRDS architecture following a layered approach, where
the upper layer is a facade module used as an “extendible
APT”, the intermediate layer allows to modularize the
retrieval algorithms, and the lower layer integrates under
a common abstraction different P2P overlays.

In section II we discuss related results in the literature.
The rest of the paper is structured according to the SRDS
architecture: in section III we define the ADS structure,
section IV defines the information management level
and section V describes the DHTs used in the current
SRDS implementation. We then discuss in section VI the
namespace feature we adopted and its implementation
strategies within DHT overlays. Section VII outlines the
range-query support we have developed, which exploits
an optimized publication algorithm, section VIII follows
with preliminary performance results on a Grid platform.
Section IX summarizes our contribution and outlines our
development roadmap and future research work.

II. RELATED WORK

Several proposals for P2P platforms exploiting a large
amount of geographically scattered computing resources
have been presented in recent years. OpenDHT [4]
is a large scale Distributed Hash Table, deployed on
the Planet Lab platform, a geographically dispersed
volunteer-based computing platfom. OpenDHT tackles
several challenging problems related to the definition of
a DHT service on a massively distributed computing
infrastructure as basic service shared among a large
number of different applications and services. The cited
work introduces the concept of namespace to distinguish
data from different services/applications. It implements
namespaces by embedding a two dimensional quad-
tree in the underlying Bamboo DHT. Further issues are
the definition of a proper authentication support for
the nodes joining the DHT, as well as defining a fair
allocation policy of the DHT storage among competing
clients and a mechanism to prevent client starvation.

The work [5, Jin et al.] proposes a directory service
built over the Chord DHT infrastructure which acts as a

rendezvous network connecting multiple VO on a Grid.
Only a single node of each VO can become a DHT node,
and acts as a bridge to link the local VO into the DHT
ring. The DHT Proxy mediates between the local VO and
the remote ones by publishing and deleting information
from the dispersed repository, as well as by performing
queries across VOs.

Some recent proposals mix structured and unstruc-
tured overlay networks to define a directory service
support. For instance in the PARIS semantic overlay
network [6] local groups of peers are organized in an
unstructured overlay. In each group, the peers with the
best connectivity are selected to join a DHT which
enables communication between peers belonging to dif-
ferent groups.

The problem of defining of a hierarchy of namespaces
within a flat DHT is strictly related to the definition
of the SRDS developed within XtreemOS. Several pro-
posals [7]-[11] of embedding structures within a flat
DHT like Chord [12] or Pastry [13] have been recently
presented. Diminished Chord [9], introduces subgroups
in the Chord ring by embedding a binary tree in the
Chord ring. A simple interface is defined to join a
subgroup identified by X and to search a key within X.
Cyclone [10] divides the identifier assigned to each node
into a suffix which identifies a namespace and a prefix
defining the identity of the node within the group of peers
identified by the namespace. The choice of the suffix to
identify namespaces enables the definition of a hierarchy
within the DHT without renouncing to the properties of
flat DHTs, like load balancing and uniform distribution
of the peers. Crescendo [7] defines a hierarchical DHT
over a Chord ring where logical hierarchy of nodes
reflects their partitioning into different groups.

Along with namespaces management, the definition of
a support for range queries is another key aspect of the
SRDS. Some proposals exploit Space Filling Curves [14]
to map points from a d-dimensional space of attributes
over a flat 1-dimensional space, other ones are based
on the definition of hierarchical structure over the DHT.
Last but not least, there are approaches are based on the
linearization of data by means of a locality preserving
hashing function [15]. As shown in Sect VII, the SRDS
exploits the last approach and develops it further.

III. THE ADS ARCHITECTURE

In order to address the challenges we mentioned
in the Introduction, we designed and implemented the
Service/Resource Discovery System (SRDS): a coherent
framework for providing directory services which also

supports resource lookup and exploitation. In this Sec-
tion we present the SRDS overall architecture giving
a bird-eye-view of its main components and of the
interactions between them. The main contribution of the
SRDS to XtreemOS consists in providing to applications
and system components general-purpose directory ser-
vices which include the capability of searching for and
selecting services and computational resources. SRDS
performs a wide range of different tasks, ranging from
simple key-based queries to range-based queries over dy-
namic attributes, while providing a storage service level
(e.g. reliability) that is customizable according to the
needs of each XtreemOS module that is an SRDS user.
The submitted queries can be hard to resolve, as they
can potentially involve range constraint over attributes,
dynamic information on resources, and multiple fitting
criteria expressing the user needs.

The problem is particularly challenging, indeed. If
on the one hand efficient implementations of simple
directory service functionalities over very large set of
nodes are thoroughly studied, on the other hand the
possibility to formulate/invoke more complex queries is
still considered an open research issue. This is especially
true when dynamically variable information has to be
managed.

In order to allow efficient management of such a wide
range of queries, the SRDS is designed to exploit a
combination of different P2P approaches, so to grant the
best implementation tradeoff in each situation and not to
be restricted to any single solution.

The architecture is layered and modularly decom-
posed. From the development point of view, the two main
modules are the Application Directory Service (ADS),
and the Resource Selection Service (RSS). The SRDS
module is in charge of most of the query pre-processing
and controls a configurable set of DHT overlays, while
the RSS provides a P2P overlay specifically designed
[16] to allow scalable resource location in large overlays.
Both the ADS and the RSS overlays are established on
the set of computing resources managed by the SRDS,
each machine generally belonging to several overlays.

A. Architecture Layers

The overall architecture and the SRDS and ADS
functional layers are depicted in Figure 1. We will not
discuss in depth the upper Facade layer, whose purpose
is to provide easy-to-extend multiple interface protocols,
including Java-RMI, HTTP and DIXI developed inside
XtreemOS project. DIXI, based on the SEDA protocol,
is an event-driven communication framework, allowing

a) | Facade |
it
2 v
0n e
lalto] 2 | Query Provider Layer |
[~ =] <
n < v)
S
< | Information Management Layer |
% % RSS
; Overlay
Scalaris Weaver
Fig. 1. SRDS overall architecture and main modules.

intra-service communication that is independent from
service implementation. Some of these protocols are
routinely employed in the XtreemOS system, other ones,
like RMI, are solely used for testing and debugging
purposes.

The intermediate Query-Provider (QP) layer contains
a set of modules devoted to query translation, that
implement the complex functionalities needed by the
users in terms of simpler primitives provided by the
overlay managing libraries. By providing interpreta-
tion algorithm, we can afford to implement arbitrarily
complex functionalities, beyond those provided by the
particular P2P overlays that we exploit. An example
of complex functionality is the Job Directory Service
(JDS), a directory service for XtreemOS applications
running on the grid. The JDS is implemented as a set of
data structures within a basic DHT, and the algorithms
managing the queries (direct and indirect ones) as well as
updates to those structures belong to the Query-Provider
layer.

The main purpose of keeping Job information within
an overlay is to decentralize and decouple it from
any specific machine. DHT built-in replication and the
design of the Job management System (JMS) protect
from resource and JMS faults, and allow transparent
migration of job control across different JMS instances
(e.g. taking over application steering from XtreemOS
mobile devices).

Another example is the mechanisms employed to
locate resources within the platform, which is explained
later in this section.

Below the previous level we find two main modules
providing actual data access. The Information Manage-
ment layer provides a common interface to DHT-like
overlay networks. This layer is described in Sect. IV,
and beside constituting a common interface to create,
configure and access different overlays, it also provides
a Namespace abstraction on top of (multiple) DHTSs. The
DHTs currently employed in XtreemOS are described in

Sect.V.

The second module in this layer, and the second
main component of the SRDS, is the RSS, a hierarchi-
cally structured overlay network developed within the
XtreemOS project. The RSS is described below.

B. Main SRDS Blocks

Overall, we can see that the ADS is heavily modular-
ized and targeting complex functionalities over dynami-
cally changing attributes (e.g. free memory), employing
“flat” P2P overlays to store information. On the contrary,
the RSS has been designed to manage constant-value
attributes (e.g. memory installed on a machine) with very
high scalability in a large overlay. The SRDS merges
these two profiles in order to maximize its efficiency,
in particular to address the resource location problem in
a scalable way. Being a performance-critical operation,
resource location queries are executed as a two-phase
information selection process, in which the RSS and the
ADS respectively act as a “machete”, which quickly
cuts away most unfitting resources, and a “bistoury”
that carefully removes those violating more complex
requirements and dynamic constraints.

a) RSS: The RSS answers to multi-dimensional
range queries over static attributes, returning a list of
resources identifiers that match the query. By static we
mean a small set of constant-valued attributes, known at
overlay initialization time. On the contrary, it is foreseen
that resources may leave (e.g. due to failures) and join
the platform dynamically. The query is performed by
a specifically designed, structured P2P overlay and a
matching distributed search algorithm. A full description
of the approach, developed at the Vrije Universiteit
Amsterdam, as well as its validation are reported in
[16]. In contrast with other P2P approaches that rely on
delegation of resources, in RSS each node represents its
own attributes in the overlay. The solution enjoys prop-
erties that speed up basic resource location. There is no
replication overhead and no possible data inconsistency
(e.g. when rebooting after an hardware upgrade). Node
failures need not be accurately detected by other nodes,
and no specific repair operation overhead is necessary to
reconstitute the overlay. The query algorithm is designed
to avoid creating imbalanced workloads. The result of a
query is a large set of resource identifiers, larger by a
specified fraction than the amount of resources needed
to satisfy the query.

b) ADS: Beside simple query primitives to filter
out the RSS results or DHT-like access, ADS provides
specific access functions, that are tuned to solve range

queries over dynamic resource attributes. Dynamic at-
tributes are those that can dynamically change their
values, like CPU load. Queries contain predicates over
the static and dynamic attributes of the resources (e.g.
we want a certain set of software and hardware resources
to be currently available at the site). Solving range
queries over dynamic attributes is inherently less scalable
than answering queries about static values. Extensions
of Distributed Hash Table (DHT) techniques and to
dynamic attributes and complex queries are employed.
However, in order to improve the efficiency of the
refining selection process, the ADS exploits a problem-
size reduction, leveraging the candidate set for the query
that is provided by the RSS. Once the set of candidates
has been narrowed acting on basic attributes, it is feasible
to exploit DHT-based techniques to apply the more com-
plex constraints. The ADS can also create an application-
specific “directory service” using the resource identifiers
received by the RSS, those related to the resources
(possibly) involved in the application execution.

IV. INFORMATION MANAGEMENT LAYER (IML)

The interface of the Information Management Layer
(IML) is the common ground for DHT operations within
ADS. The IML maps operations received by the higher
level modules to concrete ones, providing a DHT layer
interfaces that hides implementation peculiarities of each
overlay. In particular, the IML is required to map the
abstract concept of namespace (a user-allocated separate
space of keys) to the DHT layer.

Consider the abstract operations received by the IML
layer:

operationgp = { op, key,;, value,;, Nspace,

ClientType, Clientld }

At the IML level the namespace (Nspace) holds all
information that, at the more abstract levels, might
have been conveyed by any parameter for the sake of
disambiguating the meaning of the key. The namespace
defines thus the context in which the key is used, making
explicit information that is implicit in the SRDS primitive
invoked, in the client type or identity.

The specific name space is provided by the calling QP
module (in charge of the SRDS primitive invoked by the
user). Different ways of implementing the key spaces at
the DHT layer will be discussed in the next section.

The abstract operation is mapped to a concrete
operation of the DHT layer defined as follows:

operationpyr = { op, keyp, valuep, auxInfo }
While value,, is directly mapped to valuep, because
values are provided by upper level modules and go
uninterpreted in IML, key translations may happen as
a result of namespace implementation. For instance,
to ensure uniqueness of keyp in the DHT space it
may be defined by a concatenation of the namespace
unique id, the actual key, and a unique ID function
of the client, thus providing client separation properties
whenever needed. When client separation is not needed,
the ClientType and Clientld information is not exploited.
The auxInfo field provides hints to the DHT imple-
mentation about the best tuning of the overlay, whenever
the tuning can be performed dynamically. It encodes
inferred information from the namespace and the other
parameters about the hash functions, data expiration
timeouts and so on (e.g. some DHTs provide authoriza-
tion mechanisms by means of user-defined secrets).

V. DHT IMPLEMENTATIONS

The DHT layer hosts different DHT implementation
libraries providing low-level support for both the basic
functionalities defined by the IML layer, like put/get
operations. The DHT layer also wraps and provides
non-standard features like namespaces, implementation
details of secret-based autenthication and expiration of
requests. This level has to allow a certain degree of
customization, concerning for instance the hash function
used, or the replication degree. Customization is needed
in order to tune the DHT for different usage patterns,
and to enable the ADS to support complex queries and
dynamic attributes. We first describe the two DHT sup-
ports currently adopted in the ADS implementation, and
in the next sections we describe the solution exploited
by the ADS to support namespaces and multi attribute
range queries.

A. Scalaris

Scalaris [17] is a P2P overlay that offers transaction-
based access to the basic DHT operation. Transactional
behaviour is useful when criteria of atomicity are needed
to ensure data consistency. For example, the internal
DHT key space that register namespaces inside SRDS
must be updated avoiding concurrent interferences. The
Scalaris internal architecture is also layered. A low-level
DHT provides basic put and get, a second layer on top
provides availability of data by symmetric replication.
Symmetric replication partitions nodes into classes and

Information Management Layer Information Management Layer

DHT Layer ‘

Scalaris
DHT Layer

ow
DHT Layer

NN

DHT Ring DHT Ring

DHT Ring

namespace 2

(a) Single DHT Ring (b) Multiple DHT Rings

Fig. 2. Different implementations of the DHT layer, exploiting either
a single DHT ring to hold the information of multiple namespaces
(key space partitioning) or a distinct DHT ring for each namespace.

distributes same item replicas always on nodes of differ-
ent classes. A third layer implements ACID transactional
data accesses on groups of read and write operations.

B. Overlay Weaver

Overlay Weaver (OW, [18]) is an implementation of
various P2P overlays which aims at separating high
level services such as DHT, multicast and anycast from
the underlying key-based routing (KBR) level. The OW
routing layer architecture follows the KBR concepts but
leaves behind the KBR monolithic approach, decompos-
ing the routing layer in a set of independent modules,
(e.g. communications, routing and query algorithms).
The routing module is defined by three layers: the routing
layer (bottom), the service layer and the application layer

(top).
VI. NAMESPACE SUPPORT WITHIN THE ADS

As far as it concerns the namespace implementation,
two different approaches may be adopted. They are
sketched, with reference to the Chord DHT [12], in Fig.2.
The two approaches can also be merged to achieve a
better tradeoff.

In the implementation of Figure 2(a), a single DHT
is used to implement the IML functionalities. Providing
a separate instance of the ADS for each application is
still possible, as more instances of the ADS can share
the local DHT ring instance. In this case, namespace
information is used to dynamically select hashing and
replication characteristics for the given set of keys.
We can map namespaces to additional parameters of
the DHT implementation that optimize its behaviour,
provided that the DHT allows us to dynamically choose

those parameters. An example is tuning the hash function
to enhance support of range queries, e.g. by choosing a
linear affine function, or a space filling curve mapping,
in order to map locality for a given set of keys to locality
over the DHT overlay.

As a concrete example of a single ring supporting
multiple spaces, let us consider a distributed directory
storing the network coordinates of the nodes of the
system. Network coordinate embedding systems [19]
embed latency such as Round-Trip-Times between nodes
into some geometric space so that unmeasured RTTs can
be estimated using distance computation in that space.
The network coordinates of each are stored by the ADS
in the underlying DHT, which should support both direct
and inverse queries. The QP module managing the task
defines three distinct namespaces: IP, X and Y. The first
one enables to retrieve the network coordinates paired
with a node whose IP is known. The X and Y namespaces
support inverse queries where the Key is respectively
the value of the X and Y coordinate of the host in the
cartesian space. Inverse queries are submitted by nodes
searching for their nearest neighbours in the networks,
where the neighborhood is proportional to the estimated
latency. A mechanism to support range queries is defined
in these namespaces, in order to support those queries
and find all the hosts belonging to a portion of the
cartesian space.

The main drawback of a single-ring based solution is
that it will not be possible to tune all of its parameters ac-
cording to the namespaces, e.g. P2P ring repair strategies
will have to be common. An alternative solution is shown
in Figure 2(b) where a different ring is paired with each
namespace. Ring creation can happen on-demand, and all
parameters and policies of the DHT ring are customized
for its specific use at ring set-up time, that is when that
specific overlay network is created. In XtreemOS, rings
dedicated to essential key spaces always remain active,
while smaller rings supporting application specific tasks,
or temporary Virtual Organizations, can have a shorter
lifespan (that of an application or a VO) as well as a
lower initialization cost. In this solution the required
amount of state and communication effort scales linearly
with the number of rings. The need of running intensive
communication protocols independently for each appli-
cation would lead to a significative waste of bandwidth.

The current version of the ADS merges the two
approaches, and exploits two different rings, one based
on Scalaris and one on the Chord DHT [12] provided by
Overlay Weaver [18]. A set of namespaces can be defined
on the same DHT, although in the current version of the

MAAN case REMED case
N2 N2
[h o @ “

y ¥ L “ang,

4 & ~do,
[\ 54 2N
/’ \: Tte- L ‘\‘ g%,/ bur \
i \ T-a 1 2 \

put / reply =~ ut
N @ =0 M@ " —— QN
- - 1

\ - T \ ran, Ny f

- - . i ge_pop(N1))i

- ’ / =R
. 77~ /7 / N /

N e’ N ’ 4 %o /

\ \ 2

\ 4 “o
‘\ \ ¥ - %, ~
________ _",./ . __,/"

Fig. 3. Successive publications of a resource with one attribute.
When the value changes from v; to wve, the storage node switches
from N1 = H(v1) to N2 = H(v2). (left) Without caches, routing
is always performed in the OW implementation of CHORD, in order
to locate N1 and N2. (right) In REMED, routing is skipped if N1
and N2 are found in cache, i.e. values mapped to N1 and N2 were
used recently. Reply messages update the cache of the provider node
Np with managed range and popularity information.

system the namespaces are still statically defined.

VII. RANGE QUERIES WITHIN ADS

The ADS supports multi attribute range queries by
exploiting the REMED approach [20], based on the
MAAN approach [15]. MAAN builds up a publication
and query mechanism over a Chord DHT [12]. A data
object published by the ADS is defined as a collection
of attribute-value pairs. Each attribute is coupled with a
function that maps values to keys in the DHT space.

Following [15] the key is obtained using a static
locality preserving hash function, and the publication
process is based on replicas of the same object to be
stored under the keys of all its attribute values.

A provider node publishes a data object, described by
a set of attributes values (ay,v1)..(ak,vg), by inserting
in the DHT ring the whole object description, for each
different attribute a;, at the position given by H (v;).

Hence object descriptors are spread and replicated into
the overlay by a factor equal to the number of attributes.

A generic multi-attribute range query is structured like
a set of pairs attribute-constraint. Each constraint is a
range of values the attribute must lie within.

Given an attribute constraint [/, u], the resources that
satisfy it lie in the contiguous portion of DHT space,
bounded by H(l) and H(u), as a consequence of H
being a locality preserving hashing function.

The constraint corresponding to the smallest portion of
DHT space is called the most selective, and its attribute,
called dominant. If [l,u] is the range associated to the
most selective constraint, in order to resolve a lookup
query the query is first sent to the node managing H (1)
(the lower bound value). The request is then forwarded to

the nodes in the range H([) to H(u), traversing them all
and accumulating on the way the identifiers of resources
that satisfy all query constraints. When the query reaches
the node handling H(u), the set of matches computed
for the query is returned to the query initiator.

We developed the REMED optimized approach [20]
on top of the MAAN basic publication/query process, to
be applied in the ADS resource location to enhance the
handling of dynamic attributes. Two optimizations of the
basic publication/query process has been defined.

The first REMED optimization pairs each node with a
soft-state cache of the routing results obtained during the
publication phases. We reuse routing results discovered
in previous iterations to reduce the number of messages
over the network. In figure 3 we see that with respect to
the standard MAAN approach, REMED collects through
reply messages from target nodes that allows to skip
routing for attribute values managed by recently visited
nodes.

The second strategy defines the popularity of an
attribute as the frequency with which it is chosen as
dominant. The popularity of a published object, that is
its the popularity according to its attribute values, strictly
depends on the distribution of queries submitted to the
system. As a consequence, the popularity of attribute
values can also vary during system lifetime.

We defined a dynamic adaptive solution, where we
update with lower frequency resources associated with
low popularity attributes (i.e. rarely used in query res-
olution), and continuously refine popularity estimates
in a distributed fashion. Popularity is estimated locally
at target nodes, and gathered by caching information
provided by the target nodes via reply messages, see
figure 3. Cached information is then exploited according
to the temporal locality of the dynamic attributes.

For example, if we consider a scenario where an
unique attribute is dominant for all the queries, the
updates for all the other non-dominant attributes become
useless. As a more concrete case, updates are less
frequent for those replicas which are rarely used because
of the values of some of their attributes. On a large
platform, machines with a small memory installed are
likely to be unpopular, but if many queries start to
concentrate on them, they will be updated in a more
and more timely manner.

VIII. EXPERIMENTS

The SRDS, along with all its subcomponents, with
the exceptions of Scalaris, is implemented in Java.
Java is a suitable from a performance standpoint, as

400 . i : ‘ ‘
100% query nodes
350 50% query nodes - |

300

250

200

Latency (ms)

150 [e

100 T

50 £

20 25 30 35 40 45 50 55 60
Network size

Fig. 4. SRDS scalability with 50% and 100% of the nodes querying
information.

1000

AddJob
Removedob --------
800 AddAttribute

UpdateAttribute

RemoveAttribute
Getdob -

600 GetAttribute ===

Latency (ms)

400

200

20 40 60 80 100 120
Network size

Fig. 5. Latency of JDS operations.

the main overhead is due to network latencies, and it
ensures straightforward compatibility with other Java-
based XtreemOS components surrounding the SRDS,
including the RSS and the DIXI framework.

SRDS has been extensively under testing since soon
after the beginning of the XtreemOS project. We tested
SRDS on a range of different platforms. Simulations of
thousands of nodes have been done for evaluating the
range-query resolution algorithm [20]. The whole SRDS
has been tested both on small-size clusters and over
Grid5000 platform, with up to 500 nodes on several sites
across France. Tests have regarded both extensive latency
measurements and functionality validations.

Figure 4 shows the SRDS behaviour when all nodes
provide information every 30s, and a large fraction of
them run queries every 100ms. Nodes belong to one or
two different clusters of the same Grid5000 site.

To further test the scalability of the SRDS we mea-
sured the latency of a subset of JDS operations (Figure
5). Here nodes belong to two different clusters of a
Grid5000 site. The complexity of the measured opera-

tions varies, but is rather homogeneous, e.g. RequestJob
is a single DHT get, while AddJob requires a sequence
of put/get operations. The test has been repeated with
different network sizes and the time interval between
each request is 200 milliseconds. The measurements
include also the delay of the RMI interface (implemented
in the ADS Facade) used to deliver requests to single
nodes. Along with the JDS data, all the nodes performed
publications of different data over the DHT at a fixed
rate (every 30 seconds), in order to realistically simulate
a loaded overlay.

IX. CONCLUSIONS AND FUTURE WORK

We described SRDS, the service and resource discov-
ery support developed for the XtreemOS [21] distributed
operating system. It provides scalable and customis-
able information query support over large platforms,
exploiting a combination of different P2P approaches to
enhance flexibility and run-time configurability of the
system.

We are currently evaluating the functionalities of
SRDS for different XtreemOS clients and on large com-
puting platforms. We plan to investigate a set of solutions
for the the dynamic creation of namespaces, leveraging
the transactional features of the Scalaris DHT. We also
plan to to study further strategies for the support of
multi-attribute range and neighborhood queries, both
with respect to efficiency and to the use of customized
hashing functions to improve query performance and
load balancing.

ACKNOWLEDGMENT

The authors acknowledge the support of Project FP6-033576,
Building and Promoting a Linux-based Operating System to Support
Virtual Organizations for Next Generation Grids (2006-2010).

REFERENCES

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, 1. Foster and C. Kesselman, Eds.
San Francisco, CA, USA: Morgan Kaufmann, 1999.

T. Cortes, C. Franke, Y. Jegou, T. Kielmann, D. Laforenza,
B. Matthews, C. Morin, L. P. Prieto, and A. Reinefeld,
“XtreemOS: a Vision for a Grid Operating System,” XtreemOS
Consortium, Tech. Rep. 4, May 2008.

B. Aziz, A. Arenas, J. Bicarregui, B. Matthews, and E. Yang,
“A Formal Security Requirements Model for a Grid-Based
Operating System,” in BCS-FACS Christmas 2007 Meeting:
Formal Methods in Industry, ser. Electronic Workshops in
Computing Series. British Computing Society, 2007.

S.Rhea, B.Godfrey, B.Karp, J.Kubiatowicz, S.Ratnasamy,
S.Shenker, I.Stoica, and H.Yu, “OpenDHT: A Public DHT
Service and Its Uses,” in ACM SIGCOMM’05, Philadelphia,
USA, 2005.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

H.Jin, Y.Tao, S.Wu, and X.Shi, “Scalable DHT-based Informa-
tion Service for Large-scale Grids,” in 5th ACM Conference On
Computing Frontiers, Ischia, Italy, 2008.

C.Comito, S.Patarin, and D.Talia, “PARIS: A Peer-to-peer Ar-
chitecture for Large-scale Semantic Data Sharing,” Interna-
tional Journal of Computer Systems Science and Engineering
(1JCSS), vol. 23, no. 2, pp. 59-76, February 2008.

P.Ganesa, K.Gummadi, and H. Molina, “Canon in G Major: De-
signing DHT with Hierarchical Structure,” in 24th International
Conference on Distributed Computing Systems, ICDCS 04,
Tokyo, Japan, March 2004.

P.Di, K.Kutzne, and T.Fuhrmann, “Providing KBR Service for
Multiple Applications,” in International Workshop on Peer-to-
Peer Systems, IPTPS’08, Tampa Bay, USA, February 2008.
D.Karger and M.Ruhl, “Disminished Chord: A Protocol for
Heterogeneous Subgroup Formation in Peer-to-Peer Networks,”
in International Workshop on Peer-to-Peer Systems, IPTPS’04,
La Jolla, USA, ‘February 2004.

M.S.Artigas, P. G. Lopez, J. P. Ahullo, and A. Skarmeta,
“Cyclone: A Novel Design Schema for Hierarchical DHTS,” in
5th IEEE International Conference on Peer-to-Peer Computing,
Kostanz Germany, August September 2005.
V.Ramasubramanian and E.G.Sirer, “The Design and Imple-
mentation of a Next Generation Name Service for the Internet,”
in International Workshop on Peer-to-Peer Systems, IPTPS 04,
La Jolla, USA, February 2004.

L.Stoica, M.Robert, D. Nowell, D.Karger, F.Kaashoek, F.Dabek,
and H.Balakrishnan, “Chord: a Scalable Peer-to-Peer Lookup
Protocol for Internet Applications,” IEEE/ACM Transactions on
Networking, TON, vol. 11, no. 1, pp. 17-32, February 2003.
R.Antony and P.Druschel, “Pastry: Scalable, Decentralized Ob-
ject Location, and Routing for Large-Scale Peer-to-Peer Sys-
tems,” Lecture Notes in Computer Science, vol. 2218, pp. 329-
350, 2001.

R.Ranjan, A.Harwood, and R.Buyya, “Peer-to-Peer Based Re-
source Discovery in Global Grids: A Tutorial,” IEEE Commu-
nications Surveys and Tutorials, vol. 10, no. 2, pp. 6-33, 2008.
M.Cai, M.Frank, J.Chen, and P.Szekely, “MAAN: a Multi-
attribute Addressable Network for Grid Information Services,”
in 4th Int.l Workshop on Grid Computing, 2003, pp. 184-191.
P.Costa, J.Napper, G.Pierre, and M. Steen, “Autonomous Re-
source Selection for Decentralized Utility Computing,” in 9th
International Conference on Distributed Computing Systems,
ICDCS’09, Montreal, Canada, June 2009.

T.Schiitt and F.Schintke and A.Reinefeld, “Scalaris: Reliable
Transactional P2P Key/Value Store,” in 7th ACM SIGPLAN
workshop on ERLANG, Victoria, Canada, 2008.

S.Kazuyuki, T.Yoshio, and S.Satoshi, “Overlay Weaver: An
Overlay Construction Toolkit,” Computer Communications,
vol. 31, no. 2, pp. 402-412, February 2008.

F.Dabek, R.Cox, F.Kaashoek, and R.Morris, “Vivaldi: a De-
centralized Network Coordinate System,” ACM SIGCOMM
Computer Communication Review, vol. 34, no. 4, October 2004.
E. Carlini, M. Coppola, D. Laforenza, and L. Ricci, “Reducing
Traffic in DHT-based Discovery Protocols for Dynamic Re-
sources,” in CoreGRID Workshop on Grids, P2P and Service
Computing, Delft, Netherlands, August 2009, colocated with
EuroPar, to appear in Springer CoreGRID series.

G. Pierre, T.Schiitt, J. Domaschka, and M.Coppola, “Highly
Available and Scalable Grid Services,” in 3rd Workshop on De-
pendable Distributed Data Management, Nuremberg,Germany,
March 2009.

