
The colored longest common prefix array

computed via sequential scans∗

Fabio Garofalo† Giovanna Rosone‡§¶ Marinella Sciortino†§

Davide Verzotto‡§

Abstract

Due to the increased availability of large datasets of biological se-
quences, tools for sequence comparison are now relying on efficient
alignment-free approaches to a greater extent. Most alignment-free
approaches require the computation of statistics when comparing se-
quences, even if such computations may not scale well in in internal
memory when very large collections of long sequences are considered.
In this paper, we present a new conceptual data structure, the colored
longest common prefix array (cLCP), that allows to efficiently tackle
several problems with an alignment-free approach. In fact, we show
that such a data structure can be computed via sequential scans in semi-
external memory. By using cLCP, we propose an efficient lightweight
strategy to solve the multi-string Average Common Substring (ACS)
problem, that consists in the pairwise comparison of a single string
against a collection of m strings simultaneously, in order to obtain m
ACS induced distances. Experimental results confirm the high practical
efficiency of our approach.

∗The final authenticated publication is available online at https://doi.org/10.1007/

978-3-030-00479-8_13. Thanks to Published source. Please, cite the publisher version:
Garofalo F., Rosone G., Sciortino M., Verzotto D. (2018) The Colored Longest Common
Prefix Array Computed via Sequential Scans. In: Gagie T., Moffat A., Navarro G.,
Cuadros-Vargas E. (eds) String Processing and Information Retrieval. SPIRE 2018.
Lecture Notes in Computer Science, vol 11147. Springer, Cham DOI: https://doi.org/
10.1007/978-3-030-00479-8_13
†University of Palermo, Palermo, Italy
‡University of Pisa, Pisa, Italy
§G.R. and M.S. are partially supported and D.V. is supported by the project Ital-

ian MIUR-SIR CMACBioSeq (“Combinatorial methods for analysis and compression of
biological sequences”) grant n. RBSI146R5L.
¶Corresponding author: giovanna.rosone@unipi.it

1

https://doi.org/10.1007/978-3-030-00479-8_13
https://doi.org/10.1007/978-3-030-00479-8_13
https://doi.org/10.1007/978-3-030-00479-8_13
https://doi.org/10.1007/978-3-030-00479-8_13

Keywords: Longest common prefix Average common substring
Matching statistics Burrows-Wheeler transform Alignment-free meth-
ods.

1 Introduction

The rapid increase in the availability of large sets of biological sequences
observed in the last two decades, particularly triggered by the human se-
quencing project, posed several challenges in the analysis of such data. So
far, traditional methods based on sequence alignment worked well for small
and closely related sequences, but scaling these approaches up to multi-
ple divergent sequences, especially of large genomes and proteomes, is a
difficult task. To keep pace with this, several algorithms that go beyond
the concept of sequence alignment have been developed, called alignment-
free [?]. Alignment-free approaches have been explored in several large-scale
biological applications ranging, for instance, from DNA sequence compari-
son [?, ?, ?, ?, ?, ?] to whole-genome phylogeny construction [?, ?, ?, ?, ?]
and the classification of protein sequences [?, ?]. Most alignment-free ap-
proaches aforementioned require, each with its own specific approach and
with the use of appropriate data structures, the computation of statistics of
the sequences of the analyzed collections. However, it is interesting to note
that the increasing number of completely sequenced genomes is causing the
computation of many statistics that do not scale well in internal memory,
determining the need for lightweight strategies for the comparative analysis
of very large collections of long sequences.

In this paper, we propose a new conceptual data structure, the colored
longest common prefix array (cLCP), that implicitly stores all the information
necessary to compute statistics on distinguishing, repeating, or matching
substrings within a collection or different collections of strings. Loosely
speaking, given a collection S, in which each string (or subset of strings)
is identified by a specific color, we can generally define cLCP as an integer
array representing the longest common prefix between any specific suffix
of a string sr ∈ S and the nearest suffixes of a specific string st ∈ S in
the sorted list of suffixes of S. Here, we assume that S is partitioned in
two subsets and consider the comparison of suffixes of strings belonging to
different subsets, but we remark that one can consider any situation and
note also that the definition can be easily adapted to more than two sets.
We also show that cLCP can be computed via sequential scans and therefore
acquires the characteristics of an appropriate structure for analyzing large

2

collections of strings stored in external memory.
cLCP can be used in several application contexts. In this paper we

explore the multi-string Average Common Substring (ACS) [?] problem.
More specifically, the ACS measure is a simple and effective alignment-
free method for pairwise string comparison [?, ?], based on the concept of
matching statistics (MS) [?, ?, ?, ?]. Given two strings s and t, it can be
defined by the arrays MS(s, t) and MS(t, s), which store, at each position
i, the length of the longest substring that starts at position i of the string
given as first parameter that is also a substring of the string given as second
parameter.

ACS approach has been employed in several biological applications [?,
?, ?, ?, ?]. Generalization of measures based on longest matches with
mismatches have been proposed in [?], also with distributed approaches [?].
Similarly to [?], we define the multi-string ACS problem as the pairwise
comparison of a single string, say sχ ∈ S0 of length nχ, against a set of m
strings, say sr ∈ S1 with 1 ≤ r ≤ m, by considering the strings in S1 all
together, in order to obtain m ACS induced distances at once. A major
bottleneck in the computation (and application) of ACS and MS initially
consisted in the construction of a suffix tree. More recent approaches use
efficient indexing structures [?], CDAWG [?], backward search [?] or enhanced
suffix arrays [?]. However, to the best of our knowledge, the above mentioned
approaches would require a great effort, especially in terms of RAM space,
when applied to compare very large collections of long strings.

In this paper we use cLCP to efficiently solve the above mentioned
multi-string ACS problem. Preliminary experimental results show that our
algorithm is a competitive tool for the lightweight simultaneous computa-
tion of pairwise distances between a single string and all strings in another
collection, allowing us to suppose that this data structure and its computa-
tional strategy can be used for more general versions of the multi-string ACS
problem.

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet with c1 < c2 < . . . < cσ,
where < denotes the standard lexicographic order. We consider finite strings
such as s ∈ Σ∗, where s[1], s[2], . . . , s[n] denote its characters and |s| = n
its length. A substring of a string s is written as s[i, j] = s[i] · · · s[j], with a
substring s[1, j] being called a prefix, while a substring s[i, n] is referred to
as a suffix. A range is delimited by a square bracket if the correspondent

3

endpoint is included, whereas a parenthesis means that the endpoint is
excluded.

The BWT [?] is a well known reversible string transformation widely
used in data compression. The BWT can be extended to a collection of
strings S = {s1, s2, . . . , sm}. Such an extension, known as EBWT or multi-
string BWT, is a reversible transformation that produces a string (denoted
by ebwt(S)) that is a permutation of the characters of all strings in S [?].
Lightweight implementations of EBWT have been proposed [?, ?, ?]. We
append to each string si of length ni a distinct end-marker symbol $i < c1
(for implementation purposes, we could simply use a unique end-marker
$ for all strings in S). The output string ebwt(S) is the concatenation of
the symbols (circularly) preceding each suffix of the strings in S, sorted
according to the lexicographic order. More in detail, the length of ebwt(S)
is denoted by N =

∑m
i=1 ni + m and ebwt(S)[i] = x, with 1 ≤ i ≤ N , if

x circularly precedes the i-th suffix sj [k, nj + 1] (for some 1 ≤ j ≤ m and
1 ≤ k ≤ nj + 1), according to the lexicographic sorting of the suffixes of all
strings in S. In this case we say the suffix sj [k, nj + 1] is associated with
the position i in ebwt(S). We can associate to each string si ∈ S a color i
in ID = {1, 2, . . . ,m}. The output string ebwt(S), enhanced with the array
id(S) of length N where id(S)[i] = r, with 1 ≤ r ≤ m and 1 ≤ i ≤ N , if
ebwt(S)[i] is a symbol of the string sr ∈ S, is called colored EBWT.

The longest common prefix (LCP) array of the collection S [?, ?, ?] is
the array lcp(S) of length N + 1, such that lcp(S)[i], with 2 ≤ i ≤ N , is the
length of the longest common prefix between the suffixes associated to the
positions i and i− 1 in ebwt(S) and lcp(S)[1] = lcp(S)[N + 1] = −1 set by
default. We denote by LCP(i, j) the length of the LCP between the suffixes
associated with positions i and j in ebwt(S), i.e. min{lcp(S)[l] : i < l ≤ j}.
An interval [i, j] with 1 ≤ i < j ≤ N , is an k-lcp interval if lcp(S)[i] < k,
LCP(i, j) = k, lcp(S)[j + 1] < k. The set S will be later omitted if it is clear
from the context.

3 Colored Longest Common Prefix Array

In this section we present a novel data structure, the colored longest common
prefix array (cLCP). Loosely speaking, the cLCP array represents the longest
common prefix between a suffix that belongs to a string of the collection S
and the nearest suffixes belonging to another string of S, in the list of sorted
suffixes of S. In this paper, for simplicity of description, we assume that S
is partitioned into two subsets and consider the comparison of suffixes of

4

strings belonging to different subsets, but we remark that one can consider
any situation and note also that the definition can be easily adapted for more
than two sets.

For i = 1, . . . , N and t = 1, . . .m, let prev(i, t) = max{x | 1 ≤ x <
i, id(S)[x]= t} and next(i, t) = min{x | i <x≤N, id(S)[x]= t} (if such an x
exists, and null otherwise).

In order to give the notion of the cLCP array, we first define the Upper
colored LCP array (UcLCP) and the Lower colored LCP array (LcLCP), as
follows.

Definition 1 The upper (resp. lower) colored longest common prefix array
(UcLCP) (resp. LcLCP) is a (N × m)-integer array where, for each ir ∈
{1, 2, . . . , N} with id[ir] = r and t ∈ ID, UcLCP[ir][t] = LCP(prev(ir, t), ir)
(resp. LcLCP[ir][t] = LCP(ir, next(ir, t))). Both LCP(null, ir) and LCP(ir, null)
are set equal to 0.

Definition 2 The colored longest common prefix array (cLCP) is a (N×m)-
integer array where, for each ir ∈ {1, 2, . . . , N} with id[ir] = r and t ∈ ID,
cLCP[ir][t] = max(UcLCP[ir][t], LcLCP[ir][t]).

For simplicity UcLCP, LcLCP, and cLCP are also defined when r = t. For
all ir such that id[ir] = r, UcLCP[ir][t] coincides with the corresponding value
in the usual lcp({sr}). As mentioned before, the notion of UcLCP, LcLCP,
and cLCP can be also given for a pair of disjoint collections of strings S0 and
S1 by obtaining an array defined for the pairs (ir, t), where id[ir] = r and
t ∈ ID such that sr and st belong to a different collection.

A given string sχ ∈ S0 with color χ implicitly induces a partition of
lcp(S) into open intervals delimited by consecutive suffixes having color χ
(or the positions 1 and N + 1 of lcp), called χ-intervals. Let us consider a
position ir contained within a χ-interval such that id[ir] = r and sr ∈ S1.
Then, we can use a similar procedure as the one employed in [?], such that

UcLCP[ir][χ] = LCP(prev(ir, χ), ir) = min{lcp[x] : prev(ir, χ) < x ≤ ir},
(1)

LcLCP[ir][χ] = LCP(ir, next(ir, χ)) = min{lcp[x] : ir < x ≤ next(ir, χ)}.
(2)

Additionally, we notice that there exists a relationship between the values
of UcLCP related to the suffixes of sr and the values of LcLCP related to the
suffixes of sχ. Indeed, if jχ is a position where id[jχ] = χ, then

LcLCP[jχ][r] = LCP(jχ, next(jχ, r)) = UcLCP[next(jχ, r)][χ]. (3)

5

UcLCP LcLCP cLCP

id S ebwt lcp D lcpχ α ζ χ 1 2 χ 1 2 χ 1 2 Sorted suffixes of S
1 χ 1 C -1 0 -1 ∞ 0 0 0 0 0 0 0 $χ
2 1 0 T 0 0 0 0 0 0 0 $1
3 2 0 A 0 0 0 0 0 0 0 $2
4 2 0 C 0 2 0 1 0 1 1 A $2
5 2 0 $2 1 0 0 1 0 1 1 A A C G C C G C C G G C A $2
6 1 0 $1 1 4 0 3 0 3 3 A C G A G A C G A T $1
7 1 0 G 4 0 0 3 0 3 3 A C G A T $1
8 2 0 A 3 5 0 4 0 4 4 A C G C C G C C G G C A $2
9 χ 1 $0 4 0 0 ∞ 0 3 4 1 0 3 4 A C G C G C C $χ
10 1 0 G 1 0 1 0 1 0 1 A G A C G A T $1
11 1 0 G 1 0 1 0 1 0 1 A T $1
12 χ 1 C 0 2 0 ∞ 0 0 0 1 1 1 1 C $χ
13 2 0 G 1 0 1 0 1 1 1 C A $2
14 χ 1 G 1 3 1 ∞ 0 0 1 1 2 1 2 C C $χ
15 2 0 G 2 0 2 0 2 1 2 C C G C C G G C A $2
16 2 0 G 3 0 2 0 2 1 2 C C G G C A $2
17 1 0 A 1 3 1 2 1 2 2 C G A G A C G A T $1
18 1 0 A 3 0 1 2 1 2 2 C G A T $1
19 χ 1 G 2 5 1 ∞ 0 2 1 0 4 2 4 C G C C $χ
20 2 0 A 4 0 4 0 4 3 4 C G C C G C C G G C A $2
21 2 0 C 5 0 4 0 4 3 4 C G C C G G C A $2
22 χ 1 A 3 0 3 ∞ 0 2 3 0 2 2 3 C G C G C C $χ
23 2 0 C 2 0 2 0 2 0 2 C G G C A $2
24 1 0 A 0 2 0 1 0 1 1 G A C G A T $1
25 1 0 C 2 0 0 1 0 1 1 G A G A C G A T $1
26 1 0 C 2 0 0 1 0 1 1 G A T $1
27 2 0 G 1 3 0 2 0 2 2 G C A $2
28 χ 1 C 2 4 0 ∞ 0 1 2 0 3 1 3 G C C $χ
29 2 0 C 3 0 3 2 3 2 3 G C C G C C G G C A $2
30 2 0 C 4 0 3 3 3 2 3 G C C G G C A $2
31 χ 1 C 2 0 2 ∞ 0 1 2 0 1 1 2 G C G C C $χ
32 2 0 C 1 0 1 0 1 0 1 G G C A $2
33 1 0 A 0 0 0 0 0 0 0 T $1

−1 −1

Table 1: Let Σ={A,C,G, T}, sχ=ACGCGCC$χ ∈ S0,
s1=ACGAGACGAT$1 ∈ S1, and s2=AACGCCGCCGGCA$2 ∈ S1.
Then, Score(sχ, s1)=11/7, Score(sχ, s2)=19/7, Score(s1, sχ)=15/10,
Score(s2, sχ)=30/13, and thus ACS(sχ, s1)=0.67 and ACS(sχ, s2)=0.34. In
bold are all positions associated with suffixes of sχ (i.e. the limits of the
χ-intervals).

Similarly, there exists a relationship between the values of UcLCP related to
suffixes of sχ and the values of LcLCP related to suffixes of sr. In particular,

UcLCP[jχ][r] = LCP(prev(jχ, r), jχ) = LcLCP[prev(jχ, r)][χ]. (4)

Table 1 shows the values of UcLCP, LcLCP and cLCP of the running
example, in which the collection S is partitioned into two subsets S0 =
{ACGCGCC$χ} and S1 = {ACGAGACGAT$1, AACGCCGCCGGCA$2}.

6

4 Lightweight Computation of cLCP

In this section we describe a lightweight strategy to compute the colored
longest common prefix array cLCP. For sake of simplicity we consider the
case in which the collection S is partitioned into two subsets S0 and S1, and
S0 consists of a single string sχ of length nχ. The general case can be treated
analogously.

Definition 3 A colored k-lcp interval is a k-lcp interval [i, j] such that,
among all the suffixes associated to the range [i, j], at least one suffix belongs
to S0 and at least one suffix belongs to S1.

Definition 4 Let D[1, N + 1] denote an integer array such that D[i] = k if
a colored (k − 1)-lcp interval starts at position i and for every colored h-lcp
interval starting at position i then h ≤ k − 1.

Table 1 highlights the conceptual blocks of suffixes that are associated to
the positions i of D such that D[i] 6= 0.

Note that the array D can be easily computed in Θ(N) time by linearly
scanning the arrays lcp(S) and id(S), and using a stack that simulates the
computation of the colored k-lcp intervals. During the sequential scan, each
element can be inserted or deleted from the stack at most once. Furthermore,
considering that each suffix could take part into no more than max lcp(S)
nested blocks, the stack requires O(max lcp(S)) space, at most. We note that
this upper bound in space is unlikely to be reached in practice, especially
since the stack is emptied when two consecutive values of id corresponding
to strings of different subsets are found. It is important to specify that the
above mentioned stack could be stored in external memory.

In the following we describe a sequential strategy to construct the cLCP
array of the collection S from the arrays id(S), lcp(S), and D(S).

Without loss of generality, let us consider a generic string sr ∈ S1 and
sχ ∈ S0. Assume that ebwt[ir], with 1 ≤ ir ≤ N , is associated with a suffix
of sr, i.e. id[ir] = r 6= χ, and let χ1 = prev(ir, χ) and χ2 = next(ir, χ).
Moreover, for simplicity, let UcLCPr (resp. LcLCPr) denote UcLCP of sr
versus sχ (resp. LcLCP of sr versus sχ), i.e. the values UcLCP[ir][χ] (resp.
LcLCP[ir][χ]) for all such ir; and LcLCPχ (resp. UcLCPχ) denote LcLCP (resp.
UcLCP) of sχ versus sr, i.e. the values LcLCP[jχ][r] (resp. UcLCP[jχ][r]) for
all 1 ≤ jχ ≤ N such that id[jχ] = χ.

UcLCPr computation — This is the easiest case, since Equation 1 allows
us to directly compute UcLCPr sequentially and linearly in the total size

7

N of lcp. This enables us to scan lcp forward only once for all suffixes of
all m strings in S1, by keeping track of the minimum value found since the
beginning of each conceptual χ-interval (see column α in Table 1). If we
consider the χ-interval (χ1, χ2), by employing a variable α we can iteratively
compute the minimum value among consecutive elements of lcp and determine,
for every ir ∈ (χ1, χ2), the LCP between the suffix associated with position
ir and the suffix associated with position χ1: UcLCP[ir][χ] = LCP(χ1, ir) =
min{lcp[x] : x ∈ (χ1, ir]} = α.

Example 1 (Running example) If the χ-interval is (14, 19) and ir = 18,
then UcLCP[18][χ] = LCP(14, 18) = min{lcp[x] : x ∈ (14, 18]} = α[18] = 1.

LcLCPχ computation — Since LcLCPχ is strictly related to UcLCPr by
Equation 3, we would like to compute it sequentially and linearly as well.
Suppose that we have just computed UcLCP[ir][χ] and ir represents the first
suffix of sr encountered since the beginning in (χ1, χ2). Then, by Equation 3,
LcLCP[χ1][r] = UcLCP[ir][χ]. To keep track of the first instance of every
sr ∈ S1 in the interval, we could resort to a bit-array of m elements for χ1.

Nevertheless, this is not sufficient to complete the construction of LcLCPχ,
because there might be no suffixes of a particular string sr ∈ S1 within
(χ1, χ2), but other suffixes of sr might exist at positions >χ2. To tackle this
issue, once we have thoroughly read lcp and filled LcLCPχ using the above
procedure, we can propagate the computed values of LcLCPχ backward from
lower to higher lexicographically ranked suffixes of χ, in order to complete
LcLCPχ. For example, to propagate the information from χ2 to χ1, we must
compute:

LcLCP[χ1][r] = min{LCP(χ1, χ2), LcLCP[χ2][r]}. (5)

Thus, iteratively, we can propagate the information backward from the lowest
ranked suffixes of χ to the top of LcLCPχ.

Example 2 (Running example) After the first scan of lcp in the example
of Table 1, LcLCP[12][1] (i.e. suffix of sχ in row 12 versus string s1 ∈ S1)
would be 0, whereas by propagating the information back from the suffix of
sχ in row 14, we obtain: LcLCP[12][1] = min{LCP(12, 14), LcLCP[14][1]} =
min{1, 2} = 1.

LcLCPr computation — The most interesting part is computing LcLCPr
in such a way as to avoid the backward scan of id and lcp suggested by

8

Equation 2 and, concomitantly, for particular applications such as the multi-
string ACS problem discussed below, to reduce the memory footprint required
to keep both UcLCPr and LcLCPr to a somehow negligible one. Thus, we
show how to sequentially determine, for every ir ∈ (χ1, χ2), the LCP between
the suffix associated with position ir and the suffix associated with position
χ2.

Let us consider the array D introduced in Definition 4. Intuitively,
D provides an interlacing forward information that could be exploited to
compute LcLCP[ir][χ] sequentially, as soon as we reach position ir. Firstly,
observe that, for any 1 ≤ ir ≤ N with id[ir] = r and any χ1 < x < χ2,
prev(x, χ) = prev(ir, χ) = χ1 and next(x, χ) = next(ir, χ) = χ2.

Remark 1 For any x1 < x2, with χ1 ≤ x1 < χ2 and χ1 < x2 ≤ χ2,
LCP(x1, x2) ≥ LCP(χ1, χ2).

Lemma 1 For any 1 ≤ ir ≤ N , if LCP(ir, χ2) = k−1 then there exists an x,
with χ1 < x ≤ ir, such that D[x] = k 6= 0 if and only if LCP(χ1, χ2) < k − 1.

Moreover, it follows that D[x] would be (the only) maximum in the
range (χ1, ir] and its value is ≥ 2. Hence, we can determine LcLCP[ir][χ] =
LCP(ir, χ2).

Theorem 1 For any 1 ≤ ir ≤ N such that id[ir] = r, if LCP(χ1, ir) >
LCP(χ1, χ2) then LCP(ir, χ2) = LCP(χ1, χ2), otherwise LCP(ir, χ2) =
max{max{D[x] : χ1 < x ≤ ir} − 1,LCP(χ1, χ2)}.

By using Theorem 1 we need to keep track of the maximum value
(decreased by 1) among consecutive D values since the beginning of each
conceptual χ-interval (see column ζ in Table 1). An immediate example of
Theorem 1 is given in column LcLCP[·][χ] of Table 1, which provides the
final values of LcLCPr, where LCP(χ1, ir) is computed using Equation 1 and
LCP(χ1, χ2) through lcp(S0) (or, shortly, lcpχ).

Example 3 (Running example) Let ir = 16 (with prev(ir, χ) = 14
and next(ir, χ) = 19) such that LCP(14, 16) = UcLCP[16][χ] = 2 >
LCP(14, 19) = lcpχ[5] = 1; then, LcLCP[17][χ] = LCP(16, 19) =
LCP(14, 19) = 1. Conversely, by considering ir = 17 (with prev(ir, χ) = 14
and next(ir, χ) = 19, as before), LCP(14, 17) = UcLCP[17][χ] = 1 =
LCP(14, 19) = lcpχ[5] = 1; therefore, LcLCP[17][χ] = LCP(17, 19) =
max{max{D[x] : 14 < x ≤ 17} − 1,LCP(14, 19)} = max{2, 1} = 2. Further-
more, we consider the third case of Theorem 1 such that, for ir = 13 (where

9

prev(ir, χ) = 12 and next(ir, χ) = 14), LCP(12, 13) = UcLCP[13][χ] =
1 = LCP(12, 14) = lcpχ[4] = 1 and thus LcLCP[13][χ] = LCP(13, 14) =
max{max{D[x] : 12 < x ≤ 13} − 1,LCP(12, 14)} = max{−1, 1} = 1.

UcLCPχ computation — Similarly to LcLCPχ, we can compute UcLCPχ
by exploiting Equation 4 and the previously computed LcLCPr within each
χ-interval (compare columns UcLCP[·][1] and UcLCP[·][2] against column
LcLCP[·][χ] in Table 1). To complete the construction of UcLCPχ, we need
then to propagate forward the information from higher to lower lexicographi-
cally ranked suffixes of χ. For example, to propagate the information from χ1

to χ2, we must compute UcLCP[χ2][r] = min{LCP(χ1, χ2),UcLCP[χ1][r]}.
To reduce the memory footprint, for instance for applications such as

multi-string ACS, we could use a single matrix cLCPχ[1, nχ][1,m] (initialized
with all 0s) to keep track of the maximum values between the corresponding
positions of UcLCPχ and LcLCPχ, which could be then refined at most twice
by propagation. Observe that UcLCPχ, alone, can be directly computed
sequentially, eventually reducing the additional space to a negligible one of
size O(m), as seen before for UcLCPr and LcLCPr.

Example 4 (Running example) After the first scan of lcp, UcLCP[22][1]
(i.e. suffix of sχ in row 22 versus string s1 ∈ S1) would be 0, whereas by
propagating the information forward from the suffix of sχ at row 19, we
obtain: UcLCP[22][1] = min{LCP(19, 22),UcLCP[19][1]} = min{3, 2} = 2.

Computational complexity — The first phase of the algorithm consists
of the semi-external memory computation of the D array in Θ(N) time
and O(max lcp(S)). Notice that UcLCPr and LcLCPr can be determined
sequentially (forward) requiring nothing but to update variables α and ζ,
while keeping track, respectively, of the minimum among consecutive lcp
values and of the maximum among consecutive D values since the last sχ suffix
encountered. Moreover one can observe that also in UcLCPχ and LcLCPχ
computation both lcpχ and cLCPχ are actually accessed either sequentially
forward or sequentially backward, up to one position before or after the
currently processed one, allowing them to reside in external memory too. This
means that we need O(m) additional space in RAM. In order to optimally use
the available size M of RAM, assuming Q ≥ 2 is the number of m-elements
rows of cLCPχ that we could accommodate in RAM, at any moment we
could just keep in memory and process only a single block of lcpχ and cLCPχ
of size proportional to Q. Such a block, together with the bit-array of size
m required in first part of LcLCPχ computation, yield O(mQ+ max lcp(S))

10

overall required space (with Q a configurable parameter). Furthermore,
since cLCPχ values could be refined at most twice by propagation, a global
cost of O(N +mnχ) time is deduced. Note that, instead, a straightforward
approach that just uses Equations 1 and 2 would have required to process in
RAM at least three data structures, each of size ∼N , using O(nχN) time
(without propagation). In order to evaluate the number of I/O operations,
we denote by B the disk block size and we assume that both the RAM size
and B are measured in units of (logN)-bit words. The overall complexity of
the algorithm, including the number of I/O operations need to process the
arrays id(S), lcp(S), D(S), lcpχ, and cLCPχ, is summarized by the following
theorem.

Theorem 2 Let S a collection of m strings. Given id(S)[1, N], lcp(S)[1, N+
1] and lcp(sχ)[1, nχ + 1], cLCP(S) can be computed by sequential scans in
O(N +mnχ) time and O(m+ L1) additional space, where L1 = max lcp(S).

The total number of I/O disk operations is O
(

1
B logN (N logm+N logL1 + nχ logL2 + nχm logL1)

)
,

where L2 = max lcp(sχ).

5 Multi-string ACS Computation by cLCP

The cLCP is a data structure that implicitly stores information useful to
compute distinguishing and repeating strings in different collections. Its
lightweight computation described in previous section enables the use of cLCP
in several contexts in which large collections of long strings are considered.

Here, we describe its use for computing the matching statistics (MS) [?, ?]
and therefore the Average Common Substring measure (ACS). Indeed, the
ACS induced distance is typically computed from the matching statistics
by proceeding in two steps. Let us first consider two strings sr, of length
nr, and st, of length nt, over the alphabet Σ of size σ. In the first step,
ACS asymmetrically computes the longest match lengths of sr versus st,
MS(sr, st), where sr is the base string. MS(sr, st)[1, nr] is an integer array
such that, for any position jr of sr, MS(sr, st)[jr] is the length of the longest
prefix of the suffix of sr starting at position jr that is also a substring of
st (see Table 2). In the second step, ACS takes the average of these scores

Score(sr, st) =
∑nr
jr=1 MS(sr,st)[jr]

nr
; normalizes it by the lengths of sr, st, and σ

Norm(Score(sr, st)) = logσnt
Score(sr,st)

− 2 logσnr
(nr+1) ; and finally makes the measure

symmetrical by defining ACS(sr, st) = Norm(Score(sr,st))+Norm(Score(st,sr))
2 , in

order to achieve an induced distance. We observe that ACS is not a metric,

11

s0[j0] A C G C G C C
MS(s0, s1)[j0] 3 2 1 2 1 1 1

s1[j1] A C G A G A C G A T
MS(s1, s0)[j1] 3 2 1 1 1 3 2 1 1 0

Table 2: Matching statistics MS(s0, s1) and MS(s1, s0) for s0=ACGCGCC$0
and s1=ACGAGACGAT$1 on Σ = {A,C,G, T}. It follows that
Score(s0, s1) = 11/7, Score(s1, s0) = 15/10 and, thus, ACS(s0, s1) = 0.67.

because the triangular inequality might not hold in general. Nevertheless,
if we assume sr and st be generated by finite-state Markovian probability
distributions, it follows that ACS is a natural distance measure between
these distributions [?].

For simplicity, we assume that we have a set consisting of only one string
S0 = {sχ}, of length nχ, and a set of strings S1 = {s1, s2, . . . , sm}, of
length N1 =

∑
1≤r≤m nr, and we want to compute the pairwise ACS induced

distances between S0 (or, more explicitly, sχ) and every other string in S1
simultaneously, as in the multi-string ACS problem. Our approach could be
also applied to a more general case.

Firstly, we observe that there is a clear correspondence between the cLCP
array previously described, computed for sχ versus all strings in S1, and MS.
More precisely:

Proposition 1 Given any two strings sr, sχ ∈ S, MS(sr, sχ) is a per-
mutation of all values in cLCP(S) related to the suffixes of sr (the base
string) versus sχ: MS(sr, sχ)[jr] = cLCP[ir][χ], where 1 ≤ ir ≤ N such that
id(S)[ir] = r, and jr is the starting position in sr of the suffix associated with
ebwt(S)[ir].

Indeed, for each suffix of every string sr ∈ S1, associated with ebwt[ir],
cLCP[ir] would account for the longest prefix that is a substring of sχ, and this
must correspond to one of the nearest suffixes belonging to sχ immediately
above (prev(ir, χ)) or below (next(ir, χ)) row ir in the sorted suffixes list, in
particular to the closest prefix matching one.

We can thus exploit the above proposition to compute MS using cLCP,
by using the strategy described in previous section. In fact, computing MS
by straightly using the Equations 1 and 2 would require to explicitly keep
track of cLCP for each χ-interval, which could have width Θ(N) in the worst
case. In this section we show that this additional space can be controlled
and reduced by using our lightweight computation of cLCP.

12

Using the construction described in Section 4 we can determine UcLCPr
and LcLCPr sequentially (forward) and these values are definitive (they
are not subject to refinement by propagation). We can thus reduce the
multi-string ACS memory footprint by summing up all the maximum values
between the respective positions in UcLCPr and LcLCPr for every specific
string sr ∈ S1, and for every position ir, and storing them into an array Scorer
of size m as they are computed during forward phase, without explicitly
maintaining the cLCPr values in either internal or external memory. On the
other hand, since UcLCPχ and LcLCPχ require propagation to be completed,
we need to maintain (a Q-sized portion of) cLCPχ matrix and similarly
cumulate cLCPχ values for every position jχ and for every string sr ∈ S1
into an array Scoreχ of size m, as these values became definitive during
backward phase. Accordingly, multi-string ACS computation does not add
to cLCP construction more than Θ(m) space and O(mnχ) time. Note that
in a typical application, m can be assumed �N and negligible compared
to the internal memory available. Here, we show a simplified version of our
strategy described in Section 5. For simplicity, we index the files as arrays
but the reader can note that we only access to them sequentially. We need
to keep in memory the length of the strings for the m ACS scores.

6 Preliminary Experiments

As a proof-of-concept, we tested our new data structure (cLCP) using a
prototype C++ tool, named cLCP-mACS [?], designed to specifically solve
the multi-string ACS problem.

To assess the performance of our algorithm we consider the two collections
of genomes listed in [?] and described in Table 3. All tests were done on
a MacBook Pro (13-inch), Intel Core i7 at 3, 5 GHz, with 16 GB of RAM,
HDD of type SSD and with O.S. macOS 10.13.5.

We show that our preliminary experiments confirm the effectiveness of
our approach for the multi-string ACS problem, that consists in the pairwise
comparison of a single string against a set of m strings simultaneously, in
order to obtain m ACS induced distances. This is not a limitation, because
the computation of pairwise distances between strings of a collection S can
be treated analogously, in the sense that one could execute our tool more
times, without computing the data structures of the preprocessing step.

We experimentally observed that the preprocessing step is more com-
putationally expensive than the step for computing the m ACS distances
via cLCP. The problem of computing the ebwt(S), lcp(S), id(S) has been

13

|ebwt(S)| Min length Max length Max lcp Program Wall clock Memory
(Gbytes) (mm:ss) (kbytes)

1 3.434 1,080,084 10,657,107 1,711,194 cLCP-mACS 13:37 10,716
kmacs 23:30 4,213,364

2 9.258 744 14,782,125 5,714,157 cLCP-mACS 40:21 10,780
kmacs 57:43 9,637,964

Table 3: The first collection contains 932 genomes, the second one contains
4, 983 genomes. Note that |sχ| = 5, 650, 368 for the first collection and
|sχ| = 3, 571, 103 for the second one. In both cases these values are greater
than the average length of the strings in the respective collection. The
amount of time elapsed from the start to the completion of the instance.
The column memory is the peak Resident Set Size (RSS). Both values were
taken with /usr/bin/time command.

extensively studied, and improving its efficiency is out of the aim of this
paper. Therefore, we omit time/space requirements of the preprocessing
step, since (i) these data structures can be reused and (ii) different programs
[?, ?, ?, ?] are used to construct them with different space-time trade-offs.
So, we solely focus on the phase of computation of the matrix distances.

Notice that an entirely like-for-like comparison between our implemen-
tation and the above existing implementation is not possible, since, for the
best of our knowledge, our tool is the first lightweight tool.

ACS has been implemented in the k-Mismatch Average Common Sub-
string approach tool (kmacs) [?], which has been shown to be one of the most
performing ones to compute the classic ACS problem (with k = 0) [?]. Other
algorithms besides kmacs [?, ?] have been designed to compute alignment-
free distances based on longest matches with mismatches, but for the special
case k = 0 kmacs is the software that has the better change to scale with
the dataset size. We remark that the current implementation of kmacs
works completely in internal memory (and not in sequential way), but can
be easily adapted to solve the multi-string ACS problem (with k = 0), even
though not natively. Indeed, it shows a high intrinsic redundancy in the
multiple creation of the same supporting data structures and thus when
loading these structures into RAM. More in detail, it works in m steps, at
each step it builds the suffix array [?] and the lcp array of two strings si and
sj (for 1 ≤ i < j ≤ m) in order to compute the ACS distance between si and
sj . We modified the current implementation, which takes in input multiple
sequences, by fixing sχ = s1 to achieve a more fair assessment and thus

14

compare only sχ with sj , for all 2 ≤ j ≤ m+ 1. Note that the performance
in terms of time of kmacs could be improved by separately considering the
computation of the auxiliary data structures. However, the occupation of
RAM as well as its redundancy would remain almost the same.

The experimental results shown in Table 3 indicate that our algorithm
is a competitive tool for the lightweight simultaneous computation of the
pairwise ACS distance of a string versus all strings in another collection. In
cLCP-mACS, the auxiliary external disk space used was 34 GB for the first
collection and 108 GB for the second one. Moreover, since D tends to be
typically a sparse array, one could reduce its size in external memory by
storing only non-zero values the number of consecutive empty slots, or using
an alternative encoding such as Sadakane’s encoding [?].

7 Conclusion and Future Work

We have first introduced the colored longest common prefix array (cLCP):
given a collection of strings S, the cLCP array stores the length of the longest
common prefix between the suffix of any string in S and the nearest suffixes of
another string in S, by exploiting the lexicographically sorted list of suffixes
in the lcp array and some other combinatorial properties of it. This notion
has been then extended in a natural way to compute the longest common
prefix between any pair of strings in two different collections of strings S0
and S1. We have further provided a versatile, lightweight method to compute
cLCP via sequential scans when S0 consists of a single string, which could
be further extended to cope with the more general case. This makes cLCP
suitable for computing several kinds of statistics on large collections of long
strings, while dramatically reducing the amount of computational resources
used. In particular, we have proved that cLCP(S) produces a permutation
of the matching statistics (MS) for the strings of the collection of S and
exploited it to efficiently solve the multi-string ACS problem — i.e. computing
pairwise MS between a string in S0 and all m strings in S1 simultaneously,

— that is nowadays crucial in many practical applications, but demanding for
large string comparisons. This is also supported by experimental results.

Moreover, it is interesting to note that cLCP and its sequential strategy
of computation are intrinsically dynamic, i.e. cLCP can be efficiently up-
dated when the collection is modified by inserting or removing a string. In
particular, after the removal of a string, cLCP can be updated by exploiting
the mathematical properties of the permutation associated with the EBWT.
The insertion of a new string in the collection can be managed by using the

15

merging strategy proposed in [?], which works in semi-external memory. In
this case, the intermediate array D used to compute cLCP can be constructed
directly during this merging phase. Finally, we plan to extend our framework
to solve the many-to-many pairwise ACS problem on a collection S of m
sequences or between all strings of a collection versus all strings of another
collection simultaneously.

References

[1] https://github.com/giovannarosone/cLCP-mACS.

[2] https://github.com/BEETL/BEETL.

[3] https://github.com/giovannarosone/BCR_LCP_GSA.

[4] https://github.com/felipelouza/egsa.

[5] https://github.com/felipelouza/egap.

[6] http://kmacs.gobics.de/.

[7] A. Apostolico, C. Guerra, and C. Pizzi. Alignment Free Sequence
Similarity with Bounded Hamming Distance. In Data Compression
Conference, DCC 2014, pages 183–192. IEEE, 2014.

[8] M.J. Bauer, A.J. Cox, and G. Rosone. Lightweight algorithms for
constructing and inverting the BWT of string collections. Theor. Comput.
Sci., 483(0):134–148, 2013.

[9] D. Belazzougui and F. Cunial. Indexed matching statistics and shortest
unique substrings. In String Processing and Information Retrieval, pages
179–190. Springer International Publishing, 2014.

[10] D. Belazzougui and Fabio Cunial. Fast label extraction in the cdawg. In
String Processing and Information Retrieval, pages 161–175. Springer
International Publishing, 2017.

[11] M. Burrows and D.J. Wheeler. A block sorting data compression
algorithm. Technical report, DEC Systems Research Center, 1994.

[12] W. I. Chang and E. L. Lawler. Sublinear approximate string matching
and biological applications. Algorithmica, 12(4):327–344, 1994.

16

https://github.com/giovannarosone/cLCP-mACS
https://github.com/BEETL/BEETL
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/felipelouza/egsa
https://github.com/felipelouza/egap
http://kmacs.gobics.de/

[13] E. Cohen and B. Chor. Detecting phylogenetic signals in eukaryotic
whole genome sequences. J. Comput. Biol., 19(8):945–956, 2012.

[14] M. Comin and D. Verzotto. The Irredundant Class method for remote
homology detection of protein sequences. J. Comput. Biol., 18(12):1819–
1829, 2011.

[15] M. Comin and D. Verzotto. Alignment-free phylogeny of whole genomes
using underlying subwords. Algorithms Mol. Biol., 7(1), 2012.

[16] M. Comin and D. Verzotto. Whole-genome phylogeny by virtue of unic
subwords. In DEXA, pages 190–194. IEEE, 2012.

[17] M. Comin and D. Verzotto. Comparing, ranking and filtering motifs
with character classes: application to biological sequences analysis. In
Biological Knowledge Discovery Handbook: Preprocessing, Mining and
Postprocessing of Biological Data, chapter 13. Wiley, 2013.

[18] M. Comin and D. Verzotto. Filtering degenerate patterns with applica-
tion to protein sequence analysis. Algorithms, 6(2):352–370, 2013.

[19] M. Comin and D. Verzotto. Beyond fixed-resolution alignment-free
measures for mammalian enhancers sequence comparison. IEEE/ACM
Trans. Comput. Biol. Bioinform., 11(4):628–637, 2014.

[20] A. J. Cox, F. Garofalo, G. Rosone, and M. Sciortino. Lightweight LCP
construction for very large collections of strings. J. Discrete Algorithms,
37:17–33, 2016.

[21] A. J. Cox, T. Jakobi, G. Rosone, and O. B. Schulz-Trieglaff. Comparing
DNA sequence collections by direct comparison of compressed text
indexes. In WABI, volume 7534 LNBI of LNCS, pages 214–224. Springer,
2012.

[22] L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles. External memory
BWT and LCP computation for sequence collections with applications.
ArXiv e-prints, 2018.

[23] U. Ferraro Petrillo, C. Guerra, and C. Pizzi. A new distributed alignment-
free approach to compare whole proteomes. Theor. Comput. Sci.,
698:100–112, 2017.

[24] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.

17

[25] C.-A. Leimeister and B. Morgenstern. kmacs: the k -mismatch average
common substring approach to alignment-free sequence comparison.
Bioinformatics, 30(14):2000–2008, 2014.

[26] F.A. Louza, G.P. Telles, S. Hoffmann, and C.D.A. Ciferri. Generalized
enhanced suffix array construction in external memory. Algorithms Mol.
Biol., 12(1):26, 2017.

[27] U. Manber and G. Myers. Suffix Arrays: A New Method for On-
line String Searches. In Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’90, pages 319–327. Society
for Industrial and Applied Mathematics, 1990.

[28] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of
the Burrows-Wheeler Transform. Theor. Comput. Sci., 387(3):298–312,
2007.

[29] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. A new com-
binatorial approach to sequence comparison. Theory Comput. Syst.,
42(3):411–429, 2008.

[30] E. Ohlebusch, S. Gog, and A. Kügell. Computing matching statistics
and maximal exact matches on compressed full-text indexes. In SPIRE,
volume 6393 of LNCS, pages 347–358. Springer-Verlag, 2010.

[31] C. Pizzi. MissMax: alignment-free sequence comparison with mismatches
through filtering and heuristics. Algorithms for Molecular Biology, 11:6,
2016.

[32] S.J. Puglisi and A. Turpin. Space-time tradeoffs for longest-common-
prefix array computation. In ISAAC, volume 5369 of LNCS, pages
124–135. Springer, 2008.

[33] J. Ren, K. Song, F. Sun, M. Deng, and G. Reinert. Multiple alignment-
free sequence comparison. Bioinformatics, 29(21):2690–2698, 2013.

[34] K. Sadakane. Compressed suffix trees with full functionality. Theor.
Comp. Sys., 41(4):589–607, 2007.

[35] S.V. Thankachan, S.P. Chockalingam, Y. Liu, A. Apostolico, and
S. Aluru. ALFRED: a practical method for alignment-free distance
computation. J. Comput. Biol., 23(6):452–460, 2016.

18

[36] I. Ulitsky, D. Burstein, T. Tuller, and B. Chor. The average common
substring approach to phylogenomic reconstruction. J Comput. Biology,
13(2):336–350, 2006.

[37] A. Zielezinski, S. Vinga, J. Almeida, and W.M. Karlowski. Alignment-
free sequence comparison: benefits, applications, and tools. Genome
Biol., 18(1):186, 2017.

19

	Introduction
	Preliminaries
	Colored Longest Common Prefix Array
	Lightweight Computation of cLCP
	Multi-string ACS Computation by cLCP
	Preliminary Experiments
	Conclusion and Future Work

