
On optimally partitioning a text to improve its

compression∗

Paolo Ferragina Igor Nitto Rossano Venturini †

Abstract

In this paper we investigate the problem of partitioning an input
string T in such a way that compressing individually its parts via a base-
compressor C gets a compressed output that is shorter than applying C
over the entire T at once. This problem was introduced in [2, 3] in the
context of table compression, and then further elaborated and extended
to strings and trees by [10, 11, 21]. Unfortunately, the literature offers
poor solutions: namely, we know either a cubic-time algorithm for com-
puting the optimal partition based on dynamic programming [3, 15], or
few heuristics that do not guarantee any bounds on the efficacy of their
computed partition [2, 3], or algorithms that are efficient but work in
some specific scenarios (such as the Burrows-Wheeler Transform, see e.g.
[10, 21]) and achieve compression performance that might be worse than
the optimal-partitioning by a Ω(

√
log n) factor. Therefore, computing ef-

ficiently the optimal solution is still open [4]. In this paper we provide
the first algorithm which is guaranteed to compute in O(n log1+ε n) time
a partition of T whose compressed output is guaranteed to be no more
than (1+ ε)-worse the optimal one, where ε may be any positive constant.

1 Introduction

Reorganizing data in order to improve the performance of a given compressor
C is a recent and important paradigm in data compression (see e.g. [3, 10]).
The basic idea consist of permuting the input data T to form a new string
T ′ which is then partitioned into substrings T ′ = T ′1T

′
2 · · ·T ′k that are finally

compressed individually by the base compressor C. The goal is to find the best
instantiation of the two steps Permuting+Partitioning so that the compression
of the individual substrings T ′i minimizes the total length of the compressed
output. This approach (hereafter abbreviated as PPC) is clearly at least as
powerful as the classic data compression approach that applies C to the entire
T : just take the identity permutation and set k = 1. The question is whether
it can be more powerful than that!

Intuition leads to think favorably about it: by grouping together objects
that are “related”, one can hope to obtain better compression even using a very

∗It has been partially supported by Yahoo! Research, Italian MIUR Italy-Israel FIRB
Project. The authors’ address is Dipartimento di Informatica, L.go B. Pontecorvo 3, 56127
Pisa, Italy.

†Department of Computer Science, University of Pisa. emails: {ferragina, nitto,

rventurini}@di.unipi.it

1

weak compressor C. Surprisingly enough, this intuition has been sustained by
convincing theoretical and experimental results only recently. These results have
investigated the PPC-paradigm under various angles by considering: different
data formats (strings [10], trees [11], tables [3], etc.), different granularities for
the items of T to be permuted (chars, node labels, columns, blocks [1, 19], files
[6, 25, 26], etc.), different permutations (see e.g. [14, 27, 26, 6]), different base
compressors to be boosted (0-th order compressors, gzip, bzip2, etc.). Among
these plethora of proposals, we survey below the most notable examples which
are useful to introduce the problem we attack in this paper, and refer the reader
to the cited bibliography for other interesting results.

The PPC-paradigm was introduced in [2], and further elaborated upon in
[3]. In these papers T is a table formed by fixed size columns, and the goal is
to permute the columns in such a way that individually compressing contiguous
groups of them gives the shortest compressed output. The authors of [3] showed
that the PPC-problem in its full generality is MAX-SNP hard, devised a link
between PPC and the classical asymmetric TSP problem, and then resorted
known heuristics to find approximate solutions based on several measures of
correlations between the table’s columns. For the grouping they proposed ei-
ther an optimal but very slow approach, based on Dynamic Programming (see
below), or some very simple and fast algorithms which however did not have any
guaranteed bounds in terms of efficacy of their grouping process. Experiments
showed that these heuristics achieve significant improvements over the classic
gzip, when it is applied on the serialized original T (row- or column-wise).
Furthermore, they showed that the combination of the TSP-heuristic with the
DP-optimal partitioning is even better, but it is too slow to be used in practice
even on small file sizes because of the DP-cubic time complexity.1

When T is a text string, the most famous instantiation of the PPC-paradigm
has been obtained by combining the Burrows and Wheeler Transform [5] (shortly
BWT) with a context-based grouping of the input characters, which are finally
compressed via proper 0-th order-entropy compressors (like MTF, RLE, Huffman,
Arithmetic, or their combinations, see e.g. [28]). Here the PPC-paradigm takes
the name of compression booster [10] because the net result it produces is to
boost the performance of the base compressor C from 0-th order-entropy bounds
to k-th order entropy bounds, simultaneously over all k ≥ 0. In this scenario the
permutation acts on single characters, and the partitioning/permuting steps de-
ploy the context (substring) following each symbol in the original string in order
to identify “related” characters which must be therefore compressed together.
Recently [14] investigated whether do exist other permutations of the charac-
ters of T which admit effective compression and can be computed/inverted fast.
Unfortunately they found a connection between table compression and the BWT,
so that many natural similarity-functions between contexts turned out to in-
duce MAX-SNP hard permuting problems! Interesting enough, the BWT seems
to be the unique highly compressible permutation which is fast to be computed
and achieves effective compression bounds. Several other papers have given
an analytic account of this phenomenon [22, 9, 17, 21] and have shown, also
experimentally [8], that the partitioning of the BW-transformed data is a key
step for achieving effective compression ratios. Optimal partitioning is actually

1Page 836 of [3] says: ”computing a good approximation to the TSP reordering before
partitioning contributes significant compression improvement at minimal time cost. [...] This
time is negligible compared to the time to compute the optimal, contiguous partition via DP.”

2

even more mandatory in the context of labeled-tree compression where a BWT-
inspired transform, called XBW-transform in [11, 12], allows to produce per-
muted strings with a strong clustering effect. Starting from these premises [15]
attacked the computation of the optimal partitioning of T via a DP-approach,
which turned to be very costly; then [10] (and subsequently many other authors,
see e.g. [9, 21, 11]) proposed solutions which are not optimal but, nonetheless,
achieve interesting k-th order-entropy bounds. This is indeed a subtle point
which is frequently neglected when dealing with compression boosters, espe-
cially in practice, and for this reason we detail it more clearly in Appendix A
in which we show an infinite class of strings for which the compression achieved
by the booster is far from the optimal-partitioning by a multiplicative factor
Ω(
√

log n).
Finally, there is another scenario in which the computation of the optimal

partition of an input string for compression boosting can be successful and oc-
curs when T is a single (possibly long) file on which we wish to apply classic
data compressors, such as gzip, bzip2, ppm, etc. [28]. Note that how much
redundancy can be detected and exploited by these compressors depends on
their ability to “look back” at the previously seen data. However, such ability
has a cost in terms of memory usage and running time, and thus most com-
pression systems provide a facility that controls the amount of data that may
be processed at once — usually called the block size. For example the classic
tools gzip and bzip2 have been designed to have a small memory footprint, up
to few hundreds KBs. More recent and sophisticated compressors, like ppm [28]
and the family of BWT-based compressors [8], have been designed to use block
sizes of up to a few hundreds MBs. But using larger blocks to be compressed at
once does not necessarily induce a better compression ratio! As an example, let
us take C as the simple Huffman or Arithmetic coders and use them to compress
the text T = 0n/21n/2: There is a clear difference whether we compress individ-
ually the two halves of T (achieving an output size of about O(log n) bits) or we
compress T as a whole (achieving n + O(log n) bits). The impact of the block
size is even more significant as we use more powerful compressors, such as the
k-th order entropy encoder ppm which compresses each symbol according to its
preceding k-long context. In this case take T = (2k0)n/(2(k+1))(2k1)n/(2(k+1))

and observe that if we divide T in two halves and compress them individually,
the output size is about O(log n) bits, but if we compress the entire T at once
then the output size turns to be much longer, i.e. n

k+1 + O(log n) bits. There-
fore the choice of the block size cannot be underestimated and, additionally, it
is made even more problematic by the fact that it is not necessarily the same
along the whole file we are compressing because it depends on the distribution
of the repetitions within it. This problem is even more challenging when T is
obtained by concatenating a collection of files via any permutation of them:
think to the serialization induced by the Unix tar command, or other more
sophisticated heuristics like the ones discussed in [25, 6, 24, 26]. In these cases,
the partitioning step looks for homogeneous groups of contiguous files which can
be effectively compressed together by the base-compressor C. More than before,
taking the largest memory-footprint offered by C to group the files and compress
them at once is not necessarily the best choice because real collections are typ-
ically formed by homogeneous groups of dramatically different sizes (e.g. think
to a Web collection and its different kinds of pages). Again, in all those cases
we could apply the optimal DP-based partitioning approach of [15, 3], but this

3

would take more than cubic time (in the overall input size |T |) thus resulting
unusable even on small input data of few MBs!

In summary the efficient computation of an optimal partitioning of the input
text for compression boosting is an important and still open problem of data
compression (see [4]). The goal of this paper is to make a step forward by
providing the first efficient approximation algorithm for this problem, formally
stated as follows.

Let C be the base compressor we wish to boost, and let T [1, n] be the input
string we wish to partition and then compress by C. So, we are assuming that T
has been (possibly) permuted in advance, and we are concentrating on the last
two steps of the PPC-paradigm. Now, given a partition P of the input string
into contiguous substrings, say T = T1T2 · · ·Tk, we denote by Cost(P) the cost
of this partition and measure it as

∑l
i=1 |C(Ti)|, where |C(α)| is the length in

bit of the string α compressed by C. The problem of optimally partitioning T
according to the base-compressor C consists then of computing the partition
Popt achieving the minimum cost, namely Popt = minP Cost(P), and thus the
shortest compressed output.2

As we mentioned above Popt might be computed via a Dynamic-Programming
approach [3, 15]. Define E[i] as the cost of the optimum partitioning of T [1, i],
and set E[0] = 0. Then, for each i ≥ 1, we can compute E[i] as the min0≤j≤i−1E[j]+
|C(T [j + 1, i])|. At the end E[n] gives the cost of Popt, which can be explicitly
determined by standard back-tracking over the DP-array. Unfortunately, this
solution requires to run C over Θ(n2) substrings of average length Θ(n), for an
overall Θ(n3) time cost in the worst case which is clearly unfeasible even on
small input sizes n.

In order to overcome this computational bottleneck we make two crucial
observations: (1) instead of applying C over each substring of T , we use an
entropy-based estimation of C’s compressed output that can be computed ef-
ficiently and incrementally by suitable dynamic data structures; (2) we relax
the requirement for an exact solution to the optimal partitioning problem, and
aim at finding a partition whose cost is no more than (1 + ε) worse than Popt,
where ε may be any positive constant. Item (1) takes inspiration from the
heuristics proposed in [2, 3], but it is executed in a more principled way because
our entropy-based cost functions reflect the real behavior of modern compres-
sors, and our dynamic data structures allow the efficient estimation of those
costs without their re-computation from scratch at each substring (as instead
occurred in [2, 3]). Item (2) boils down to show that the optimal partitioning
problem can be rephrased as a Single Source Shortest path computation over
a weighted DAG consisting of n nodes and O(n2) edges whose costs are derived
from item (1). We prove some interesting structural properties of this graph
that allow us to restrict the computation of that SSSP to a subgraph consist-
ing of O(n log1+ε n) edges only. The technical part of this paper (see Section
3) will show that we can build this graph on-the-fly as the SSSP-computation
proceeds over the DAG via the proper use of time-space efficient dynamic data
structures. The final result will be to show that we can (1 + ε)-approximate
Popt in O(n log1+ε n) time and O(n) space, for both 0-th order compressors
(like Huffman and Arithmetic [28]) and k-th order compressors (like ppm [28]).

2We are assuming that C(α) is a prefix-free encoding of α, so that we can concatenate the
compressed output of many substrings and still be able to recover them via a sequential scan.

4

We will also extend these results to the class of BWT-based compressors, when T
is a collection of texts.

We point out that the result on 0-th order compressors is interesting in its
own from both the experimental side, since Huffword compressor is the stan-
dard choice for the storage of Web pages [28], and from the theoretical side
since it can be applied to the compression booster of [10] to fast obtain an
approximation of the optimal partition of BWT(T) in O(n log1+ε n) time. This
may be better than the algorithm of [10] both in time complexity, since that
takes O(n|Σ|) time where Σ is the alphabet of T , and in compression ratio (as
we have shown above, see Appendix A). The case of a large alphabet (namely,
|Σ| = Ω(polylog(n))) is particularly interesting whenever we consider either
a word-based BWT [23] or the XBW-transform over labeled trees [10]. Finally,
we mention that our results apply also to the practical case in which the base
compressor C has a maximum (block) size B of data it can process at once (see
above the case of gzip, bzip2, etc.). In this situation the time performance of
our solution reduces to O(n log1+ε(B log σ)).

The map of the paper is as follows. Section 2 introduces some basic notation
and terminology. Section 3 describes our reduction from the optimal partitioning
problem of T to a SSSP problem over a weighted DAG in which edges represent
substrings of T and edge costs are entropy-based estimations of the compression
of these substrings via C. The subsequent Sections will address the problem of
incrementally and efficiently computing those edge costs as they are needed
by the SSSP-computation, distinguishing the two cases of 0-th order estimators
(Section 4) and k-th order estimators (Section 5), and the situation in which C
is a BWT-based compressor and T is a collection of files (Section 6).

2 Notation

In this paper we will use entropy-based upper bounds for the estimation of
|C(T [i, j])|, so we need to recall some basic notation and terminology about
entropies. Let T [1, n] be a string drawn from the alphabet Σ of size σ. For each
c ∈ Σ, we let nc be the number of occurrences of c in T . The zero-th order
empirical entropy of T is defined as H0(T) = 1

|T |
∑h

c∈Σ nc log n
nc

.
Recall that |T |H0(T) provides an information-theoretic lower bound to the

output size of any compressor that encodes each symbol of T with a fixed
code [28]. The so-called zero-th order statistical compressors (such as Huffman
or Arithmetic [28]) achieve an output size which is very close to this bound.
However, they require to know information about frequencies of input symbols
(called the model of the source). Those frequencies can be either known in ad-
vance (static model) or computed by scanning the input text (semistatic model).
In both cases the model must be stored in the compressed file to be used by the
decompressor.

In the following we will bound the compressed size achieved by zero-th order
compressors over T by |C0(T)| ≤ λnH0(T) + f0(n, σ) bits, where λ is a positive
constant and f0(n, σ) is a function including the extra costs of encoding the
source model and/or other inefficiencies of C. In the following we will assume
that the function f0(n, σ) can be computed in constant time given n and σ.
As an example, for Huffman f0(n, σ) = σ log σ + n bits and λ = 1, and for
Arithmetic f0(n, σ) = σ log n + log n/n bits and λ = 1.

5

In order to evict the cost of the model, we can resort to zero-th order adap-
tive compressors that do not require to know the symbols’ frequencies in ad-
vance, since they are computed incrementally during the compression. The
zero-th order adaptive empirical entropy of T [16] is then defined as Ha

0 (T) =
1
|T |

∑h
c∈Σ log n!

nc!
We will bound the compress size achieved by zero-th order

adaptive compressors over T by |Ca
0 (T)| = nHa

0 (T) bits.
Let us now come to more powerful compressors. For any string u of length

k, we denote by uT the string of single symbols following the occurrences of u
in T , taken from left to right. For example, if T = mississippi and u = si, we
have uT = sp since the two occurrences of si in T are followed by the symbols
s and p, respectively. The k-th order empirical entropy of T is defined as
Hk(T) = 1

|T |
∑

u∈Σk |uT |H0(uT). Analogously, the k-th order adaptive empirical
entropy of T is defined as Ha

k (T) = 1
|T |

∑
u∈Σk |uT |Ha

0 (uT)
We have Hk(T) ≥ Hk+1(T) for any k ≥ 0. As usual in data compression

[22], the value nHk(T) is an information-theoretic lower bound to the output
size of any compressor that encodes each symbol of T with a fixed code that
depends on the symbol itself and on the k immediately preceding symbols.
Recently (see e.g. [18, 22, 10, 9, 21, 11] and refs therein) authors have provided
upper bounds in terms of Hk(|T |) for sophisticated data-compression algorithms,
such as gzip [18], bzip2 [22, 10, 17], and ppm. These bounds have the form
|C(T)| ≤ λ|T |Hk(T)+fk(|T |, σ), where λ is a positive constant and fk(|T |, σ) is
a function including the extra-cost of encoding the source model and/or other
inefficiencies of C. The smaller are λ and fk(), the better is the compressor C.
As an example, the bound of the compressor in [21] has λ = 1 and f(|T |, σ) =
O(σk+1 log |T | + |T | log σ log log |T |/ log |T |). Similar bounds that involve the
adaptive k-th order entropy are known [22, 10, 9] for many compressors. In
these cases the bound takes the form |Ca

k (T)| = λ|T |H∗
k(T) + gk(σ) bits, where

the value of gk depends only on the alphabet size σ.
In our paper we will use these entropy-based bounds for the estimation of

|C(T [i, j])|, but of course this will not be enough to achieve a fast DP-based
algorithm for our optimal-partitioning problem. We cannot re-compute from
scratch those estimates for every substring T [i, j] of T , being them Θ(n2) in
number. So we will show some structural properties of our problem (Section
3) and introduce few novel technicalities (Sections 4–5) that will allow us to
compute Hk(T [i, j]) only on a reduced subset of T ’s substrings, having size
O(n log1+ε n), by taking O(polylog(n)) time per substring and O(n) space
overall.

3 The problem and our solution

The optimal partitioning problem, stated in Section 1 can be reduced to a
single source shortest path computation (SSSP) over a directed acyclic graph
G(T) defined as follows. The graph G(T) has a vertex vi for each text position
i of T , plus an additional vertex vn+1 marking the end of the text, and an
edge connecting vertex vi to vertex vj for any pair of indices i and j such that
i < j. Each edge (vi, vj) has associated the cost c(vi, vj) = |C(T [i, j − 1])| that
corresponds to the size in bits of the substring T [i, j − 1] compressed by C. We
remark the following crucial, but easy to prove, property of the cost function

6

defined on G(T):

Fact 1 For any vertex vi, it is 0 < c(vi, vi+1) ≤ c(vi, vi+2) ≤ . . . ≤ c(vi, vn+1)

There is a one-to-one correspondence between paths from v1 to vn+1 in
G(T) and partitions of T : every edge (vi, vj) in the path identifies a contiguous
substring T [i, j−1] of the corresponding partition. Therefore the cost of a path
is equal to the (compression-)cost of the corresponding partition. Thus, we can
find the optimal partition of T by computing the shortest path in G(T) from v1

to vn+1. Unfortunately this simple approach has two main drawbacks:

1. the number of edges in G(T) is Θ(n2), thus making the SSSP computation
inefficient (i.e. Ω(n2) time) if executed directly over G(T);

2. the computation of the each edge cost might take Θ(n) time over most
T ’s substrings, if C is run on each of them from scratch.

In the following sections we will successfully address both these two draw-
backs. First, we sensibly reduce the number of edges in the graph G(T) to be
examined during the SSSP computation and show that we can obtain a (1 + ε)
approximation using only O(n log1+ε n) edges, where ε > 0 is a user-defined pa-
rameter (Section 3.1). Second, we show some sufficient properties that C needs
to satisfy in order to compute efficiently every edge’s cost. These properties
hold for some well-known compressors— e.g. 0-order compressors, PPM-like and
bzip-like compressors— and for them we show how to compute each edge cost
in constant or polylogarithmic time (Sections 4—6).

3.1 A pruning strategy

The aim of this section is to design a pruning strategy that produces a subgraph
Gε(T) of the original DAG G(T) in which the shortest path distance between its
leftmost and rightmost nodes, v1 and vn+1, increases by no more than a factor
(1 + ε). We define Gε(T) to contain all edges (vi, vj) of G(T), recall i < j, such
that at least one of the following two conditions holds:

1. there exists a positive integer k such that c(vi, vj) ≤ (1+ ε)k < c(vi, vj+1);

2. j = n + 1.

In other words, by fact 1, we are keeping for each integer k the edge of G(T)
that approximates at the best the value (1 + ε)k from below. Given this, we
will call ε-maximal the edges of Gε(T). Clearly, each vertex of Gε(T) has at
most log1+ε n = O(1

ε log n) outgoing edges, which are ε-maximal by definition.
Therefore the total size of Gε(T) is at most O(n

ε log n). Hereafter, we will denote
with dG(−,−) the shortest path distance between any two nodes in a graph G.

The following lemma states a basic property of shortest path distances over
our special DAG G(T):

Lemma 1 For any triple of indices 1 ≤ i ≤ j ≤ q ≤ n + 1 we have:

1. dG(T)(vj , vq) ≤ dG(T)(vi, vq)

2. dG(T)(vi, vj) ≤ dG(T)(vi, vq)

7

Proof: We prove just 1, since 2 is symmetric. It suffices by induction to prove
the case j = i+1. Let (vi, w1)(w1, w2)...(wh−1, wh), with wh = vq, be a shortest
path in G(T) from vi to vq. By fact 1, c(vj , w1) ≤ c(vi, w1) since i ≤ j. Therefore
the cost of the path (vj , w1)(w1, w2)...(wh−1, wh) is at most dG(T)(vi, vq), which
proves the claim.

The correctness of our pruning strategy relies on the following theorem:

Theorem 1 For any text T , the shortest path in Gε(T) from v1 to vn+1 has a
total cost of at most (1 + ε) dG(T)(v1, vn+1).

Proof: We prove a stronger assertion: dGε(T)(vi, vn+1) ≤ (1+ ε) dG(T)(vi, vn+1)
for any index 1 ≤ i ≤ n + 1. This is clearly true for i = n + 1, because
in that case the distance is 0. Now let us inductively consider the shortest
path π in G(T) from vi to vn+1 and let (vk, vt1)(vt1 , vt2) . . . (vth

vn+1) be its
edges. By the definition of ε-maximal edge, it is possible to find an ε-maximal
edge (vk, vr) with t1 ≤ r, such that c(vk, vr) ≤ (1 + ε) c(vk, vt1). By Lemma
1, dG(T)(vr, vn+1) ≤ dG(T)(vt1 , vn+1). By induction, dGε(T)(vr, vn+1) ≤ (1 +
ε) dG(T)(vr, vn+1). Combining this with the triangle inequality we get the thesis.

3.2 Space and time efficient algorithms for generating Gε(T)

Theorem 1 ensures that, in order to compute a (1 + ε) approximation of the
optimal partition of T , it suffices to compute the SSSP in Gε(T) from v1 to
vn+1. This can be easily computed in O(|Gε(T)|) = O(n logε n) time since
Gε(T) is a DAG [7], by making a single pass over its vertices and relaxing all
edges going out from the current one.

However, generating Gε(T) in efficient time is a non-trivial task for three
main reasons. First, the original graph G(T) contains Ω(n2) edges, so that
we cannot check each of them to determine whether it is ε-maximal or not,
because this would take Ω(n2) time. Second, we cannot compute the cost of an
edge (vi, vj) by executing C(T [i, j − 1]) from scratch, since this would require
time linear in the substring length, and thus Ω(n3) time over all T ’s substrings.
Third, we cannot materialize Gε(T) (e.g. its adjacency lists) because it consists
of Θ(n polylog(n)) edges, and thus its space occupancy would be super-linear
in the input size.

The rest of this section is devoted to design an algorithm which overcomes the
three limitations above. The specialty of our algorithm consists of materializing
Gε(T) on-the-fly, as its vertices are examined during the SSSP-computation, by
spending only polylogarithmic time per edge. The actual time complexity per
edge will depend on the entropy-based cost function we will use to estimate
|C(T [i, j−1])| (see Section 2) and on the dynamic data structure we will deploy
to compute that estimation efficiently.

The key tool we use to make a fast estimation of the edge costs is a dynamic
data structure built over the input text T and requiring O(|T |) space. We state
the main properties of this data structure in an abstract form, in order to design
a general framework for solving our problem; in the next sections we will then
provide implementations of this data structure and thus obtain real time/space
bounds for our problem. So, let us assume to have a dynamic data structure
that maintains a set of sliding windows over T denoted by w1, w2, . . . , wlog1+ε n.

8

The sliding windows are substrings of T which start at the same text position
l but have different lengths: namely, wi = T [l, ri] and r1 ≤ r2 ≤ . . . ≤ rlog1+ε n.
The data structure must support the following three operations:

1. Remove() moves the starting position l of all windows one position to the
right (i.e. l + 1);

2. Append(wi) moves the ending position of the window wi one position to
the right (i.e. ri + 1);

3. Size(wi) computes and returns the value |C(T [l, ri])|.
This data structure is enough to generate ε-maximal edges via a single pass

over T , using O(|T |) space. More precisely, let vl be the vertex of G(T) currently
examined by our SSSP computation, and thus l is the current position reached
by our scan of T . We maintain the following invariant: the sliding windows
correspond to all ε-maximal edges going out from vl, that is, the edge (vl, v1+rt

)
is the ε-maximal edge satisfying c(vl, v1+rt) ≤ (1+ε)t < c(vl, v1+(rt+1)). Initially
all indices are set to 0. To maintain the invariant, when the text scan advances
to the next position l + 1, we call operation Remove() once to increment index l
and, for each t = 1, . . . , log1+ε(n), we call operation Append(wt) until we find the
largest rt such that Size(wt) = c(vl, v1+rt) ≤ (1+ε)t. The key issue here is that
Append and Size are paired so that our data structure should take advantage
of the rightward sliding of rt for computing c(vl, v1+rt) efficiently. Just one
character is entering wt to its right, so we need to deploy this fact for making
the computation of Size(wt) fast (given its previous value). Here comes into
play the second contribution of our paper that consists of adopting the entropy-
bounded estimates for the compressibility of a string, mentioned in Section 2,
to estimate indeed the edge costs Size(wt) = |C(wt)|. This idea is crucial
because we will be able to show that these functions do satisfy some structural
properties that admit a fast incremental computation, as the one required by
Append+ Size. These issues will be discussed in the following sections, here we
just state that, overall, the SSSP computation over Gε(T) takes O(n) calls to
operation Remove, and O(n log1+ε n) calls to operations Append and Size.

Theorem 2 If we have a dynamic data structure occupying O(n) space and
supporting operation Remove in time L(n), and operations Append and Size in
time R(n), then we can compute the shortest path in Gε(T) from v1 to vn+1

taking O(n L(n) + (n log1+ε n) R(n)) time and O(n) space.

4 On zero-th order compressors

In this section we explain how to implement the data structure above whenever
C is a 0-th order compressor, and thus H0 is used to provide a bound to the
compression cost of G(T)’s edges (see Section 2). The key point is actually to
show how to efficiently compute Size(wi) as the sum of |T [l, ri]|H0(T [l, ri]) =∑

c∈Σ nc log((ri − l + 1)/nc) (see its definition in Section 2) plus f0(ri − l +
1, |ΣT [l,ri]|), where nc is the number of occurrences of symbol c in T [l, ri] and
|ΣT [l,ri]| denotes the number of different symbols in T [l, ri].

The first solution we are going to present is very simple and uses O(σ)
space per window. The idea is the following: for each window wi we keep in
memory an array of counters Ai[c] indexed by symbol c in Σ. At any step of

9

our algorithm, the counter Ai[c] stores the number of occurrences of symbol c
in T [l, ri]. For any window wi, we also use a variable Ei that stores the value
of

∑
c∈Σ Ai[c] log Ai[c]. It is easy to notice that:

|T [l, ri]| H0(T [l, ri]) = (ri − l + 1) log(ri − l + 1)− Ei. (1)

Therefore, if we know the value of Ei, we can answer to a query Size(wi)
in constant time. So, we are left with showing how to implement efficiently the
two operations that modify l or any rs value and, thus, modify appropriately
the E’s value. This can be done as follows:

1. Remove(): For each window wi, we subtract from the appropriate counter
and from variable Ei the contribution of the symbol T [l] which has been
evicted from the window. That is, we decrease Ai[T [l]] by one, and up-
date Ei by subtracting (Ai[T [l]] + 1) log(Ai[T [l]] + 1) and then summing
Ai[T [l]] log Ai[T [l]]. Finally we set l = l + 1.

2. Append(wi): We add to the appropriate counter and variable Ei the con-
tribution of the symbol T [ri + 1] which has been appended to window wi.
That is, we increase Ai[T [r+1]] by one, then we update Ei by subtracting
(A[T [ri+1]]−1) log(A[T [ri+1]]−1) and summing A[T [ri+1]] log A[T [ri+
1]]. Finally we set ri = ri + 1.

In this way, operation Remove requires constant time per window, hence
O(log1+ε n) time overall. Append(wi) takes constant time. The space required
by the counters Ai is O(σ log1+ε n) words. Unfortunately, the space complexity
of this solution can be too much when it is used as the basic-block for computing
the k-th order entropy of T (see Section 2) as we will do in Section 5. In fact, we
would achieve min(σk+1 log1+ε n, n log1+ε n) space, which may be superlinear in
n depending on σ and k.

The rest of this section is therefore devoted to provide an implementation
of our dynamic data structure that takes the same query time above for these
three operations, but within O(n) space, which is independent of σ and k. The
new solution still uses E’s value but the counters Ai are computed on-the-fly
by exploiting the fact that all windows share the same value of l. We keep an
array B indexed by symbols whose entry B[c] stores the number of occurrences
of c in T [1, l]. We can keep these counters updated after a Remove by simply
decreasing B[T [l]] by one. We also maintain an array R with an entry for each
text position. The entry R[j] stores the number of occurrences of symbol T [j]
in T [1, j]. The number of elements in both B and R is no more than n, hence
they take O(n) space.

These two arrays are enough to correctly update the value Ei after Append(wi),
which is in turn enough to estimate H0 (see Eqn 1). In fact, we can compute
the value Ai[T [ri + 1]] by computing R[ri + 1] − B[T [ri + 1]] which correctly
reports the number of occurrences of T [ri + 1] in T [l . . . ri + 1]. Once we have
the value of Ai[T [ri + 1]], we can update Ei as explained in the above item 2.

We are left with showing how to support Remove() whose computation re-
quires to evaluate the value of Ai[T [l]] for each window wi. Each of these values
can be computed as R[t]−B[T [l]] where t is the last occurrence of symbol T [l] in
T [l, ri]. The problem here is given by the fact that we do not know the position
t. We solve this issue by resorting to a doubly linked list Lc for each symbol c.
The list Lc links together the last occurrences of c in all those windows, ordered

10

by increasing position. Notice that a position j may be the last occurrence of
symbol T [j] for different (but consecutive) windows. In this case we force that
position to occur in LT [j] just once. These lists are sufficient to compute values
Ai[T [l]] for all the windows together. In fact, since any position in LT [l] is the
last occurrence of at least one sliding window, each of them can be used to com-
pute Ai[T [l]] for the appropriate indices i. Once we have all values Ai[T [l]], we
can update all Ei’s as explained in the above item 1. Since list LT [l] contains no
more than log1+ε n elements, all Es can be updated in O(log1+ε n) time. Notice
that the number of elements in all the lists L is bounded by the text length.
Thus, they are stored using O(n) space.

It remains to explain how to keep lists L correctly updated. Notice that
only one list may change after a Remove() or an Append(wi). In the former case
we have possibly to remove position l from list LT [l]. This operation is simple
because, if that position is in the list, then T [l] is the last occurrence of that
symbol in w1 (recall that all the windows start at position l, and are kept ordered
by increasing ending position) and, thus, it must be the head of LT [l]. The case
of Append(wi) is more involved. Since the ending position of wi is moved to
the right, position ri + 1 becomes the last occurrence of symbol T [ri + 1] in wi.
Recall that Append(wi) inserts symbol T [ri +1] in wi. Thus, it must be inserted
in LT [ri+1] in its correct (sorted) position, if it is not present yet. Obviously, we
can do that in O(log1+ε n) time by scanning the whole list. This is too much,
so we show how to spend only constant time. Let p the rightmost occurrence
of the symbol T [ri + 1] in T [0, ri].3 If p < l, then ri + 1 must be inserted in
the front of LT [ri+1] and we have done. In fact, p < l implies that there is no
occurrence of T [ri + 1] in T [l, ri] and, thus, no position can precede ri + 1 in
LT [ri+1]. Otherwise (i.e. p ≥ l), we have that p is in LT [ri+1], because it is
the last occurrence of symbol T [ri + 1] for some window wj with j ≤ i. We
observe that if wj = wi, then p must be replaced by ri + 1 which is now the
last occurrence of T [ri + 1] in wi; otherwise ri + 1 must be inserted after p in
LT [ri+1] because p is still the last occurrence of this symbol in the window wj .
We can decide which one is the correct case by comparing p and ri−1 (i.e., the
ending position of the preceding window wri−1). In any case, the list is kept
updated in constant time.

The following Lemma derives by the discussion above:

Lemma 2 Let T [1, n] be a text drawn from an alphabet of size σ = poly(n).
If we estimate Size() via 0-th order entropy (as detailed in Section 2), then
we can design a dynamic data structure that takes O(n) space and supports
the operations Remove in R(n) = O(log1+ε n) time, and Append and Size in
L(n) = O(1) time.

In order to evict the cost of the model from the compressed output (see
Section 2), authors typically resort to zero-th order adaptive compressors which
do not store the symbols’ frequencies, since they are computed incrementally
during the compression [16]. A similar approach can be used in this case to
achieve the same time and space bounds of Lemma 2. Here, we require that
Size(wi) = |Ca

0 (T [l, ri])| = |T [l, ri]|Ha
0 (T [l, ri]). Recall that with these type of

compressors the model must not be stored. We use the same tools above but we
3Notice that we can precompute and store the last occurrence of symbol T [j + 1] in T [1, j]

for all js in linear time and space.

11

change the values stored in variables Ei and the way in which they are updated
after a Remove or an Append.

Observe that in this case we have that

|Ca
0 (T [l, ri])| = |T [l, ri]|Ha

0 (T [l, ri]) = log((ri − l + 1)!)−
∑

c∈Σ

log(nc!)

where nc is the number of occurrences of symbol c in T [l, ri]. Therefore, if the
variable Ei stores the value

∑
c∈Σ log(Ai[c]!), then we have that |T [l, ri]|Ha

0 (T [l, ri]) =
log((ri − l + 1)!)− Ei.4

After the two operations, we change E’s value in the following way:

1. Remove(): For any window wi we update Ei by subtracting log(Ai[T [l]]).
We also increase l by one.

2. Append(wi): We update Ei by summing log A[T [ri + 1]] and we increase
ri by one.

By the discussion above and Theorem 2 we obtain:

Theorem 3 Given a text T [1, n] drawn from an alphabet of size σ = poly(n),
we can find an (1 + ε)-optimal partition of T with respect to a 0-th order (adap-
tive) compressor in O(n log1+ε n) time and O(n) space, where ε is any positive
constant.

We point out that these results can be applied to the compression booster
of [10] to fast obtain an approximation of the optimal partition of BWT(T).
This may be better than the algorithm of [10] both in time complexity, since
that algorithm took O(nσ) time, and in compression ratio by a factor up to
Ω(
√

log n) (see the discussion in Section 1). The case of a large alphabet (namely,
σ = Ω(polylog(n))) is particularly interesting whenever we consider either a
word-based BWT [23] or the XBW-transform over labeled trees [10]. We notice that
our result is interesting also for the Huffword compressor which is the standard
choice for the storage of Web pages [28]; here Σ consists of the distinct words
constituting the Web-page collection.

5 On k-th order compressors

In this section we make one step further and consider the more powerful k-th
order compressors, for which do exist Hk bounds for estimating the size of their
compressed output (see Section 2). Here Size(wi) must compute |C(T [l, ri])|
which is estimated by (ri − l + 1)Hk(T [l, ri]) + fk(ri − l + 1, |ΣT [l,ri]|), where
ΣT [l,ri] denotes the number of different symbols in T [l, ri]..

Let us denote with Tq[1, n−q] the text whose i-th symbol T [i] is equal to the
q-gram T [i, i + q − 1]. Actually, we can remap the symbols of Tq to integers in
[1, n] without modifying its zero-th order entropy. In fact the number of distinct
q-grams occurring in Tq is less than n, the length of T . Thus Tq’s symbols take
O(log n) bits and Tq can be stored in O(n) space. This remapping takes linear
time and space, whenever σ is polynomial in n.

4Notice that the value log((ri− l+1)!) can be stored in a variable and updated in constant
time since the size of the value ri − l + 1 changes just by one after a Remove or an Append.

12

A simple calculation shows that the k-th order (adaptive) entropy of a string
(see definition Section 2) can be expressed as the difference between the zero-th
order (adaptive) entropy of its k + 1-grams and its k-grams. This suggests that
we can use the solution of the previous section in order to compute the zero-th
order entropy of the appropriate substrings of Tk+1 and Tk. More precisely, we
use two instances of the data structure of Theorem 3 (one for Tk+1 and one
for Tk), which are kept synchronized in the sense that, when operations are
performed on one data structure, then they are also executed on the other.

Lemma 3 Let T [1, n] be a text drawn from an alphabet of size σ = poly(n).
If we estimate Size() via k-th order entropy (as detailed in Section 2), then
we can design a dynamic data structure that takes O(n) space and supports
the operations Remove in R(n) = O(log1+ε n) time, and Append and Size in
L(n) = O(1) time.

Essentially the same technique is applicable to the case of k-th order adaptive
compressor C, in this case we keep up-to-date the 0-th order adaptive entropies
of the strings Tk+1 and Tk (details in [?]).

Theorem 4 Given a text T [1, n] drawn from an alphabet of size σ = poly(n),
we can find an (1 + ε)-optimal partition of T with respect to a k-th order (adap-
tive) compressor in O(n log1+ε n) time and O(n) space, where ε is any positive
constant.

We point out that this result applies also to the practical case in which the
base compressor C has a maximum (block) size B of data it can process at once
(this is the typical scenario for gzip, bzip2, etc.). In this situation the time
performance of our solution reduces to O(n log1+ε(B log σ)).

6 On BWT-based compressors

As we mentioned in Section 2 we know entropy-bounded estimates for the output
size of BWT-based compressors. So we could apply Theorem 4 to compute the
optimal partitioning of T for such a type of compressors. Nevertheless, it is also
known [8] that such compression-estimates are rough in practice because of the
features of the compressors that are applied to the BWT(T)-string. Typically,
BWT is encoded via a sequence of simple compressors such as MTF encoding,
RLE encoding (which is optional), and finally a 0-order encoder like Huffman
or Arithmetic [28]. For each of these compression steps, a 0-th entropy bound
is known [22], but the combination of these bounds may result much far from
the final compressed size produced by the overall sequence of compressors in
practice [8].

In this section, we propose a solution to the optimal partitioning problem
for BWT-based compressors that introduces a Θ(σ log n) slowdown in the time
complexity of Theorem 4, but with the advantage of computing the (1 + ε)-
optimal solution wrt the real compressed size, thus without any estimation
by any entropy-cost functions. Since in practice it is σ = polylog(n), this
slowdown should be negligible. In order to achieve this result, we need to address
a slightly different (but yet interesting in practice) problem which is defined as
follows. The input string T has the form S[1]#1S[2]#2 . . . S[m]#n where each

13

S[i] is a text (called page) drawn from an alphabet Σ, and #1,#2, . . . , #n are
special characters greater than any symbol of Σ. A partition of T must be
page-aligned, that is it must form groups of contiguous pages S[i]#i . . . S[j]#j ,
denoted also S[i, j]. Our aim is to find a page-aligned partition whose cost (as
defined in Section 1) is at most (1+ ε) the minimum possible cost, for any fixed
ε > 0. We notice that this problem generalizes the table partitioning problem
[3], since we can assume that S[i] is a column of the table.

To simplify things we will drop the RLE encoding step of a BWT-based algo-
rithm, and defer the complete solution to the full version of this paper. We
start by noticing that a close analog of Theorem 2 holds for this variant of the
optimal partitioning problem, which implies that a (1+ ε)-approximation of the
optimum cost (and the corresponding partition) can be computed using a data
structure supporting operations Append, Remove, and Size; with the only dif-
ference that the windows w1, w2, . . . , wm subject to the operations are groups
of contiguous pages of the form wi = S[l, ri].

It goes without saying that there exist data structures designed to dynami-
cally maintain a dynamic text compressed with a BWT-based compressor under
insertions and deletions of symbols (see [13] and references therein). But they
do not fit our context for two reasons: (1) their underlying compressor is signif-
icantly different from the scheme above; (2) in the worst case, they would spend
linear space per window yielding a super-linear overall space complexity.

Instead of keeping a given window w in compressed form, our approach
will only store the frequency distribution of the integers in the string w′ =
MTF(BWT(w)) since this is enough to compute the compressed output size pro-
duced by the final step of the BWT-based algorithm, which is usually implemented
via Huffman or Arithmetic [28]. Indeed, since MTF produces a sequence of in-
tegers from 0 to σ, we can store their number of occurrences for each window
wi into an array Fwi of size σ. The update of Fwi due to the insertion or the
removal of a page in wi incurs two main difficulties: (1) how to update w′i as
pages are added/removed from the extremes of the window wi, (2) perform this
update implicitly over Fwi , because of the space reasons mentioned above. Our
solution relies on two key facts about BWT and MTF:

1. Since the pages are separated in T by distinct separators, inserting or re-
moving one page into a window w does not alter the relative lexicographic
order of the original suffixes of w (see [13]).

2. If a string s′ is obtained from string s by inserting or removing a char
c into an arbitrary position, then MTF(s′) differs from MTF(s) in at most
σ symbols. More precisely, if c′ is the next occurrence in s of the newly
inserted (or removed) symbol c, then the MTF has to be updated only in
the first occurrence of each symbol of Σ among c and c′.

Due to space limitations we defer the solution to the Appendix B, and state
here the result we are able to achieve.

Theorem 5 Given a sequence of texts of total length n and alphabet size σ =
poly(n), we can compute an (1 + ε)-approximate solution to the optimal parti-
tioning problem for a BWT-based compressor, in O(n(log1+ε n) σ log n) time and
O(n + σ log1+ε n) space.

14

7 Conclusion

In this paper we have investigated the problem of partitioning an input string
T in such a way that compressing individually its parts via a base-compressor
C gets a compressed output that is shorter than applying C over the entire T
at once. We provide the first algorithm which is guaranteed to compute in
O(n log1+ε n) time a partition of T whose compressed output is guaranteed to
be no more than (1 + ε)-worse the optimal one, where ε may be any positive
constant. As future directions of research we would like either to investigate the
design of o(n2) algorithms for computing the exact optimal partition, and/or
experiment and engineer our solution over large datasets.

References

[1] J.L. Bentley and M.D. McIlroy. Data compression with long repeated
strings. Information Sciences, 135(1-2):1–11, 2001.

[2] A. L. Buchsbaum, D. F. Caldwell, K. W. Church, G. S. Fowler, and
S. Muthukrishnan. Engineering the compression of massive tables: an ex-
perimental approach. In Procs ACM-SIAM SODA, pages 175–184, 2000.

[3] Adam L. Buchsbaum, Glenn S. Fowler, and Raffaele Giancarlo. Improving
table compression with combinatorial optimization. J. ACM, 50(6):825–
851, 2003.

[4] A.L. Buchsbaum and R. Giancarlo. Table compression. In M.Y. Kao,
editor, Encyclopedia of Algorithms, pages 939–942. Springer, 2008.

[5] M. Burrows and D. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[6] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R.E. Gruber. Bigtable: A distributed storage
system for structured data. ACM Trans. Comput. Syst., 26(2), 2008.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[8] P. Ferragina, R. Giancarlo, and G. Manzini. The engineering of a com-
pression boosting library: Theory vs practice in BWT compression. In
Proc. 14th European Symposium on Algorithms (ESA ’06), pages 756–767.
Springer Verlag LNCS n. 4168, 2006.

[9] P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of wavelet
trees. Information and Computation, 207:849–866, 2009.

[10] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual
compression in optimal linear time. Journal of the ACM, 52:688–713, 2005.

[11] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring
labeled trees for optimal succinctness, and beyond. In Proc. 46th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 184–193,
2005.

15

[12] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing
and searching xml data via two zips. In Proc. 15th International World
Wide Web Conference (WWW), pages 751–760, 2006.

[13] P. Ferragina and R. Venturini. The compressed permuterm index. ACM
Transactions on Algorithms (to appear), 2009.

[14] R. Giancarlo, A. Restivo, and M. Sciortino. From first principles to the bur-
rows and wheeler transform and beyond, via combinatorial optimization.
Theoretical Computer Science, 387(3):236–248, 2007.

[15] R. Giancarlo and M. Sciortino. Optimal partitions of strings: A new class
of Burrows-Wheeler compression algorithms. In Proc. 14th Symposium
on Combinatorial Pattern Matching (CPM ’03), pages 129–143. Springer-
Verlag LNCS n. 2676, 2003.

[16] P. G. Howard and J. S. Vitter. Analysis of arithmetic coding for data
compression. Information Processing Management, 28(6):749–764, 1992.

[17] H. Kaplan, S. Landau, and E. Verbin. A simpler analysis of burrows-
wheeler-based compression. Theoretical Computer Science, 387(3):220–235,
2007.

[18] R. Kosaraju and G. Manzini. Compression of low entropy strings with
Lempel–Ziv algorithms. SIAM Journal on Computing, 29(3):893–911, 1999.

[19] P. Kulkarni, F. Douglis, J.D. LaVoie, and J.M. Tracey. Redundancy elimi-
nation within large collections of files. In USENIX Annual Technical Con-
ference, pages 59–72, 2004.

[20] V. Mäkinen and G. Navarro. Position-restricted substring searching. In
Proc. 7th Latin American Symposium on Theoretical Informatics (LATIN),
pages 703–714. Springer Verlag LNCS n. 3887, 2006.

[21] V. Mäkinen and G. Navarro. Implicit compression boosting with applica-
tions to self-indexing. In Procs 14th Symp. on String Processing and Infor-
mation Retrieval (SPIRE), pages 229–241. Springer Verlag LNCS n. 4726,
2007.

[22] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM,
48(3):407–430, 2001.

[23] A. Moffat and R.Y. Isal. Word-based text compression using the burrows-
wheeler transform. Information Processing Management, 41(5):1175–1192,
2005.

[24] Z. Ouyang, N.D. Memon, T. Suel, and D. Trendafilov. Cluster-based delta
compression of a collection of files. In Procs 3rd Conference on Web In-
formation Systems Engineering (WISE), pages 257–268. IEEE Computer
Society, 2002.

[25] T. Suel and N. Memon. Algorithms for delta compression and remote file
synchronization. In Khalid Sayood, editor, Lossless Compression Handbook.
Academic Press, 2002.

16

[26] D. Trendafilov, N. Memon, and T. Suel. Compressing file collections with a
TSP-based approach. Technical report, Technical Report TR-CIS-2004-02,
Polytechnic University, 2004.

[27] B.D. Vo and K.-P. Vo. Compressing table data with column dependency.
Theoretical Computer Science, 387(3):273–283, 2007.

[28] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann Publishers, Los
Altos, CA 94022, USA, second edition, 1999.

17

Appendix A
An example for the booster

In this section we prove that there exists an infinite class of strings for which the
partition selected by booster is far from the optimal one by a factor Ω(

√
log n).

Consider an alphabet Σ = {c1, c2, . . . , cσ} and assume that c1 < c2 < . . . < cσ.
We divide it into l = σ/α groups of α consecutive symbols each, where α > 0
will be defined later. Let Σ1, Σ2, . . . , Σl denote these sub-alphabets. For each
Σi, we build a De Bruijn sequence Ti in which each pair of symbols of Σi occurs
exactly once. By construction each sequence Ti has length α2. Then, we define
T = T1T2 . . . Tl, so that |T | = σα and each symbol of Σ occurs exactly α times
in T . Therefore, the first column of BWT matrix is equal to (c1)α(c2)α . . . (cσ)α.
We denote with Lc the portion of BWT(T) that has symbol c as prefix in the
BWT matrix. By construction, if c ∈ Σi, we have that any Lc has either one
occurrence of each symbol of Σi or one occurrence of these symbols of Σi minus
one plus one occurrence of some symbol of Σi−1 (or Σl if i = 1). In both cases,
each Lc has α symbols, which are all distinct. Notice that by construction, the
longest common prefix among any two suffixes of T is at most 1. Therefore,
since the booster can partition only using prefix-close contexts (see [10]), there
are just three possible partitions: (1) one substring containing all symbols of L,
(2) one substring per Lc, or (3) as many substrings as symbols of L. Assuming
that the cost of each model is at least log σ bits5, then the costs of all possible
booster’s partitions are:

1. Compressing the whole L at once has cost at least σα log σ bits. In fact,
all the symbols in Σ have the same frequency in L.

2. Compressing each string Lc costs at least α log α + log σ bits, since each
Lc contains α distinct symbols. Thus, the overall cost for this partition is
at least σα log α + σ log σ bits.

3. Compressing each symbol separately has overall cost at least σα log σ bits.

We consider the alternative partition which is not achievable by the booster
that subdivides L into σ/α2 substrings denoted S1, S2, . . . , Sσ/α2 of size α3

symbols each (recall that |T | = σα). Notice that each Si is drawn from an
alphabet of size smaller than α3.

The strings Si are compressed separately. The cost of compressing each
string Si is O(α3 log α3 + log σ) = O(α3 log α + log σ). Since there are σ/α2

strings Sis, the cost of this partition is P = O(σα log α + (σ/α2) log σ). There-
fore, by setting α = O(

√
log σ/ log log σ), we have that P = O(σ

√
log σ) bits. As

far as the booster is concerned, the best compression is achieved by its second
partition whose cost is O(σ log σ) bits. Therefore, the latter is Ω(

√
log σ) times

larger than our proposed partition. Since σ ≥ √
n, the ratio among the two

partitions is Ω(
√

log n).

5Here we assume that it contains at least one symbol. Nevertheless, as we will see, the
compression gap between booster’s partition and the optimal one grows as the cost of the
model becomes bigger.

18

Appendix B
Proof of Theorem 5

We describe a data structure supporting operations Append(w) and Remove()
when the base compressor is BWT-based, and the input text T is the concatena-
tion of a sequence of pages S[1], S[2], . . . , S[m] separated by unique separator
symbols #1, #2, . . . , #m, which are not part of Σ and are lexicographically larger
than any symbol in Σ. We assume that the separator symbols in the BWT(T) are
ignored by the MTF step, which means that when the MTF encoder finds a sepa-
rator in BWT(T), this is replaced with the corresponding integer without altering
the MTF-list. This variant does not introduce any compression penalty (because
every separator occurs just once) but simplifies the discussion that follows. We
denote with saT [1, n] and isaT [1, n] respectively the suffix array of T and its
inverse. Given a range I = [a, b] of positions of T , an occurrence of a symbol
of BWT(T) is called active[a,b] if it corresponds to a symbol in T [a, b]. For any
range [a, b] ⊂ [n] of positions in T , we define RBWT(T [a, b]) as the string obtained
by concatenating the active[a,b] symbols of BWT(T) by preserving their relative
order. In the following, we will not indicate the interval when it will be clear
from the context. Notice that, due to the presence of separators, RBWT(T [a, b])
coincides with BWT(T [a, b]) when T [a, b] spans a group of contiguous pages (see
[13] and references therein). Moreover, MTF(RBWT(T [a, b])) is the string obtained
by performing the MTF algorithm on RBWT(T [a, b]). We will call the symbol
MTF(RBWT(T [a, b]))[i] as the MTF-encoding of the symbol RBWT(T [a, b])[i].

For each window w, our solution will not explicitly store neither RBWT(w)
or MTF(RBWT(T [a, b])) since this might require a superlinear amount of space.
Instead, we maintain only an array Fw of size σ whose entry Fw[e] keeps the
number of occurrences of the encoding e in MTF(RBWT(w)). The array Fw is
enough to compute the 0-order entropy of MTF(RBWT(w)) in σ time (or eventually
the exact cost of compressing it with Huffman in σ log σ time).

We are left with showing how to correctly keep updated Fw after a Remove()
or an Append(w). In the following we will concentrate only on Append(w) since
Remove() is symmetrical. The idea underlying the implementation of Append(w),
where w = S[l, r], is to conceptually insert the symbols of the next page S[r+1]
into RBWT(w) one at time from left to right. Since the relative order among
the symbols of RBWT(w) is preserved in BWT(T), it is more convenient to work
with active symbols of BWT(T) by resorting to a data structure, whose details
are given later, which is able to efficiently answer the following two queries with
parameters c, I and h, where c ∈ Σ, I = [a, b] is a range of positions in T and
h is a position in BWT(T):

• Prevc(I, h): locate the last active[a,b] occurrence in BWT(T)[0, h − 1] of
symbol c;

• Nextc(I, h): locate the first active[a,b] occurrence in BWT(T)[h + 1, n] of
symbol c.

This data structure is built over the whole text T and requires O(|T |) space.
Let c be the symbol of S[ri+1] we have to conceptually insert in RBWT(T [a, b]).

We can compute the position (say, h) of this symbol in BWT(T) by resorting to
the inverse suffix array of T . Once we know position h, we have to determine

19

what changes in MTF(RBWT(w)) the insertion of c has produced and update Fw

accordingly. It is not hard to convince ourselves that the insertion of symbol c
changes no more than σ encodings in MTF(RBWT(w)). In fact, only the first active
occurrence of each symbol in Σ after position h may change its MTF encoding.
More precisely, let hp and hn be respectively the last active occurrence of c
before h and the first active occurrence of c after h in BWT(w), then the first
active occurrence of a symbol after h changes its MTF encoding if and only if it
occurs active both in BWT(w)[hp, h] and in BWT(w)[h, hn]. Otherwise, the new
occurrence of c has no effect on its MTF encoding. Notice that hp and hn can be
computed via proper queries Prevc and Nextc. In order to correctly update Fw,
we need to recover for each of the above symbols their old and new encodings.
The first step consists of finding the last active occurrence before h of each
symbols in Σ using Prev queries. Once we have these positions, we can recover
the status of the MTF list, denoted λ, before encoding c at position h. This is
simply obtained by sorting the symbols ordered by decreasing position. In the
second step, for each distinct symbol that occurs active in BWT(w)[hp, h], we find
its first active occurrence in BWT(w)[h, hn]. Knowing λ and these occurrences
sorted by increasing position, we can simulate the MTF algorithm to find the old
and new encodings of each of those symbols.

This provides an algorithm to perform Append(w) by making O(σ) queries of
types Prev and Next for each symbol of the page to append in w. To complete
the proof of the time bounds in Theorem 5 we have to show how to support
queries of type Prev and Next in O(log n) time and O(n) space. This is achieved
by a straightforward reduction to a classic geometric range-searching problem.
Given a set of points P = {(x1, y1), (x2, y2), . . . , (xp, yp)} from the set [n]× [n]
(notice that n can be larger than p), such that no pair of points shares the same
x- or y-coordinate, there exists a data structure [20] requiring O(p) space and
supporting the following two queries in O(log p) time:

• rangemax([l, r], h): return among the points of P contained in [l, r] ×
[−∞, h] the one with maximum y-value

• rangemin([l, r], h): return among the points of P contained in [l, r] ×
[h, +∞] the one with minimum y-value

Initially we compute isaT and saT in O(n log σ) time then, for each symbol
c ∈ Σ, we define Pc as the set of points {(i, isaT [i + 1])| T [i] = c} and build
the above geometric range-searching structure on Pc. It is easy to see that
Prevc(I, h) can be computed in O(log n) time by calling rangemax(I, isaT [h+1])
on the set Pc, and the same holds for Nextc by using rangemin instead of
rangemax, this completes the reduction and the proof of the theorem.

20

