
Compressed Text Indexes: From Theory to Practice

Paolo Ferragina 1 Rodrigo González 2 Gonzalo Navarro 2 Rossano Venturini 1

1 Dept. of Computer Science, University of Pisa. {ferragina,rventurini}@di.unipi.it
2 Dept. of Computer Science, University of Chile. {rgonzale,gnavarro}@dcc.uchile.cl

A compressed full-text self-index represents a text in a compressed form and still answers queries
efficiently. This represents a significant advancement over the (full-)text indexing techniques of
the previous decade, whose indexes required several times the size of the text. Although it is
relatively new, this algorithmic technology has matured up to a point where theoretical research
is giving way to practical developments. Nonetheless this requires significant programming skills,
a deep engineering effort, and a strong algorithmic background to dig into the research results.
To date only isolated implementations and focused comparisons of compressed indexes have been
reported, and they missed a common API, which prevented their re-use or deployment within
other applications.

The goal of this paper is to fill this gap. First, we present the existing implementations of
compressed indexes from a practitioner’s point of view. Second, we introduce the Pizza&Chili site,
which offers tuned implementations and a standardized API for the most successful compressed
full-text self-indexes, together with effective test-beds and scripts for their automatic validation

and test. Third, we show the results of our extensive experiments on these codes with the aim of
demonstrating the practical relevance of this novel algorithmic technology.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems—Pattern matching, Computations on discrete structures,
Sorting and searching; H.2.1 [Database management]: Physical design—Access methods; H.3.2
[Information storage and retrieval]: Information storage—File organization; H.3.3 [Infor-

mation storage and retrieval]: Information search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Text Indexing, Text Compression, Data Structures, Data
Storage Representation, Coding and Information Theory, Indexing Methods, Textual Databases,
Bioinformatics Databases.

1. INTRODUCTION

A large fraction of the data we process every day consists of a sequence of symbols
over an alphabet, and hence is a text. Unformatted natural language, XML and

Partially supported by Yahoo! Research grants ”Data compression and indexing in hierarchi-
cal memories” (Barcelona) and ”Compressed data structures” (Chile), Italian MIUR grants

Italy-Israel FIRB ”Pattern Discovery Algorithms in Discrete Structures, with Applications to
Bioinformatics”, PRIN ”MainStream: MAssive INformation structures and dataSTREAMs”, and
Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–29.

2 ·
HTML collections, program codes, music sequences, DNA and protein sequences,
are just the typical examples that come to our mind when thinking of text incar-
nations. Most of the manipulations required over those sequences involve, sooner
or later, searching those (usually long) sequences for (usually short) pattern se-
quences. Not surprisingly, text searching and processing has been a central issue in
Computer Science research since its beginnings.

Despite the increase in processing speeds, sequential text searching long ago
ceased to be a viable alternative for many applications, and indexed text searching
has become mandatory. A text index is a data structure built over a text which
significantly speeds up searches for arbitrary patterns, at the cost of some additional
space. The inverted list structure (see e.g. Witten et al. [1999]) is an extremely
popular index to handle so-called “natural language” texts, due to its simplicity,
low space requirements, and fast query execution. An inverted list is essentially a
table recording the positions of the occurrences of every distinct word in the indexed
text. Thus every word-based query is already pre-computed, and phrase queries
are carried out via list intersections. These design features made inverted lists the
de facto choice for the implementation of Web search engines and IR systems (see
e.g. Witten et al. [1999], Zobel and Moffat [2006], and references therein).

There are contexts, however, in which either the texts or the queries cannot be
factored out into sequences of words, or it is the case that the number of distinct
words is so large that indexing all of them in a table would be too much space
consuming. Typical examples include bio-informatics, computational linguistics,
multimedia databases, and search engines for agglutinating and Far East languages.
In these cases texts and queries must be modeled as arbitrarily long sequences of
symbols and an index for these types of texts, in order to be efficient, must be able
to search and retrieve any substring of any length. These are nowadays the so called
full-text indexes.

Unfortunately, full-text indexes wasted a lot of space: Data structures like suffix
trees and suffix arrays require at the very least four times the text size (plus text) to
achieve reasonable efficiency [Aluru and Ko 2008; Gusfield 1997]. Several engineered
versions achieved relevant, yet not spectacular, reductions in space [Andersson and
Nilsson 1995; Kärkkäinen 1995; Kärkkäinen and Ukkonen 1996a; 1996b; Giegerich
et al. 2003]. For example, space consumptions like 2.5 times the text size, plus text,
were reported (see survey by Navarro et al. [2001]).

Although space consumption by itself is not usually a problem today given the
availability of cheap massive storage, the access speed of that storage has not im-
proved much, while CPU speeds have been doubling every 24 months, as well the
sizes of the various (internal) memory levels. Given that nowadays an access to the
disk can be up to one million times slower than main memory, it is often mandatory
to fit the index in internal memory and leave as few data as possible onto disk.

A folklore alternative way to further reduce the space of full-text indexes are the
so-called q-gram indexes [Ullman 1977; Jokinen and Ukkonen 1991; Sutinen and
Tarhio 1996; Lehtinen et al. 1996; Navarro and Baeza-Yates 1998; Williams and
Zobel 2002; Puglisi et al. 2006] (more references in Navarro et al. [2001]). This can
be seen as an adaptation of the inverted-list scheme that takes as a “word” any
q-gram occurring in the indexed text (i.e., any substring of length q), and stores

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

all occurrences of these q-grams within a table. Queries are solved by intersect-
ing/joining lists of q-gram occurrences depending on whether the query pattern is
longer/shorter than q. In principle this index can take as much as four times the
text size, as each text position starts a q-gram and thus spends one integer in some
list. The space can be alleviated by several means, already explored in the cited
papers: (1) compressing the inverted lists, since they contain increasing numbers,
as done for classical inverted indexes [Witten et al. 1999]; (2) indexing spaced text
q-grams, while still finding all the occurrences, e.g. [Sutinen and Tarhio 1996]; (3)
using block-addressing, first introduced to reduce the space of natural-language in-
dexes [Manber and Wu 1994] and later extended to q-gram indexes, e.g. [Lehtinen
et al. 1996; Puglisi et al. 2006]. In block-addressing the text is divided into blocks
and the index only points to the blocks where the q-grams appear. This permits
achieving very little index space at the price of having to scan the candidate text
blocks. Hence the text must be separately available in a form that permits fast
scanning. Block-addressing has been successfully combined with the compression
of the text in the case of natural language [Navarro et al. 2000], but not in general
text as far as we know. Besides needing the text in plain form, these indexes do
not offer relevant worst-case search time guarantees.

This situation is drastically changed in the last decade [Navarro and Mäkinen
2007]. Starting in the year 2000, a rapid sequence of achievements showed how
to relate information theory with string matching concepts. The regularities in
compressible texts were exploited to reduce index occupancy without impairing the
query efficiency. The overall result has been the design of full-text indexes whose
size is proportional to that of the compressed text. Moreover, those indexes are
able to reproduce any text portion without accessing the original text, and thus
they replace the text — hence the name self-indexes. This way compressed full-text
self-indexes (compressed indexes, for short) allow one to add search and random
access functionalities to compressed data with a negligible penalty in time and space
performance. For example, it is feasible today to index the 3 GB Human genome
on a 1 GB RAM desktop PC.

This paper is devoted to a practical study of this novel technology. Although
a comprehensive survey of is theoretical aspects has recently appeared [Navarro
and Mäkinen 2007], the algorithmics underlying these compressed indexes require
for their implementation a significant programming skill, a deep engineering effort,
and a strong algorithmic background. To date only isolated implementations and
focused comparisons of compressed indexes have been reported, and they missed
a common API, which prevented their re-use or deploy within other applications.
The present paper has therefore a threefold purpose:

Algorithmic Engineering. We review the most successful compressed indexes
that have been implemented so far, and present them in a way that may be useful for
software developers, by focusing on implementation choices as well as on their limi-
tations. We think that this point of view complements [Navarro and Mäkinen 2007]
and fixes the state-of-the-art for this technology, possibly stimulating improvements
in the design of such sophisticated algorithmic tools. In addition, we introduce two
novel implementations of compressed indexes. These correspond to new versions of
the FM-Index data structure, one of which combines the best existing theoretical

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·
guarantees with a competitive space/time tradeoff in practice.

Experimental. We experimentally compare a selected subset of implementations.
This serves not only to help programmers in choosing the best index for their needs,
but also gives a grasp of the practical relevance of this novel algorithmic technology.

Technology Transfer. We introduce the Pizza&Chili site1, which was developed
with the aim of providing publicly available implementations of compressed indexes.
Each implementation is well-tuned and adheres to a suitable API of functions which
should, in our intention, allow any programmer to easily plug the provided com-
pressed indexes within his/her own software. The site also offers a collection of texts
and tools for experimenting and validating the proposed compressed indexes. We
hope that this simple API and the good performance of those indexes will spread
their use in several applications.

The use of compressed indexes is obviously not limited to plain text searching.
Every time one needs to store a set of strings which must be subsequently accessed
for query-driven or id-driven string retrieval, one can use a compressed index with
the goal of squeezing the dictionary space without slowing down the query per-
formance. This is the subtle need that any programmer faces when implementing
hash tables, tries or other indexing data structures. Actually, the use of compressed
indexes has been successfully extended to handle several other more sophisticated
data structures, such as dictionary indexes [Ferragina and Venturini 2007a], la-
beled trees [Ferragina et al. 2005; 2006], graphs [Claude 2008], images [Mäkinen
and Navarro 2008b], etc. Dealing with all those applications is out of the scope of
this paper, whose main goal is to address the above three issues, and comment on
the experimental behavior of this new algorithmic technology.

This paper is organized as follows. Section 2 explains the key conceptual ideas
underlying the most relevant compressed indexes. Section 3 describes how the
indexes implement those basic ideas. Section 4 presents the Pizza&Chili site, and
the next Section 5 comments on a large suite of experiments aimed at comparing
the most successful implementations of the compressed indexes present in this web
site. Finally, Section 6 concludes the paper by summarizing its contributions and
exploring the future of the area.

2. BASIC CONCEPTS

Let us introduce some notation. We will refer to strings with S = S[1, ℓ] = S1,ℓ =
s1s2 . . . sℓ to denote a sequence of symbols over an alphabet Σ of size σ. By S[i, j] =
Si,j = sisi+1 . . . sj we will denote substrings of S, which are called prefixes if i = 1
or suffixes if j = ℓ. The length of a string will be written |S| = |S1,ℓ| = ℓ, and the
reverse of a string will be written Sr = sℓsℓ−1 . . . s1.

The text searching problem is then stated as follows. Given a text string T [1, n]
and a pattern P [1, m], we wish to answer the following queries: (1) count the number
of occurrences (occ) of P in T ; (2) locate the occ positions in T where P occurs.
In this paper we assume that T can be preprocessed, and an index is built on it,
in order to speed up the execution of subsequent queries. We assume that the cost

1Available at two mirrors: pizzachili.dcc.uchile.cl and pizzachili.di.unipi.it

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

of index construction is amortized over sufficiently many searches, as otherwise
sequential searching is preferable.

In the case of self-indexes, which replace the text, a third operation of interest is
(3) extract the substring Tl,r, given positions l and r in T .

For technical convenience we will assume that the last text character is tn = $,
a special end-marker symbol that belongs to Σ but does not appear elsewhere in T
nor P , and that is lexicographically smaller than any other symbol in Σ.

2.1 Classical Full-Text Indexes

Many different indexing data structures have been proposed in the literature for
text searching, most notably suffix trees and suffix arrays (see e.g. [Aluru and Ko
2008; Gusfield 1997] and references therein).

The suffix tree of a text T is a trie (or digital tree) built on all the n suffixes
Ti,n of T , where unary paths are compressed to ensure O(n) size. The suffix tree
has n leaves, each corresponding to a suffix of T , and each internal suffix tree node
corresponds to a unique substring of T that appears more than once. The suffix
tree can count the pattern occurrences in time O(m), independent of n and occ, by
descending in the tree according to the successive symbols of P (each node should
store the number of leaves that descend from it). Afterwards, it can locate the
occurrences in optimal O(occ) time by traversing the subtree of the node arrived
at counting. The suffix tree, however, uses much more space than the text itself.
In theoretical terms, it uses Θ(n log n) bits whereas the text needs n log σ bits
(logarithms are in base 2 unless otherwise stated). In practice, a suffix tree requires
from 10 to 20 times the text size.

The suffix array is a compact version of the suffix tree. It still requires Θ(n log n)
bits, but the constant is smaller: 4 times the text size in practice. The suffix array
A[1, n] of a text T1,n contains all the starting positions of the suffixes of T listed
in lexicographical order, that is, TA[1],n < TA[2],n < . . . < TA[n],n. Array A can be
obtained by traversing the leaves of the suffix tree, or it can be built directly by
naive or sophisticated ad-hoc sorting methods [Puglisi et al. 2007].

Any substring of T is the prefix of a text suffix, thus finding all the occurrences
of P is equivalent to finding all the text suffixes that start with P . Those form a
lexicographical interval in A, which can be binary searched in O(m log n) time, as
each comparison in the binary search requires examining up to m symbols of the
pattern and a text suffix. The time can be reduced to O(m + log n), by using an
auxiliary structure that doubles the space requirement of the suffix array [Manber
and Myers 1993], or even to O(m + log |Σ|) by adding some further data structures
(called suffix trays [Cole et al. 2006]). Once the interval A[sp, ep] containing all
the text suffixes starting with P has been identified, counting is solved as occ =
ep− sp + 1, and the occurrences are located at A[sp], A[sp + 1], . . . A[ep].

2.2 Backward Search

In the previous section we described the classical binary-search method over suffix
arrays. Here we review an alternative approach which has been recently proposed
in [Ferragina and Manzini 2005], hereafter named backward search. For any i =
m, m− 1, . . . , 1, this search algorithm keeps the interval A[spi, epi] storing all text
suffixes which are prefixed by Pi,m. This is done via two main steps:

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·
Initial step. We have i = m, so that it suffices to access a precomputed table

that stores the pair 〈spm, epm〉 for all possible symbols pm ∈ Σ.
Inductive step. Let us assume to have computed the interval A[spi+1, epi+1],

whose suffixes are prefixed by Pi+1,m. The present step determines the next interval
A[spi, epi] for Pi,m from the previous interval and the next pattern symbol pi.
The implementation is not obvious, and leads to different realizations of backward
searching in several compressed indexes, with various time performances.

The backward-search algorithm is executed by decreasing i until either an empty
interval is found (i.e. spi > epi), or A[sp1, ep1] contains all pattern occurrences. In
the former case no pattern occurrences are found; in the latter case the algorithm
has found occ = ep1 − sp1 + 1 pattern occurrences.

2.3 Rank Query

Given a string S[1, n], function rankx(S, i) returns the number of times symbol x
appears in the prefix S[1, i]. Rank queries are central to compressed indexing, so it
is important to understand how they are implemented and how much space/time
they need. We have two cases depending on the alphabet of S.

Rank over Binary Sequences. In this case there exist simple and practical
constant-time solutions using o(n) bits of space in addition to S [Munro 1996].
We cover only rank1 as rank0(S, i) = i − rank1(S, i). The solution partitions S
into blocks of size s, and stores explicit answers for rank-queries done at block
beginnings. One of the best practical implementations of the idea [González et al.
2005] solves rank1(S, i) by summing two quantities: (1) the pre-computed answer
for the prefix of S which ends at the beginning of the block enclosing S[i], plus
(2) the relative rank of S[i] within its block. The latter is computed via a byte-
wise scanning of the block, using small precomputed tables. This solution involves
a space/time tradeoff related to s, but nonetheless its query-time performance is
rather satisfactory already with 5% space overhead on top of S.

Rank over General Sequences. Given a sequence S[1, n] over an alphabet of
size σ, the wavelet tree [Grossi et al. 2003; Foschini et al. 2006] is a perfect binary
tree of height Θ(log σ), built on the alphabet symbols, such that the root represents
the whole alphabet and each leaf represents a distinct alphabet symbol. If a node v
represents alphabet symbols in the range Σv = [i, j], then its left child vl represents
Σvl = [i, i+j

2] and its right child vr represents Σvr = [i+j
2 + 1, j]. We associate to

each node v the subsequence Sv of S formed by the symbols in Σv. Sequence Sv

is not really stored at the node, but it is replaced by a bit sequence Bv such that
Bv[i] = 0 iff Sv[i] is a symbol whose leaf resides in the left subtree of v. Otherwise,
Bv[i] is set to 1.

The power of the wavelet tree is to reduce rank operations over general alphabets
to rank operations over a binary alphabet, so that the rank-machinery above can
be used in each wavelet-tree node. Precisely, let us answer the query rankc(S, i).
We start from the root v of the wavelet tree (with associated vector Bv), and check
which subtree encloses the queried symbol c. If c descends into the right subtree,
we set i← rank1(B

v, i) and move to the right child of v. Similarly, if c belongs to
the left subtree, we set i ← rank0(B

v, i) and go to the left child of v. We repeat
this until we reach the leaf that represents c, where the current i value is the answer

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

to rankc(S, i). Since any binary-rank takes O(1) time, the overall rank operation
takes O(log σ) time.

We note that the wavelet tree can replace S as well: to obtain S[i], we start from
the root v of the wavelet tree. If Bv[i] = 0, then we set i← rank0(B

v, i) and go to
the left child. Similarly, if Bv[i] = 1, then we set i ← rank1(B

v, i) and go to the
right child. We repeat this until we reach a leaf, where the symbol associated to
the leaf is the answer. Again, this takes O(log σ) time.

The wavelet tree requires comparable space to the original sequence, as it requires
n log σ (1 + o(1)) bits of space. A practical way to reduce the space occupancy to
the zero-order entropy of S is to replace the balanced tree structure by the Huffman
tree of S. Now we have to follow the binary Huffman code of a symbol to find its
place in the tree. It is not hard to see that the total number of bits required by
such a tree is at most n(H0(S)+1)+ o(n logσ) and the average time taken by rank
and access operations is O(H0(S)), where H0 is the zero-th order empirical entropy
of S (see next section). This structure is the key tool in our implementation of SSA
or AF-index (Section 5).

2.4 The k-th Order Empirical Entropy

The empirical entropy resembles the entropy defined in the probabilistic setting (for
example, when the input comes from a Markov source), but now it is defined for any
finite individual string and can be used to measure the performance of compression
algorithms without any assumption on the input distribution [Manzini 2001].

The empirical zero-order entropy of a text T is defined as

H0(T) =
∑

c∈Σ

nc

n
log

n

nc
, (1)

where nc is the number of occurrences of symbol c in T . This definition extends
to k > 0 as follows. Let Σk be the set of all sequences of length k over Σ. For
any string w ∈ Σk, called a context of size k, let wT be the string consisting of
the concatenation of individual symbols following w in T . Then, the k-th order
empirical entropy of T is defined as

Hk(T) =
1

n

∑

w∈Ak

|wT |H0 (wT) . (2)

The k-th order empirical entropy captures the dependence of symbols upon their
k-long context. For k ≥ 0, nHk(T) provides a lower bound to the number of bits
output by any compressor that considers a context of size k to encode each symbol
of T (e.g. PPM-like compressors). Note that 0 ≤ Hk(T) ≤ Hk−1(T) ≤ . . . ≤
H1(T) ≤ H0(T) ≤ log σ. Several compressed indexes achieve O(nHk(T r)) bits of
space, instead of O(nHk(T)), as they work on the contexts following (rather than
preceding) the symbol to be encoded. Nonetheless, we will not point out such
a difference because one can always work on the reversed text (and patterns) if
necessary, and also because both k-th order entropies differ by lower order terms
[Ferragina and Manzini 2005].

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·
2.5 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) [Burrows and Wheeler 1994] is a key
tool in designing compressed full-text indexes. It is a reversible permutation of
T , which has the nice property of putting together symbols followed by the same
context. This ensures that the permuted T offers better compression opportunities:
a locally adaptive zero-order compressor is able to achieve on this string the k-th
order entropy of T (recall Eq. (2)). The BW-transform works as follows:

(1) Create a conceptual matrix M , whose rows are cyclic shifts of T .

(2) Sort the matrix rows lexicographically.

(3) Define the last column of M as the BWT of T , and call it T bwt.

There is a close relationship between matrix M and the suffix array A of text
T , because when we lexicographically sort the rows, we are essentially sorting the
suffixes of T (recall indeed that tn = $ is smaller than any other alphabet symbol).
Specifically, A[i] points to the suffix of T which prefixes the i-th row of M . Hence,
another way to describe T bwt is to concatenate the symbols that precede each suffix
of T in the order listed by A, that is, T bwt = tA[1]−1 tA[2]−1 . . . tA[n]−1, where we
assume that t0 = tn.

Given the way matrix M has been built, all columns of M are permutations of
T . So the first and last column of M are indeed one a permutation of the other.
The question is how to map symbols in the last column T bwt to symbols in the first
column. It is easy to see [Burrows and Wheeler 1994] that occurrences of equal
symbols preserve their relative order in the last and the first columns of M . Thus
the j-th occurrence of a symbol c within T bwt corresponds to the j-th occurrence
of c in the first column. If c = T bwt[i], then we have that j = rankc(T

bwt, i)
in the last column; whereas in the first column, where the symbols are sorted
alphabetically, the j-th occurrence of c is at position C[c]+j, where C[c] counts the
number of occurrences in T of symbols smaller than c. By plugging one formula in
the other we derive the so called Last-to-First column mapping (or, LF-mapping):
LF (i) = C[c] + rankc(T

bwt, i). We talk about LF-mapping because the symbol
c = T bwt[i] is located in the first column of M at position LF (i).

The LF-mapping allows one to navigate T backwards: if tk = T bwt[i], then
tk−1 = T bwt[LF (i)] because row LF (i) of M starts with tk and thus ends with
tk−1. As a result we can reconstruct T backwards by starting at the first row,
equal to $T , and repeatedly applying LF for n steps.

3. COMPRESSED INDEXES

As explained in the Introduction, compressed indexes provide a viable alternative
to classical indexes that are parsimonious in space and efficient in query time.
They have undergone significant development in the last years, so that we count
now in the literature many solutions that offer a plethora of space-time tradeoffs
[Navarro and Mäkinen 2007]. In theoretical terms, the most succinct indexes achieve
nHk(T)+o(n logσ) bits of space, and for a fixed ǫ > 0, require O(m log σ) counting
time, O(log1+ǫ n) time per located occurrence, and O(ℓ log σ + log1+ǫ n) time to

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

extract a substring of T of length ℓ.2 This is a surprising result because it shows
that whenever T [1, n] is compressible it can be indexed into smaller space than its
plain form and still offer search capabilities in efficient time.

In the following we review the most competitive compressed indexes for which
there is an implementation we are aware of. We will review the FM-index family,
which builds on the BWT and backward searching; Sadakane’s Compressed Suf-
fix Array (CSA), which is based on compressing the suffix array via a so-called
Ψ function that captures text regularities; and the LZ-index, which is based on
Lempel-Ziv compression. All of them are self-indexes in that they include the
indexed text, which therefore may be discarded.

3.1 The FM-index Family

The FM-index is composed of a compressed representation of T bwt plus auxiliary
structures for efficiently computing generalized rank queries on it. The main idea
[Ferragina and Manzini 2005] is to obtain a text index from the BWT and then
use backward searching for identifying the pattern occurrences (Sections 2.2 and
2.5). Several variants of this algorithmic scheme do exist [Ferragina and Manzini
2001; 2005; Mäkinen and Navarro 2005; Ferragina et al. 2007] which induce several
time/space tradeoffs for the counting, locating, and extracting operations.

Counting. The counting procedure takes a pattern P and obtains the interval
A[sp, ep] of text suffixes prefixed by it (or, which is equivalent, the interval of rows
of the matrix M prefixed by P , see Section 2.5). Fig. 1 gives the pseudocode to
compute sp and ep.

Algorithm FM-count(P1,m)
i← m, sp← 1, ep← n;
while ((sp ≤ ep) and (i ≥ 1)) do

c← pi;
sp← C[c] + rankc(T bwt, sp− 1) + 1;
ep← C[c] + rankc(T bwt, ep);
i← i− 1;

if (sp > ep) then return “no occurrences of P” else return 〈sp, ep〉;

Fig. 1. Algorithm to get the interval A[sp, ep] of text suffixes prefixed by P , using an FM-index.

The algorithm is correct: Let [spi+1, epi+1] be the range of rows in M that
start with Pi+1,m, and we wish to know which of those rows are preceded by pi.
These correspond precisely to the occurrences of pi in T bwt[spi+1, epi+1]. Those
occurrences, mapped to the first column of M , form a (contiguous) range that is
computed with a rationale similar to that for LF (·) in Section 2.5, and thus via a
just two rank operations on T bwt.

Locating. Algorithm in Fig. 2 obtains the position of the suffix that prefixes the
i-th row of M . The basic idea is to logically mark a suitable set of rows of M ,
and keep for each of them their position in T (that is, we store the corresponding

2These locating and extracting complexities are better than those reported in [Ferragina et al.

2007], and can be obtained by setting the sampling step to log1+ǫ n

log σ
.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·
A values). Then, FM-locate(i) scans the text T backwards using the LF-mapping
until a marked row i′ is found, and then it reports A[i′] + t, where t is the number
of backward steps used to find such i′. To compute the positions of all occurrences
of a pattern P , it is thus enough to call FM-locate(i) for every sp ≤ i ≤ ep.

Algorithm FM-locate(i)
i′ ← i, t← 0;
while A[i′] is not explicitly stored do

i′ ← LF (i′);
t← t + 1;

return A[i′] + t;

Fig. 2. Algorithm to obtain A[i] using an FM-index.

The sampling rate of M ’s rows, hereafter denoted by sA, is a crucial parameter
that trades space for query time. Most FM-index implementations mark all the
A[i] that are a multiple of sA, via a bitmap B[1, n]. All the marked A[i]s are stored
contiguously in suffix array order, so that if B[i] = 1 then one finds the correspond-
ing A[i] at position rank1(B, i) in that contiguous storage. This guarantees that
at most sA LF-steps are necessary for locating the text position of any occurrence.
The extra space is n log n

sA
+ n + o(n) bits.

A way to avoid the need of bitmap B is to choose a symbol c having some suitable
frequency in T , and then store A[i] if T bwt[i] = c [Ferragina and Manzini 2001].
Then the position of A[i] in the contiguous storage is rankc(T

bwt, i), so no extra
space is needed other than T bwt. In exchange, there is no guarantee of finding a
marked cell after a given number of steps.

Extracting. The same text sampling mechanism used for locating permits extract-
ing text substrings. Given sA, we store the positions i such that A[i] is a multiple
of sA now in the text order (previously we followed the A-driven order). To extract
Tl,r, we start from the first sample that follows the area of interest, that is, sample
number d = ⌈(r + 1)/sA⌉. From it we obtain the desired text backwards with the
same mechanism for inverting the BWT (see Section 2.5), here starting with the
value i stored for the d-th sample. We need at most sA + r − l + 1 applications of
the LF-step.

3.2 Implementing the FM-index

All the query complexities are governed by the time required to obtain C[c], T bwt[i],
and rankc(T

bwt, i) (all of them implicit in LF as well). While C is a small table
of σ log n bits, the other two are problematic. Counting requires up to 2m calls
to rankc, locating requires sA calls to rankc and T bwt, and extracting ℓ symbols
requires sA + ℓ calls to rankc and T bwt. In what follows we briefly comment on the
solutions adopted to implement those basic operations.

The original FM-index implementation (FM-index [Ferragina and Manzini 2001])
compressed T bwt by splitting it into blocks and using independent zero-order com-
pression on each block. Values of rankc are precomputed for all block beginnings,
and the rest of the occurrences of c from the beginning of the block to any position
i are obtained by sequentially decompressing the block. The same traversal finds

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

T bwt[i]. This is very space-effective: It approaches in practice the k-th order en-
tropy because the partition into blocks takes advantage of the local compressibility
of T bwt. On the other hand, the time to decompress the block makes computation
of rankc relatively expensive. For locating, this implementation marks the BWT
positions where some chosen symbol c occurs, as explained above.

A very simple and effective alternative to represent T bwt has been proposed
with the Succinct Suffix Array (SSA) [Ferragina et al. 2007; Mäkinen and Navarro
2005]. It uses a Huffman-shaped wavelet tree, plus the marking of one out-of sA

text positions for locating and extracting. The space is n(H0(T) + 1) + o(n log σ)
bits, and the average time to determine rankc(T

bwt, i) and T bwt[i] is O(H0(T)+1).
The space bound is not appealing because of the zero-order compression, but the
relative simplicity of this index makes it rather fast in practice. In particular, it is
an excellent option for DNA text, where the k-th order compression is not much
better than the zero-th order one, and the small alphabet makes H0(T) ≤ log σ
small too.

The Run-Length FM-index (RLFM) [Mäkinen and Navarro 2005] has been intro-
duced to achieve k-th order compression by applying run-length compression to T bwt

prior to building a wavelet tree on it. The BWT generates long runs of identical
symbols on compressible texts, which makes the RLFM an interesting alternative
in practice. The price is that the mappings from the original to the run-length
compressed positions slow down the query operations a bit, in comparison to the
SSA.

3.3 The Compressed Suffix Array (CSA)

The compressed suffix array (CSA) was not originally a self-index, and required
O(n log σ) bits of space [Grossi and Vitter 2006]. Sadakane [Sadakane 2003; 2002]
then proposed a variant which is a self-index and achieves high-order compression.

The CSA represents the suffix array A[1, n] by a sequence of numbers Ψ(i), such
that A[Ψ(i)] = A[i] + 1. It is not hard to see [Sadakane 2003] that Ψ is piecewise
monotone increasing in the areas of A where the suffixes start with the same symbol.
In addition, there are long runs where Ψ(i + 1) = Ψ(i) + 1, and these runs can
be mapped one-to-one to the runs in T bwt [Navarro and Mäkinen 2007]. These
properties permit a compact representation of Ψ and its fast access. Essentially, we
differentially encode Ψ(i)−Ψ(i−1), run-length encode the long runs of 1’s occurring
over those differences, and for the rest use an encoding favoring small numbers.
Absolute samples are stored at regular intervals to permit the efficient decoding of
any Ψ(i). The sampling rate (hereafter denoted by sΨ) gives a space/time tradeoff
for accessing and storing Ψ. In [Sadakane 2003] it is shown that the index requires
O(nH0(T) + n log log σ) bits of space. The analysis has been then improved in
[Navarro and Mäkinen 2007] to nHk(T) + O(n log log σ) for any k ≤ α logσ n and
constant 0 < α < 1.

Counting. The original CSA [Sadakane 2003] used the classical binary searching
to count the number of pattern occurrences in T . The actual implementation,
proposed in [Sadakane 2002], uses backward searching (Section 2.2): Ψ is used
to obtain 〈spi, epi〉 from 〈spi+1, epi+1〉 in O(log n) time, for a total of O(m log n)
counting time. Precisely, let A[spi, epi] be the range of suffixes A[j] that start with

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·
pi and such that A[j] + 1 (= A[Ψ(j)]) starts with Pi+1,m. The former is equivalent
to the condition [spi, epi] ⊆ [C[pi] + 1, C[pi + 1]]. The latter is equivalent to saying
that spi+1 ≤ Ψ(j) ≤ epi+1. Since Ψ(i) is monotonically increasing in the range
C[pi] < j ≤ C[pi + 1] (since the first characters of suffixes in A[spi, epi] are the
same), we can binary search this interval to find the range [spi, epi]. Fig. 3 shows
the pseudocode for counting using the CSA.

Algorithm CSA-count(P1,m)
i← m, sp← 1, ep← n;
while ((sp ≤ ep) and(i ≥ 1)) do

c← pi;
〈sp, ep〉 ← 〈min,max〉 {j ∈ [C[c] + 1, C[c + 1]],Ψ(j) ∈ [sp, ep]};

i← i− 1;
if (ep < sp) then return “no occurrences of P” else return 〈sp, ep〉;

Fig. 3. Algorithm to get the interval A[sp, ep] prefixed by P , using the CSA. The 〈min,max〉
interval is obtained via binary search.

Locating. Locating is similar to the FM-index, in that the suffix array is sampled
at regular intervals of size sA. However, instead of using the LF-mapping to traverse
the text backwards, this time we use Ψ to traverse the text forward, given that
A[Ψ(i)] = A[i] + 1. This points out an interesting duality between the FM-index
and the CSA. Yet, there is a fundamental difference: function LF (·) is implicitly
stored and calculated on the fly over T bwt, while function Ψ(·) is explicitly stored.
The way these functions are calculated/stored makes the CSA a better alternative
for large alphabets.

Extracting. Given C and Ψ, we can obtain TA[i],n symbolwise from i, as follows.
The first symbol of the suffix pointed to by A[i], namely tA[i], is the character c
such that C[c] < i ≤ C[c + 1], because all the suffixes A[C[c] + 1], . . . , A[C[c + 1]]
start with symbol c. Now, to obtain the next symbol, tA[i]+1, we compute i′ = Ψ(i)
and use the same procedure above to obtain tA[i′] = tA[i]+1, and so on. The binary
search in C can be avoided by representing it as a bit vector D[1, n] such that
D[C[c]] = 1, thus c = rank1(D, i).

Now, given a text substring Tl,r to extract, we must first find the i such that
l = A[i] and then we can apply the procedure above. Again, we sample the text at
regular intervals by storing the i values such that A[i] is a multiple of sA. To extract
Tl,r we actually extract T⌊l/sA⌋·sA,r, so as to start from the preceding sampled
position. This takes sA + r − l + 1 applications of Ψ.

3.4 The Lempel-Ziv Index

The Lempel-Ziv index (LZ-index) is a compressed self-index based on a Lempel-
Ziv partitioning of the text. There are several members of this family [Navarro
2004; Arroyuelo et al. 2006; Ferragina and Manzini 2005], we focus on the version
described in [Navarro 2004; Arroyuelo et al. 2006] and available in the Pizza&Chili
site. This index uses LZ78 parsing [Ziv and Lempel 1978] to generate a partitioning
of T1,n into n′ phrases, T = Z1, . . . , Zn′ . These phrases are all different, and each
phrase Zi is formed by appending a single symbol to a previous phrase Zj , j < i

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

(except for a virtual empty phrase Z0). Since it holds Zi = Zj · c, for some j < i
and c ∈ Σ, the set is prefix-closed. We can then build a trie on these phrases, called
LZ78-trie, which consists of n′ nodes, one per phrase.

The original LZ-index [Navarro 2004] is formed by (1) the LZ78 trie; (2) a trie
formed with the reverse phrases Zr

i , called the reverse trie; (3) a mapping from
phrase identifiers i to the LZ78 trie node that represents Zi; and (4) a similar
mapping to Zr

i in the reverse phrases. The tree shapes in (1) and (2) are repre-
sented using parentheses and the encoding proposed in [Munro and Raman 1997]
so that they take O(n′) bits and constant time to support various tree navigation
operations. Yet, we must also store the phrase identifier in each trie node, which
accounts for the bulk of the space for the tries. Overall, we have 4n′ log n′ bits of
space, which can be bounded by 4nHk(T) + o(n log σ) for k = o(logσ n) [Navarro
and Mäkinen 2007]. This can be reduced to (2 + ǫ)nHk(T) + o(n log σ) by notic-
ing that the mapping (3) is essentially the inverse permutation of the sequence of
phrase identifiers in (1), and similarly (4) with (2) [Arroyuelo and Navarro 2008].
It is possible to represent a permutation and its inverse using (1 + ǫ)n′ log n′ bits
of space and access the inverse permutation in O(1/ǫ) time [Munro et al. 2003].

An occurrence of P in T can be found according to one of the following situations:

(1) P lies within a phrase Zi. Unless the occurrence is a suffix of Zi, since Zi = Zj ·c,
P also appears within Zj, which is the parent of Zi in the LZ78 trie. A search
for P r in the reverse trie finds all the phrases that have P as a suffix. Then the
node mapping permits, from the phrase identifiers stored in the reverse trie,
to reach their corresponding LZ78 nodes. All the subtrees of those nodes are
occurrences.

(2) P spans two consecutive phrases. This means that, for some j, P1,j is a suffix
of some Zi and Pj+1,m is a prefix of Zi+1. For each j, we search for P r

1,j in the
reverse trie and Pj+1,m in the LZ78 trie, choosing the smaller subtree of the
two nodes we arrived at. If we choose the descendants of the reverse trie node
for P r

1,j , then for each phrase identifier i that descends from the node, we check
whether i + 1 descends from the node that corresponds to Pj+1,m in the LZ78
trie. This can be done in constant time by comparing preorder numbers.

(3) P spans three or more nodes. This implies that some phrase is completely
contained in P , and since all phrases are different, there are only O(m2) different
phrases to check, one per substring of P . Those are essentially verified one by
one.

Notice that the LZ-index carries out counting and locating simultaneously, which
renders the LZ-index not competitive for counting alone. Extracting text is done
by traversing the LZ78 paths upwards from the desired phrases, and then using
mapping (3) to continue with the previous or next phrases. The LZ-index is very
competitive for locating and extracting.

3.5 Novel Implementations

We introduce two novel compressed index implementations in this paper. Both
are variants of the FM-index family. The first one is interesting because it is a
re-engineering of the first reported implementation of a self-index [Ferragina and

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·
Manzini 2001]. The second is relevant because it implements the self-index offering
the best current theoretical space/time guarantees. It is fortunate, as it does not
always happen, that theory and practice marry well and this second index is also
relevant in the practical space/time tradeoff map.

3.5.1 The FMI-2. As the original FM-index [Ferragina and Manzini 2001], the
FMI-2 adopts a two-level bucketing scheme for implementing efficient rank and ac-
cess operations onto T bwt. In detail, string T bwt is partitioned into buckets and
superbuckets: a bucket consists of lb symbols, a superbucket consists of lsb buckets.
Additionally, the FMI-2 maintains two tables: Table Tsb stores, for each super-
bucket and for each symbol c, the number of occurrences of c before that super-
bucket in T bwt; table Tb stores, for each bucket and for each symbol c, the number
of occurrences of c before that bucket and up to the beginning of its superbucket.
In other words, Tsb stores the value of the ranking function up to the beginning of
superbuckets; whereas Tb stores the ranking function up to the beginning of buckets
and relative to their enclosing superbuckets. Finally, every bucket is individually
compressed using the sequence of zero-order compressors: MTF, RLE, Huffman (as
in bzip2). This compression strategy does not guarantee that the space of FMI-2 is
bounded by the kth order entropy of T . Nevertheless, the practical performance is
close to the one achievable by the best known compressors, and can be traded by
tuning parameters lb and lsb.

The main difference between the original FM-index and the novel FMI-2 lies in
the strategy adopted to select the rows/positions of T which are explicitly stored.
The FMI-2 marks logically and uniformly the text T by adding a special symbol
every sA symbols of the original text. This way, all of the M ’s rows that start
with that special symbol are contiguous, and thus their positions can be stored and
accessed easily.

The count algorithm is essentially a backward search (Algorithm 1), modified to
take into account the presence of special symbols added to the indexed text. To
search for a pattern P1,p, the FMI-2 actually searches for min{p− 1, sA} patterns
obtained by inserting the special symbols in P at each sA-th position, and searches
for the pattern P itself. This search is implemented in parallel over all patterns
above by exploiting the fact that, at any step i, we have to search either for Pp−i

or for the special symbol. As a result, the overall search cost is quadratic in the
pattern length, and the output is now a set of at most p ranges of rows.

Therefore, the FMI-2 is slower in counting than the original FM-index, but lo-
cating is faster, and this is crucial because this latter operation is usually the bot-
tleneck of compressed indexes. Indeed the locate algorithm proceeds for at most
sA phases. Let S0 be the range of rows to be located, eventually identified via a
count operation. At a generic phase k, Sk contains the rows that may be reached
in k backward steps from the rows in S0. Sk consists of a set of ranges of rows,
rather than a single range. To maintain the invariant, the algorithm picks up a
range of Sk, say [a, b], and determines the z ≤ |Σ| distinct symbols that occur in
the substring T bwt

a,b via two bucket scans and some accesses to tables Tsb and Tb.
Then it executes z backward steps, one per such symbols, thus determining z new
ranges of rows (to be inserted in Sk+1) which are at distance k + 1 from the rows
in S0. The algorithm cycles over all ranges of Sk to form the new set Sk+1. Notice

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

that if the rows of a range start with the special symbol, their positions in the
indexed text are explicitly stored, and can be accessed in constant time. Then, the
position of the corresponding rows in S0 can be inferred by summing k to those
values. Notice that this range can be dropped from Sk. After no more than sA

phases the set Sk will be empty.

3.5.2 The Alphabet-Friendly FM-index. The Alphabet-Friendly FM-index (AF-
index) [Ferragina et al. 2007] resorts to the definition of k-th order entropy in
Eq. (2), by encoding each substring wT up to its zero-order entropy. Since all
the wT are contiguous in T bwt (regardless of which k value we are considering), it
suffices to split T bwt into blocks given by the k-th order contexts, for any desired
k, and to use a Huffman-shaped wavelet tree (see Section 2.3) to represent each
such block. In addition, we need all rankc values precomputed for every block
beginning, as the local wavelet trees can only answer rankc within their blocks. In
total, this achieves nHk(T) + o(n log σ) bits, for moderate and fixed k ≤ α logσ n
and 0 < α < 1. Actually the AF-index does better, by splitting T bwt in an optimal
way, thus guaranteeing that the space bound above holds simultaneously for every
k. This is done by resorting to the idea of compression boosting [Ferragina et al.
2005].

The compression booster finds the optimal partitioning of T bwt into t nonempty
blocks, s1, . . . , st, assuming that each block sj will be represented using |sj |H0(sj)+
f(|sj |) bits of space, where f(·) is a nondecreasing concave function supplied as a
parameter. Given that the partition is optimal, it can be shown that the resulting
space is upper bounded by nHk +σkf(n/σk) bits simultaneously for every k. That
is, the index is not built for any specific k.

As explained, the AF-index represents each block sj by means of a Huffman-
shaped wavelet tree wtj , which will take at most |sj |(H0(sj)+1)+σ log n bits. The
last term accounts for the storage of the Huffman code. In addition, for each block
j we store an array Cj [c], which tells the rankc values up to block j. This accounts
for other σ log n bits per block. Finally, we need a bitmap R[1, n] indicating the
starting positions of the t blocks in T bwt. Overall, the formula giving the excess of
storage over the entropy for block j is f(|sj |) = 2|sj|+ 2σ log n.

To carry out any operation at position i, we start by computing the block
where position i lies, j = rank1(R, i), and the starting position of that block,
i′ = select1(R, j). (This tells the position of the j-th 1 in R. As it is a sort of inverse
of rank, it is computed by binary search over rank values.) Hence T bwt[i] = sj [i

′′],
where i′′ = i− i′ + 1 is the offset of i within block j. Then, the different operations
are carried out as follows.

—For counting, we use the algorithm of Fig. 1. In this case, we have rankc(T
bwt, i)=

Cj [c] + rankc(sj , i
′′), where the latter is computed using the wavelet tree wtj of

sj .

—For locating, we use the algorithm of Fig. 2. In this case, we have c = T bwt[i] =
sj [i

′′]. To compute sj [i
′′], we also use the wavelet tree wtj of sj .

—For extracting, we proceed similarly as for locating, as explained in Section 3.1.

As a final twist, R is actually stored using 2
√

nt rather than n bits. We cut R into√
nt chunks of length

√

n/t. There are at most t chunks which are not all zeros.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·
Concatenating them all requires only

√
nt bits. A second bitmap of length

√
nt

indicates whether each chunk is all-zero or not. It is easy to translate rank/select
operations into this representation.

4. THE PIZZA&CHILI SITE

The Pizza&Chili site has two mirrors: one in Chile (http://pizzachili.dcc.uchile.cl)
and one in Italy (http://pizzachili.di.unipi.it). Its ultimate goal is to push towards
the technology transfer of this fascinating algorithmic technology lying at the cross-
ing point of data compression and data structure design. In order to achieve this
goal, the Pizza&Chili site offers publicly available and highly tuned implementations
of various compressed indexes. The implementations follow a suitable C/C++ API
of functions which should, in our intention, allow any programmer to plug easily
the provided compressed indexes within his/her own software. The site also offers
a collection of texts for experimenting with and validating the compressed indexes.
In detail, it offers three kinds of material:

—A set of compressed indexes which are able to support the search functionalities of
classical full-text indexes (e.g., substring searches), but requiring succinct space
occupancy and offering, in addition, some text access operations that make them
useful within text retrieval and data mining software systems.

—A set of text collections of various types and sizes useful to test experimentally
the available (or new) compressed indexes. The text collections have been se-
lected to form a representative sample of different applications where indexed text
searching might be useful. The size of these texts is large enough to stress the
impact of data compression over memory usage and CPU performance. The goal
of experimenting with this testbed is to conclude whether, or not, compressed in-
dexing is beneficial over uncompressed indexing approaches, like suffix trees and
suffix arrays. And, in case it is beneficial, which compressed index is preferable
according to the various applicative scenarios represented by the testbed.

—Additional material useful to experiment with compressed indexes, such as scripts
for their automatic validation and efficiency test over the available text collec-
tions.

The Pizza&Chili site hopes to mimic the success and impact of other initiatives,
such as data-compression.info and the Calgary and Canterbury corpora, just to
cite a few. Actually, the Pizza&Chili site is a mix, as it offers both software and
testbeds. Several people have already contributed to make this site work and,
hopefully, many more will contribute to turn it into a reference for all researchers
and software developers interested in experimenting and developing the compressed-
indexing technology. The API we propose is thus intended to ease the deployment
of this technology in real software systems, and to provide a reference for any
researcher who wishes to contribute to the Pizza&Chili repository with his/her new
compressed index.

4.1 Indexes

The Pizza&Chili site provides several index implementations, all adhering to a
common API. All indexes, except CSA and LZ-index, are built through the deep-
shallow algorithm of Manzini and Ferragina [Manzini and Ferragina 2004] which

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

constructs the Suffix Array data structure using little extra space and is fast in
practice.

—The Suffix Array [Manber and Myers 1993] is a plain implementation of the
classical index (see Section 2.1), using either n log n bits of space or simply n
computer integers, depending on the version. This was implemented by Rodrigo
González.

—The SSA [Ferragina et al. 2007; Mäkinen and Navarro 2005] uses a Huffman-based
wavelet tree over the string T bwt (Section 3.1). It achieves zero-order entropy in
space with little extra overhead and striking simplicity. It was implemented by
Veli Mäkinen and Rodrigo González.

—The AF-index [Ferragina et al. 2007] combines compression boosting [Ferragina
et al. 2005] with the above wavelet tree data structure (Section 3.5.2). It achieves
high-order compression, at the cost of being more complex than SSA. It was
implemented by Rodrigo González.

—The RLFM [Mäkinen and Navarro 2005] is an improvement over the SSA (Sec-
tion 3.1), which exploits the equal-letter runs of the BWT to achieve k-th order
compression, and in addition uses a Huffman-shaped wavelet tree. It is slightly
larger than the AF-index. It was implemented by Veli Mäkinen and Rodrigo
González.

—The FMI-2 (Section 3.5.1) is an engineered implementation of the original FM-
index [Ferragina and Manzini 2001], where a different sampling strategy is de-
signed in order to improve the performance of the locating operation. It was
implemented by Paolo Ferragina and Rossano Venturini.

—The CSA [Sadakane 2003; 2002] is the variant using backward search (Section
3.3). It achieves high-order compression and is robust for large alphabets. It was
implemented by Kunihiko Sadakane and adapted by Rodrigo González to adhere
the API of the Pizza&Chili site. To construct the suffix array, it uses the qsufsort
by Jesper Larsson and Kunihiko Sadakane [Larsson and Sadakane 2007].

—The LZ-index [Navarro 2004; Arroyuelo et al. 2006] is a compressed index based
on LZ78 compression (Section 3.4), implemented by Diego Arroyuelo and Gonzalo
Navarro. It achieves high-order compression, yet with relatively large constants.
It is slow for counting but very competitive for locating and extracting.

These implementations support any byte-based alphabet of size up to 255 sym-
bols: one symbol is automatically reserved by the indexes as the terminator “$”.

In the following two sections we are going to explain the implementation of FMI2
and AF-index.

4.2 Texts

We have chosen the texts forming the Pizza&Chili collection by following three
basic considerations. First, we wished to cover a representative set of application
areas where the problem of full-text indexing might be relevant, and for each of
them we selected texts freely available on the Web. Second, we aimed at having
one file per text type in order to avoid unreadable tables of many results. Third,
we have chosen the size of the texts to be large enough in order to make indexing

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·

Table I. General statistics for our indexed texts.
Text Size (MB) Alphabet size Inv. match prob.

dna 200 16 3.86

english 200 225 15.12

pitches 50 133 40.07

proteins 200 25 16.90

sources 200 230 24.81

xml 200 96 28.65

relevant and compression apparent. These are the current collections provided in
the repository:

—dna (DNA sequences). This file contains bare DNA sequences without descrip-
tions, separated by newline, obtained from files available at the Gutenberg
Project site: namely, from 01hgp10 to 21hgp10, plus 0xhgp10 and 0yhgp10. Each
of the four DNA bases is coded as an uppercase letter A,G,C,T, and there are a
few occurrences of other special symbols.

—english (English texts). This file is the concatenation of English texts selected
from the collections etext02—etext05 available at the Gutenberg Project site.
We deleted the headers related to the project so as to leave just the real text.

—pitches (MIDI pitch values). This file is a sequence of pitch values (bytes whose
values are in the range 0-127, plus a few extra special values) obtained from a
myriad of MIDI files freely available on the Internet. The MIDI files were con-
verted into the IRP format by using the semex tool by Kjell Lemstrom [Lemström
and Perttu 2000]. This is a human-readable tuple format, where the 5th column
is the pitch value. The pitch values were coded in one byte each and concatenated
all together.

—proteins (protein sequences). This file contains bare protein sequences with-
out descriptions, separated by newline, obtained from the Swissprot database
(ftp.ebi.ac.uk/ pub/databases/swissprot/). Each of the 20 amino acids is coded
as an uppercase letter.

—sources (source program code). This file is formed by C/Java source codes
obtained by concatenating all the .c, .h, .C and .java files of the linux-2.6.11.6
(ftp.kernel.org) and gcc-4.0.0 (ftp.gnu.org) distributions.

—xml (structured text). This file is in XML format and provides bibliographic
information on major computer science journals and proceedings. It was down-
loaded from the DBLP archive at dblp.uni-trier.de.

For the experiments we have limited the short file pitches to its initial 50 MB,
whereas all the other long files have been cut down to their initial 200 MB. We show
now some statistics on those files. These statistics and the tools used to compute
them are also available at the Pizza&Chili site.

Table I summarizes some general characteristics of the selected files. The last
column, inverse match probability, is the reciprocal of the probability of matching
between two randomly chosen text symbols. This may be considered as a measure
of the effective alphabet size — indeed, on a uniformly distributed text, it would
be precisely the alphabet size.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

Table II. Ideal compressibility of our indexed texts. For every k-th order model, with 0 ≤ k ≤ 4,
we report the number of distinct contexts of length k, and the empirical entropy Hk, measured
as number of bits per input symbol.

1st order 2nd order 3rd order 4th order
Text log σ H0 H1 # H2 # H3 # H4 #

dna 4.000 1.974 1.930 16 1.920 152 1.916 683 1.910 2222
english 7.814 4.525 3.620 225 2.948 10829 2.422 102666 2.063 589230
pitches 7.055 5.633 4.734 133 4.139 10946 3.457 345078 2.334 3845792
proteins 4.644 4.201 4.178 25 4.156 607 4.066 11607 3.826 224132
sources 7.845 5.465 4.077 230 3.102 9525 2.337 253831 1.852 1719387
xml 6.585 5.257 3.480 96 2.170 7049 1.434 141736 1.045 907678

Table III. Real compressibility of our indexed texts, as achieved by the best-known compressors:
gzip (option -9), bzip2 (option -9), and PPMDi (option -l 9).

Text H4 gzip bzip2 PPMDi

dna 1.910 2.162 2.076 1.943

english 2.063 3.011 2.246 1.957

pitches 2.334 2.448 2.890 2.439

proteins 3.826 3.721 3.584 3.276

sources 1.852 1.790 1.493 1.016

xml 1.045 1.369 0.908 0.745

Table II provides some information about the compressibility of the texts by
reporting the value of Hk for 0 ≤ k ≤ 4, measured as number of bits per input
symbol. As a comparison on the real compressibility of these texts, Table III shows
the performance of three well-known compressors (sources available in the site): gzip
(Lempel-Ziv-based compressor), bzip2 (BWT-based compressor), and PPMDi (k-th
order modeling compressor). Notice that, as k grows, the value of Hk decreases
but the size of the dictionary of length-k contexts grows significantly, eventually
approaching the size of the text to be compressed. Typical values of k for PPMDi
are around 5 or 6. It is interesting to note in Table III that the compression ratios
achievable by the tested compressors may be superior to H4, because they use
(explicitly or implicitly) longer contexts.

5. EXPERIMENTAL RESULTS

In this section we report experimental results from a subset of the compressed
indexes available at the Pizza&Chili site. We restricted our experiments to a few
indexes: Succinct Suffix Array (version SSA v2 in Pizza&Chili), Alphabet-Friendly
FM-index (version AF-index v2 in Pizza&Chili), Compressed Suffix Array (CSA in
Pizza&Chili), and LZ-index (version LZ-index4 in Pizza&Chili), because they are
the best representatives of the three classes of compressed indexes we discussed
in Section 3. This small number will provide us with a succinct, yet significant,
picture of the performance of all known compressed indexes [Navarro and Mäkinen
2007].

There is no need to say that further algorithmic engineering of the indexes ex-
perimented in this paper, as well of the other indexes available in the Pizza&Chili
site, could possibly change the charts and tables shown below. However, we believe
that the overall conclusions drawn from our experiments should not change signif-
icantly, unless new algorithmic ideas are devised for them. Indeed, the following

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·

Table IV. Parameters used for the different indexes in our experiments. The cases of multiple
values correspond to space/time tradeoff curves.

Index count locate / extract

AF-index − sA = {4, 16, 32, 64, 128, 256}

CSA sΨ = {128} sA = {4, 16, 32, 64, 128, 256}; sΨ = {128}

LZ-index ǫ = { 1
4
} ǫ = {1, 1

2
, 1
3
, 1
4
, 1
5
, 1

10
, 1
20
}

SSA − sA = {4, 16, 32, 64, 128, 256}

list of experimental results has a twofold goal: on one hand, to quantify the space
and time performance of compressed indexes over real datasets, and on the other
hand, to motivate further algorithmic research by highlighting the limitations of
the present indexes and their implementations.

Table IV shows the parameters used to construct the indexes in our experiments.
The SSA and AF-index have a sampling rate parameter sA that trades locating and
extracting time for space. More precisely, they need O(sA) accesses to the wavelet
tree for locating, and O(sA +r−l+1) accesses to extract Tl,r, in exchange for n log n

sA

additional bits of space. We can remove those structures if we are only interested
in counting.

The CSA has two space/time tradeoffs. A first one, sΨ, governs the access time to
Ψ, which is O(sΨ) in exchange for n log n

sΨ
bits of space required by the samples. The

second, sA, affects locating and extracting time just as above. For pure counting
we can remove the sampling related to sA, whereas for locating the best is to use
the default value (given by Sadakane) of sΨ = 128. The best choice for extracting
is less clear, as it depends on the length of the substring to extract.

Finally, the LZ-index has one parameter ǫ which trades counting/locating time
for space occupancy: The cost per candidate occurrence is multiplied by 1

ǫ , and
the additional space is 2ǫnHk(T) bits. No structure can be removed in the case of
counting, but space can be halved if the extract operation is the only one needed
(just remove the reverse trie).

All the experiments were executed on a 2.6 GHz Pentium 4, with 1.5 GB of main
memory, and running Fedora Linux. The searching and building algorithms for all
compressed indexes were coded in C/C++ and compiled with gcc or g++ version
4.0.2.

5.1 Construction

Table V shows construction time and peak of memory usage during construction
for one collection, namely english, as all the others give roughly similar results.
In order to fairly evaluate the time and space consumption of the algorithm needed
to construct the suffix array underlying the CSA implementation, we replaced the
construction algorithm proposed by [Larsson and Sadakane 2007] and used in the
original implementation by Sadakane (see Section 4.1), with the faster algorithm
proposed by [Manzini and Ferragina 2004] and used by all other compressed SA-
based indexes.3 The bulk of the time of SSA and CSA is that of suffix array con-

3We note that this change was done just for timing measurements, the code available on the
Pizza&Chili site still uses Larsson-Sadakane’s algorithm because this was the choice of the CSA’s
implementor.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

Table V. Time and peak of main memory usage required to build the various indexes over the
200 MB file english. The indexes are built using the default value for the locate tradeoff (that
is, sA = 64 for AF-index and SSA; sA = 64 and sΨ = 128 for CSA; and ǫ = 1

4
for the LZ-index).

Index Build Time (sec) Main Memory Usage (MB)

AF-index 772 1, 751

CSA 233 1, 801

LZ-index 198 1, 037

SSA 217 1, 251

Table VI. Experiments on the counting of pattern occurrences. Time is measured in microseconds
per pattern symbol. The space usage is expressed as a fraction of the original text size. We put
in boldface those results that lie within 10% of the best space/time tradeoffs.

SSA AF-index CSA LZ-index plain SA

Text Time Space Time Space Time Space Time Space Time Space

dna 0.956 0.29 1.914 0.28 5.220 0.46 43.896 0.93 0.542 5
english 2.147 0.60 2.694 0.42 4.758 0.44 68.774 1.27 0.512 5
pitches 2.195 0.74 2.921 0.66 3.423 0.63 55.314 1.95 0.363 5
proteins 1.905 0.56 3.082 0.56 6.477 0.67 47.030 1.81 0.479 5
sources 2.635 0.72 2.946 0.49 4.345 0.38 162.444 1.27 0.499 5
xml 2.764 0.69 2.256 0.34 4.321 0.29 306.711 0.71 0.605 5

struction (prior to its compression). The AF-index takes much more time because
it needs to run the compression boosting algorithm over the suffix array. The
LZ-index spends most of the time in parsing the text and creating the LZ78 and
reverse tries. In all cases construction times are practical, 1–4 sec/MB with our
machine.

The memory usage might be problematic, as it is 5–9 times the text size. Albeit
the final index is small, one needs much memory to build it first4. This is a problem
of compressed indexes, which is attracting a lot of practical and theoretical research
[Lam et al. 2002; Arroyuelo and Navarro 2005; Hon et al. 2003; Mäkinen and
Navarro 2008a].

Note we have given construction time and space for just one parameter setting
per index. The reason is that time and space for construction is mostly insensitive
to these parameters. They imply sparser or denser sampling of suffix arrays and
permutations, but those sampling times are negligible compared to suffix array and
trie construction times, and sampling does not affect peak memory consumption
either.

5.2 Counting

We searched for 50, 000 patterns of length m = 20, randomly chosen from the in-
dexed texts. The average counting time was then divided by m to display counting
time per symbol. This is appropriate because the counting time of the indexes is
linear in m, and 20 is sufficiently large to blur small constant overheads. The excep-
tion is the LZ-index, whose counting time is superlinear in m, and not competitive
at all for this task.

Table VI shows the results on this test. The space of the SSA, AF-index, and

4In particular, this limited us to indexing up to 200 MB of text in our machine.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

Table VII. Number of searched patterns of length 5 and total number of located occurrences.
Text # patterns # occurrences

dna 10 2, 491, 410

english 100 2, 969, 876

pitches 200 2, 117, 347

proteins 3, 500 2, 259, 125

sources 50 2, 130, 626

xml 20 2, 831, 462

CSA does not include what is necessary for locating and extracting. We can see
that, as expected, the AF-index is always smaller than the SSA, yet they are rather
close on dna and proteins (where the zero-order entropy is not much larger than
higher-order entropies). The space usages of the AF-index and the CSA are similar
and usually the best, albeit the CSA predictably loses in counting time on smaller
alphabets (dna, proteins), due to its O(m log n) rather than O(m log σ) complex-
ity. The CSA takes advantage of larger alphabets with good high-order entropies
(sources, xml), a combination where the AF-index, despite of its name, profits
less. Note that the space performance of the CSA on those texts confirms that its
space occupancy is related to the high-order entropy.

With respect to time, the SSA is usually the fastest thanks to its simplicity.
Sometimes the AF-index gets close and it is actually faster on xml. The CSA is
rarely competitive for counting, and the LZ-index is well out of bounds for this
experiment. Notice that the plain suffix array (last column in Table VI) is 2–6
times faster than any compressed index, but its space occupancy can be up to 18
times larger.

5.3 Locate

We locate sufficient random patterns of length 5 to obtain a total of 2–3 million
occurrences per text (see Table VII). This way we are able to evaluate the average
cost of a single locate operation, by making the impact of the counting cost negli-
gible. Fig. 4 reports the time/space tradeoffs achieved by the different indexes for
the locate operation.

We remark that the implemented indexes include the sampling mechanism for
locate and extract as a single module, and therefore the space for both operations
is included in these plots. Therefore, the space could be reduced if we only wished
to locate. However, as extracting snippets of pattern occurrences is an essential
functionality of a self-index, we consider that the space for efficient extraction
should always be included.5

The comparison shows that usually CSA can achieve the best results with min-
imum space, except on dna where the SSA performs better as expected (given its
query time complexity, (see Section 3.2), and on proteins for which the suffix-
array-based indexes perform similarly (and the LZ-index does much worse). The
CSA is also the most attractive alternative if we fix that the space of the index
should be equal to that of the text (recall that it includes the text), dna and xml

5Of course, we could have a sparser sampling for extraction, but we did not want to complicate
the evaluation more than necessary.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Space usage (fraction of text)

dna

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Space usage (fraction of text)

english

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Space usage (fraction of text)

pitches

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Space usage (fraction of text)

proteins

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Space usage (fraction of text)

sources

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Space usage (fraction of text)

xml

∗ AF-index + CSA

2 LZ-index × SSA

Fig. 4. Space-time tradeoffs for locating occurrences of patterns of length 5.

Table VIII. Locate time required by plain SA in microseconds per occurrence, with m = 5. We
recall that this implementation requires 5 bytes per indexed symbol.

dna english pitches proteins sources xml

plain SA 0.005 0.005 0.006 0.007 0.007 0.006

being the exceptions, where the LZ-index is superior.
The LZ-index can be much faster than the others if one is willing to pay for some

extra space. The exceptions are pitches, where the CSA is superior, and proteins,
where the LZ-index performs poorly. This may be caused by the large number of
patterns that were searched to collect the 2–3 million occurrences (see Table VII),
as the counting is expensive on the LZ-index.

Table VIII shows the locate time required by an implementation of the classical

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·
suffix array: it is between 100 and 1000 times faster than any compressed index, but
always 5 times larger than the indexed text. Unlike counting, where compressed
indexes are comparable in time with classical ones, locating is much slower on
compressed indexes. This comes from the fact that each locate operation (except
on the LZ-index) requires to perform several random memory accesses, depending
on the sampling step. In contrast, all the occurrences are contiguous in a classical
suffix array. As a result, the compressed indexes are currently very efficient in case of
selective queries, but traditional indexes become more effective when locating many
occurrences. This fact has triggered recent research activity on this subject (e.g.,
[González and Navarro 2007]) but a deeper understanding on index performance
on hierarchical memories is still needed.

5.4 Extract

We extracted substrings of length 512 from random text positions, for a total of
5 MB of extracted text. Fig. 5 reports the time/space tradeoffs achieved by the
tested indexes. We still include both space to locate and extract, but we note that
the sampling step affects only the time to reach the text segment to extract from
the closest sample, and afterwards the time is independent of the sampling. We
chose length 512 to smooth out the effect of this sampling.

The comparison shows that, for extraction purposes, the CSA is better for sources
and xml, whereas the SSA is better on dna and proteins. On english and pitches

both are rather similar, albeit the CSA is able to operate on reduced space. On the
other hand, the LZ-index is much faster than the others on xml, english and
sources, if one is willing to pay some additional space.6

It is difficult to compare these times with those of a classical index, because the
latter has the text readily available. Nevertheless, we note that the times are rather
good: using the same space as the text (and some times up to half the space) for all
the functionalities implemented, the compressed indexes are able to extract around
1 MB/sec, from arbitrary positions. This shows that self-indexes are appealing
as compressed-storage schemes with the support of random accesses for snippet
extraction.

6. CONCLUSION AND FUTURE WORK

In this paper we have addressed the design, implementation and testing of the new
algorithmic technology called compressed text indexing. We have explained the
main principles used by those indexes in practice, and presented the Pizza&Chili
site, where implementations and testbeds are readily available for use. Table IX
summarizes our experimental results by showing the most promising compressed
index(es) depending on the text type and task.

For counting, the best indexes are SSA and AF-index. This stems from the fact
that they achieve very good zero- or high-order compression of the indexed text,
while their average counting complexity is O(m(H0(T) + 1)). The SSA has the
advantage of a simpler search mechanism, but the AF-index is superior for texts

6Actually the LZ-index is not plotted for pitches and proteins because it needs more than 1.5
times the text size.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 c

ha
r)

Space usage (fraction of text)

dna

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 c

ha
r)

Space usage (fraction of text)

english

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 c

ha
r)

Space usage (fraction of text)

pitches

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 c

ha
r)

Space usage (fraction of text)

proteins

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 c

ha
r)

Space usage (fraction of text)

sources

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 c

ha
r)

Space usage (fraction of text)

xml

∗ AF-index + CSA

2 LZ-index × SSA

Fig. 5. Space-time tradeoffs for extracting text symbols.

Table IX. The most promising indexes given the size and time they obtain for each operation/text.

dna english pitches proteins sources xml

count
SSA SSA AF-index SSA CSA AF-index

- AF-index SSA - AF-index -

locate
LZ-index CSA CSA SSA CSA CSA

SSA LZ-index - - LZ-index LZ-index

extract
SSA CSA CSA SSA CSA CSA

- LZ-index - - LZ-index LZ-index

with small high-order entropy (i.e. xml, sources, english). The CSA usually loses
because of its O(m log n) counting complexity.

For locating and extracting, which are LF-computation intensive, the AF-index

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 ·
is hardly better than the simpler SSA because the benefit of a denser sampling
does not compensate for the presence of many wavelet trees. The SSA wins for
small-alphabet data, like dna and proteins. Conversely, for all other high-order
compressible texts the CSA takes over the other approaches. We also notice that the
LZ-index is a very competitive choice when extra space is allowed and the texts
are highly compressible.

Yet, other novel developments have appeared recently, which already improve
these results in some aspects, and are likely to be added to the site soon [González
and Navarro 2007; Claude and Navarro 2008]. The ultimate moral is that there
is not a clear winner for all text collections, and that this is not to be taken as a
static, final result, because the area is developing fast. Nonetheless, our current
results provide an upper bound on what these compressed indexes can achieve in
practice:

Count. We can compress the text within 30%–50% of its original size, and search
for 20,000–50,000 patterns of 20 chars each within a second.

Locate. We can compress the text within 40%–80% of its original size, and locate
about 100,000 pattern occurrences per second.

Extract. We can compress the text within 40%–80% of its original size, and
decompress its symbols at a rate of about 1 MB/second.

The above figures show that the compressed full-text indexes are from one (count)
to three (locate) orders of magnitudes slower than what one can achieve with a
plain suffix array, at the benefit of using up to 18 times less space. This slowdown
is due to the fact that search operations in compressed indexes access the memory
in a non-local way thus eliciting many cache/IO misses, with a consequent degra-
dation of the overall time performance. Nonetheless compressed indexes achieve
a (search/extract) throughput which is significant and may match the efficiency
specifications of most software tools which run on a commodity PC.

On the other hand, Puglisi et al. [2006] recently compared several compressed
self-indexes with a block-addressing q-gram index. They showed that compressed
indexes are always faster on counting, and they are also faster on locating when
queries are selective, namely when the number of retrieved occurrences is less than
few thousands. We remark that this result was achieved for inverted lists holding
texts in plain form, without any compression. In order to be considered a com-
pressed text index, the text should be compressed in a way that permits direct
scanning of arbitrary blocks. When compressing general sequences, this is likely to
make the search significantly slower [Navarro and Tarhio 2005], but it is nonetheless
an interesting topic of future research. For example, besides the obvious semi-static
and block-wise adaptive classical compression methods, there are recent potentially
practical schemes allowing high-order compression of a sequence while warranting
constant-time access to any O(log n)-bits sized subsequence [González and Navarro
2006; Ferragina and Venturini 2007b]. Also, we observe that such a scheme might
as well be implemented by using the extract functionality of any of the compressed
(self-)indexes described in this paper.

It is also interesting that the development of the full-text self-indexing technology
is now impacting on natural-language text indexing, where inverted indexes have

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 27

been for decades the main data structure. Recent research [Brisaboa et al. 2008;
Fariña et al. 2008; Brisaboa et al. 2008] shows that word-oriented self-indexes (that
is, where the text is essentially seen as a sequence of words) can successfully compete
with inverted indexes, especially when one wishes to use space very close to that of
the compressed text (typically 25%-40% of the original text size).

We hope that this paper will spread the use of this novel algorithmic technology
in any software that needs to process, store and mine text collections of any size.
Why use so much space when squeezing and searching is nowadays simultaneously
affordable?

REFERENCES

Aluru, S. and Ko, P. 2008. Encyclopedia of Algorithms. Springer, Chapter on “Lookup Tables,
Suffix Trees and Suffix Arrays”.

Andersson, A. and Nilsson, S. 1995. Efficient implementation of suffix trees. Software Practice
and Experience 25, 2, 129–141.

Arroyuelo, D. and Navarro, G. 2005. Space-efficient construction of LZ-index. In Proceed-
ings 16th Annual International Symposium on Algorithms and Computation (ISAAC). Lecture
Notes in Computer Science vol. 3827. Springer, 1143–1152.

Arroyuelo, D. and Navarro, G. 2008. Practical approaches to reduce the space requirement
of Lempel-Ziv-based compressed text indices. Tech. Rep. TR/DCC-2008-9, Dept. of Computer
Science, Univ. of Chile. July.

Arroyuelo, D., Navarro, G., and Sadakane, K. 2006. Reducing the space requirement of LZ-
index. In Proceedings 17th Annual Symposium on Combinatorial Pattern Matching (CPM).
Lecture Notes in Computer Science vol. 4009. Springer, 319–330.

Brisaboa, N., Fariña, A., Ladra, S., and Navarro, G. 2008. Reorganizing compressed text. In
Proceedings 31st Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR). ACM Press, 139–146.

Brisaboa, N., Fariña, A., Navarro, G., Places, A., and Rodŕıguez, E. 2008. Self-indexing
natural language. In Proceedings 15th International Symposium on String Processing and
Information Retrieval (SPIRE). Lecture Notes in Computer Science. Springer.

Burrows, M. and Wheeler, D. 1994. A block sorting lossless data compression algorithm. Tech.
Rep. 124, Digital Equipment Corporation.

Claude, F. 2008. Compressed data structures for Web graphs. M.S. thesis, Dept. of Computer
Science, Univ. of Chile. Also as Tech. Report TR/DCC-2008-12.

Claude, F. and Navarro, G. 2008. Practical rank/select queries over arbitrary sequences. In
Proceedings 15th International Symposium on String Processing and Information Retrieval
(SPIRE). Lecture Notes in Computer Science. Springer.

Cole, R., Kopelowitz, T., and Lewenstein, M. 2006. Suffix trays and suffix trists: Structures
for faster text indexing. In Proceedings 33th International Colloquium on Automata, Languages
and Programming (ICALP). Lecture Notes in Computer Science vol. 4051. Springer, 358–369.

Fariña, A., Navarro, G., and Paramá, J. 2008. Word-based statistical compressors as natural
language compression boosters. In Proceedings 18th Data Compression Conference (DCC).
162–171.

Ferragina, P., Giancarlo, R., Manzini, G., and Sciortino, M. 2005. Boosting textual com-
pression in optimal linear time. Journal of the ACM 52, 688–713.

Ferragina, P., Luccio, F., Manzini, G., and Muthukrishnan, S. 2005. Structuring labeled
trees for optimal succinctness, and beyond. In Proceedings 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 184–196.

Ferragina, P., Luccio, F., Manzini, G., and Muthukrishnan, S. 2006. Compressing and
searching xml data via two zips. In Proceedings 15th World Wide Web Conference (WWW).
751–760.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 ·
Ferragina, P. and Manzini, G. 2001. An experimental study of an opportunistic index. In

Proceedings 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 269–278.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. Journal of the ACM 52, 4,
552–581.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2007. Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3, 2, article 20.

Ferragina, P. and Venturini, R. 2007a. Compressed permuterm indexes. In Proceedings 30th
ACM SIGIR Conference on Research and Development in Information Retrieval. 535–542.

Ferragina, P. and Venturini, R. 2007b. A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science 372, 1, 115–121.

Foschini, L., Grossi, R., Gupta, A., and Vitter, J. 2006. When indexing equals compression:
Experiments with compressing suffix arrays and applications. ACM Transactions on Algo-
rithms 2, 4, 611–639.

Giegerich, R., Kurtz, S., and Stoye, J. 2003. Efficient implementation of lazy suffix trees.
Software Practice and Experience 33, 11, 1035–1049.

González, R., Grabowski, S., Mäkinen, V., and Navarro, G. 2005. Practical implementation
of rank and select queries. In Poster Proceedings Volume of 4th Workshop on Efficient and
Experimental Algorithms (WEA). 27–38.

González, R. and Navarro, G. 2006. Statistical encoding of succinct data structures. In
Proceedings 17th Annual Symposium on Combinatorial Pattern Matching (CPM). Lecture
Notes in Computer Science vol. 4009. Springer, 295–306.

González, R. and Navarro, G. 2007. Compressed text indexes with fast locate. In Proceed-
ings 18th Annual Symposium on Combinatorial Pattern Matching (CPM). Lecture Notes in
Computer Science vol. 4580. Springer, 216–227.

Grossi, R., Gupta, A., and Vitter, J. 2003. High-order entropy-compressed text indexes. In
Proceedings 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

Grossi, R. and Vitter, J. 2006. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM Journal on Computing 35, 2, 378–407.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press.

Hon, W., Sadakane, K., and Sung, W. 2003. Breaking a time-and-space barrier in constructing
full-text indices. In Proceedings 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 251–260.

Jokinen, P. and Ukkonen, E. 1991. Two algorithms for approximate string matching in static
texts. In Proceedings 2nd Annual Symposium on Mathematical Foundations of Computer
Science (MFCS). Vol. 16. 240–248.

Kärkkäinen, J. 1995. Suffix cactus: a cross between suffix tree and suffix array. In Proceedings 6th
Annual Symposium on Combinatorial Pattern Matching (CPM). Lecture Notes in Computer
Science vol. 937. Springer, 191–204.

Kärkkäinen, J. and Ukkonen, E. 1996a. Lempel-Ziv parsing and sublinear-size index structures
for string matching. In Proceedings 3rd South American Workshop on String Processing (WSP).

Carleton University Press, 141–155.

Kärkkäinen, J. and Ukkonen, E. 1996b. Sparse suffix trees. In Proceedings 2nd Annual Interna-
tional Conference on Computing and Combinatorics (COCOON). Lecture Notes in Computer
Science vol. 1090. Springer, 219–230.

Lam, T.-W., Sadakane, K., Sung, W.-K., and Yiu, S.-M. 2002. A space and time efficient
algorithm for constructing compressed suffix arrays. In Proceedings 8th Conference on Com-
puting and Combinatorics (COCOON). Lecture Notes in Computer Science vol. 2387. Springer,
401–410.

Larsson, N. J. and Sadakane, K. 2007. Faster suffix sorting. Theoretical Computer Science
(TCS) 387, 3, 258–272.

Lehtinen, O., Sutinen, E., and Tarhio, J. 1996. Experiments on block indexing. In Proceedings
3rd South American Workshop on String Processing (WSP). Carleton University Press, 183–
193.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 29

Lemström, K. and Perttu, S. 2000. SEMEX – an efficient music retrieval prototype. In Pro-

ceedings 1st International Symposium on Music Information Retrieval (ISMIR).

Mäkinen, V. and Navarro, G. 2005. Succinct suffix arrays based on run-length encoding. Nordic
Journal of Computing 12, 1, 40–66.

Mäkinen, V. and Navarro, G. 2008a. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4, 3, article 32.

Mäkinen, V. and Navarro, G. 2008b. On self-indexing images — image compression with added

value. In Proceedings 18th Data Compression Conference (DCC). 422–431.

Manber, U. and Myers, G. 1993. Suffix arrays: A new method for on-line string searches. SIAM
Journal of Computing 22, 935–948.

Manber, U. and Wu, S. 1994. Glimpse: a tool to search through entire file systems. In Proceedings
of the USENIX Winter 1994 Technical Conference. USENIX Association, 4–4.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the ACM 48, 3,

407–430.

Manzini, G. and Ferragina, P. 2004. Engineering a lightweight suffix array construction algo-
rithm. Algorithmica 40, 1, 33–50.

Munro, I. 1996. Tables. In Proceedings 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS). Lecture Notes in Computer Science vol. 1180.
Springer, 37–42.

Munro, I., Raman, R., Raman, V., and Rao, S. 2003. Succinct representations of permuta-
tions. In Proceedings 30th International Colloquium on Automata, Languages and Program-
ming (ICALP). Lecture Notes in Computer Science vol. 2719. Springer, 345–356.

Munro, I. and Raman, V. 1997. Succinct representation of balanced parentheses, static trees
and planar graphs. In Proceedings 38th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 118–126.

Navarro, G. 2004. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms
(JDA) 2, 1, 87–114.

Navarro, G. and Baeza-Yates, R. 1998. A practical q-gram index for text retrieval allowing
errors. CLEI Electronic Journal 1, 2. http://www.clei.cl.

Navarro, G., Baeza-Yates, R., Sutinen, E., and Tarhio, J. 2001. Indexing methods for ap-
proximate string matching. IEEE Data Engineering Bulletin 24, 4, 19–27.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-
veys 39, 1, article 2.

Navarro, G., Moura, E., Neubert, M., Ziviani, N., and Baeza-Yates, R. 2000. Adding
compression to block addressing inverted indexes. Information Retrieval 3, 1, 49–77.

Navarro, G. and Tarhio, J. 2005. LZgrep: A Boyer-Moore string matching tool for Ziv-Lempel
compressed text. Software Practice and Experience 35, 12, 1107–1130.

Puglisi, S., Smyth, W., and Turpin, A. 2007. A taxonomy of suffix array construction algo-
rithms. ACM Computing Surveys 39, 2, article 4.

Puglisi, S. J., Smyth, W. F., and Turpin, A. 2006. Inverted files versus suffix arrays for locating
patterns in primary memory. In Proceedings 13th String Processing and Information Retrieval
(SPIRE). Lecture Notes in Computer Science vol. 4209. Springer, 122–133.

Sadakane, K. 2002. Succinct representations of lcp information and improvements in the com-
pressed suffix arrays. In Proceedings 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 225–232.

Sadakane, K. 2003. New text indexing functionalities of the compressed suffix arrays. Journal
of Algorithms 48, 2, 294–313.

Sutinen, E. and Tarhio, J. 1996. Filtration with q-samples in approximate string matching.
In Proceedings 7th Annual Symposium on Combinatorial Pattern Matching (CPM). Lecture
Notes in Computer Science vol. 1075. Springer, 50–61.

Ullman, J. 1977. A binary n-gram technique for automatic correction of substitution, deletion,
insertion and reversal errors in words. The Computer Journal 10, 141–147.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 ·
Williams, H. E. and Zobel, J. 2002. Indexing and retrieval for genomic databases. IEEE

Transaction on Knowledge and Data Engineering 14, 1, 63–78.

Witten, I. H., Moffat, A., and Bell, T. C. 1999. Managing Gigabytes: Compressing and
Indexing Documents and Images, second ed. Morgan Kaufmann Publishers.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory 24, 5, 530–536.

Zobel, J. and Moffat, A. 2006. Inverted files for text search engines. ACM Computing Sur-
veys 38, 2, 6.

Received Month Year; revised Month Year; accepted Month Year.

ACM Journal Name, Vol. V, No. N, Month 20YY.

