On the bit-complexity of Lempel-Ziv compression

Rossano Venturini

joint work with Paolo Ferragina and Igor Nitto

Department of Computer Science
University of Pisa
Lempel-Ziv Compression

Lossless data compression by textual substitution (Lempel-Ziv '77):

INPUT string: substring

Replaced by a pair <copy distance, length>

Many implementations: `gzip`, `arj`, `.gif`, `pkzip`, `compress`...
Lempel-Ziv 77

Parse input string from left to right and separate it into **phrases**: either single symbols or repetitions.

Greedy strategy: it always selects the longest repetition

Backward-References: **(distance, length)** or **(0,c)** if single symbol

```
 a b a b a a a a
```
Parse input string from left to right and separate it into phrases: either single symbols or repetitions.

Greedy strategy: it always selects the longest repetition

Backward-References: \textbf{(distance, length)} or \textbf{(0,c)} if single symbol
Parse input string from left to right and separate it into **phrases**: either single symbols or repetitions.

Greedy strategy: it always selects the longest repetition

Backward-References: (**distance**, **length**) or (**0**,c) if single symbol

(a) (b) a b a a a

(0,a) (0,b)
Lempel-Ziv 77

Parse input string from left to right and separate it into **phrases**: either single symbols or repetitions.

Greedy strategy: it always selects the longest repetition

Backward-References: **(distance, length)** or **(0,c)** if single symbol

(a) (b) (a b a) a a

(0,a) (0,b) (2,3)
Parse input string from left to right and separate it into **phrases**: either single symbols or repetitions..

Greedy strategy: it always selects the longest repetition

Backward-References: \((\text{distance}, \text{length})\) or \((0,c)\) if single symbol

\[(a) \ (b) \ (a \ b \ a) \ (a \ a)\]

\[(0,a) \ (0,b) \ (2,3) \ (1,2)\]
Parse input string from left to right and separate it into phrases: either single symbols or repetitions.

Greedy strategy: it always selects the longest repetition

Backward-References: \((\text{distance, length})\) or \((0,c)\) if single symbol

\[
(a) \ (b) \ (a \ b \ a) \ (a)
\]

\[
(0,a) \ (0,b) \ (2,3) \ (1,2)
\]

Compress: \((f(0),a) \ (f(0),b) \ (f(2),g(3)) \ (f(1),g(2))\)
Lempel-Ziv 77

Parse input string from left to right and separate it into phrases: either single symbols or repetitions.

Greedy strategy: it always selects the longest repetition

Backward-References: \((\text{distance, length})\) or \((0,c)\) if single symbol

\[(a) \ (b) \ (a \ b \ a) \ (a) \ (0,a) \ (0,b) \ (2,3) \ (1,2)\]

Encode distances and lengths with two uniquely decodable encoding functions \(f,g:\mathbb{N} \rightarrow \{0,1\}^*\)

Compress: \((f(0),a) \ (f(0),b) \ (f(2),g(3)) \ (f(1),g(2))\)

Decompression is simple and efficient in practice
Given a string T and fixed two functions f, g to encode distances and lengths respectively, we want to minimize the compress size (in bits) produced by LZ77 on T.

Problem

Given a string T and fixed two functions f, g to encode distances and lengths respectively, we want to minimize the compress size (in bits) produced by LZ77 on T.

Minimize compress size
Given a string T and fixed two functions \(f, g \) to encode distances and lengths respectively, we want to minimize the compress size (in bits) produced by LZ77 on T.

Theoretical analysis usually assume that both \(f \) and \(g \) encode any value with a fixed number of bits (\(\log n \) bits where \(n = |T| \)).
Minimize compress size

Problem

Given a string T and fixed two functions f, g to encode distances and lengths respectively, we want to minimize the compress size (in bits) produced by LZ77 on T.

Theoretical analysis usually assume that both f and g encode any value with a fixed number of bits ($\log n$ bits where $n=|T|$)

Nothing to do! It is known that greedy strategy produces the minimum number of pairs. Thus, also the compress size is minimized (wrt f and g).
Minimize compress size

Problem

Given a string T and fixed two functions f, g to encode distances and lengths respectively, we want to minimize the compress size (in bits) produced by LZ77 on T.

Theoretical analysis usually assume that both f and g encode any value with a fixed number of bits ($\log n$ bits where $n = |T|$)

Nothing to do! It is known that greedy strategy produces the minimum number of pairs. Thus, also the compress size is minimized (wrt f and g).

Good in practice?
Minimize compress size

Problem

Given a string T and fixed two functions f, g to encode distances and lengths respectively, we want to minimize the compress size (in bits) produced by LZ77 on T.

Theoretical analysis usually assume that both f and g encode any value with a fixed number of bits ($\log n$ bits where $n = |T|$)

Nothing to do! It is known that **greedy strategy** produces the minimum number of pairs. Thus, also the compress size is minimized (wrt f and g).

Good in practice?

<table>
<thead>
<tr>
<th>File</th>
<th>English</th>
<th>Sources</th>
<th>HTML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bwt</td>
<td>20.6%</td>
<td>17.3%</td>
<td>3.8%</td>
</tr>
<tr>
<td>LZ-fix</td>
<td>26.1%</td>
<td>24.6%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

Files of 50 Mbytes
Theoretical analysis usually assume that both f and g encode any value with a fixed number of bits ($\log n$ bits where $n=|T|$).

Nothing to do! It is known that greedy strategy produces the minimum number of pairs. Thus, also the compress size is minimized (wrt f and g).

Good in practice?

<table>
<thead>
<tr>
<th>File</th>
<th>Bwt</th>
<th>LZ-fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>20.6%</td>
<td>26.1%</td>
</tr>
<tr>
<td>Compression</td>
<td>24.6%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Files of 50 Mbytes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Very fast in decompression: 0.8 vs 20 secs
In practice (e.g., gzip) variable-length encoding functions are used. (e.g., Elias' Gamma and Delta, Fibonacci, etc.)
In practice (e.g., gzip) variable-length encoding functions are used. (e.g., Elias' Gamma and Delta, Fibonacci, etc.)

Property (Increasing Cost):

An encoding function $e: \mathbb{N} \rightarrow \{0,1\}^*$ satisfies the *increasing cost property* iff:

$$i < j \rightarrow |e(i)| \leq |e(j)|$$
In practice (e.g., gzip) variable-length encoding functions are used. (e.g., Elias' Gamma and Delta, Fibonacci, etc.)

Property (Increasing Cost):

An encoding function $e:[n] \rightarrow \{0,1\}^*$ satisfies the *increasing cost property* iff:

$$i < j \rightarrow |e(i)| \leq |e(j)|$$
Variable-length encoding functions

In practice (e.g., gzip) variable-length encoding functions are used. (e.g., Elias' Gamma and Delta, Fibonacci, etc.)

Property (Increasing Cost):

An encoding function $e : [n] \rightarrow \{0,1\}^*$ satisfies the *increasing cost property* iff:

$$i < j \rightarrow |e(i)| \leq |e(j)|$$

$Q(e,n)$: number of different encoding lengths of e in $[n]$.

$Q(e,n) = O(\log n)$ for most of practical encoding functions
Greedy strategy wastes space

Assume any value j is encoded by f with O(log j) bits

T

... abacdde abae cdde abacddf ...
Greedy strategy wastes space

Assume any value j is encoded by f with $O(\log j)$ bits

T

... abacdde abaed cdde abacddef ...

2^k
Greedy strategy wastes space

Assume any value j is encoded by f with $O(\log j)$ bits

$T \quad \ldots \text{abacdde} \ldots \text{abae} \ldots \text{cdde} \ldots \text{abacddf} \ldots$

2^k

Cost $= |f(2^k)| = \log 2^k = k$ bits
Greedy strategy wastes space

Assume any value j is encoded by f with $O(\log j)$ bits

$\text{Cost} = |f(2^k)| = \log 2^k = k \text{ bits}$
Assume any value j is encoded by f with $O(\log j)$ bits

Cost $= |f(2^k)| = \log 2^k = k$ bits

Cost $\leq 2 \cdot |f(2^h)| = 2 \log 2^h = 2 \cdot h$ bits
Greedy strategy wastes space

Assume any value j is encoded by f with $O(\log j)$ bits.

![Diagram showing the comparison between Greedy and Non-greedy strategies]

Cost = $|f(2^k)| = \log 2^k = k$ bits

Cost $\leq 2 \cdot |f(2^h)| = 2 \log 2^h = 2 \cdot h$ bits

Non-greedy strategy is better if $h < k/2$
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

\[S_k = 0^k 1 2^k 010^2 10^3 10^4 1 \ldots 0^k 1 \]
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

\[S_k = \theta^k 1^2 \theta 1^2 0^2 1^3 0^4 1 \ldots \theta^k 1 \]

\[LZ(S_k) = (\theta)(\theta^{k-1})(1^{2^k-1})(\theta 1)(\theta^2 1) \ldots (\theta^k 1) \]

Greedy strategy forces to copy from the beginning
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

\[S_k = \theta^k 1 0^k 1 0^2 1 0^3 1 0^4 1 \ldots 0^k 1 \]

\[LZ(S_k) = (\theta)(\theta^{k-1})(1^{2k-1})(\theta 1)(\theta 2 1) \ldots (\theta^k 1) \]

Amplifies distances!

Greedy strategy forces to copy from the beginning
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

\[S_k = \theta^k 1 \theta 01 \theta 02 \theta 03 \theta 04 \ldots \theta^k 1 \]

\[\text{LZ}(S_k) = (\theta) (\theta^{k-1}) (1^{2^k-1}) (\theta 1) (\theta 2 1) \ldots (\theta^k 1) \]

Assume any value \(j \) is encoded by \(f \) and \(g \) with \(O(\log j) \) bits.
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

\[S_k = \theta^k 1^{2^k} \theta 01 \theta 02 \theta 10^3 \theta 10^4 \theta 1 \ldots \theta^k 1 \]

\[\text{LZ}(S_k) = (\theta)(\theta^{k-1})(1^{2^{k-1}})(\theta 1)(\theta 2)(\theta 1) \ldots(\theta^k 1) \]

Assume any value \(j \) is encoded by \(f \) and \(g \) with \(O(\log j) \) bits

\[|\text{LZ}(S_k)| > k |f(2^k)| = \Omega(k^2) \text{ \ bits} \]
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

Assume any value j is encoded by f and g with $O(\log j)$ bits

$$S_k = 01021031041...0_k1$$

We can copy closer! The number of pairs is slightly increased but they require much less bits

$$|LZ(S_k)| > k|f(2^k)| = \Omega(k^2) \text{ bits}$$

$$r_{OPT}(S_k) = (\emptyset)(\emptyset^{k-1})(1^{2^k-1})(\emptyset)(1)(\emptyset)(\emptyset^11)...(\emptyset)(\emptyset^{k-1}1)$$
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

$$S_k = \theta^k 1^2 \theta 10^2 1 \theta 10^3 1 \theta 10^4 1 \ldots \theta^k 1$$

$$LZ(S_k) = (\theta)(\theta^{k-1})(1^{2^{k-1}})(\theta 1)(\theta 2 1) \ldots (\theta^k 1)$$

Assume any value j is encoded by f and g with $O(\log j)$ bits

$$|LZ(S_k)| > k |f(2^k)| = \Omega(k^2) \text{ bits}$$

$$rOPT(S_k) = (\theta)(\theta^{k-1})(1^{2^{k-1}})(\theta)(1)(\theta)(\theta 1 1) \ldots (\theta)(\theta^{k-1} 1)$$

For $j \leq k$, $0^j 1 = (0)(0^{j-1} 1) = O(\log j) \text{ bits}$
Greedy strategy wastes space

There exists a family of strings for which greedy strategy wastes a lot of space!

$$S_k = \theta^k 1^2 \theta 10^2 1 \theta 10^3 1 \theta 10^4 1 \ldots \theta^k 1$$

$$LZ(S_k) = (\theta) (\theta^{k-1}) (1^{2^{k-1}}) (\theta 1) (\theta 2 1) \ldots (\theta^k 1)$$

Assume any value j is encoded by f and g with $O(\log j)$ bits

For $j < k$, $0^j 1 = (0)(0^{j-1} 1) = O(\log j)$ bits
Earlier results are either:
- Space and Time inefficient (both $O(n^2)$) [Schuegraf et al., '74]
- Based on Heuristics [Klein '97, Cohn et al. '96, ...]

Our solution computes the optimal parsing in $O(n \log n)$ time for most of the encoding functions used in practice and $O(n)$ space
Reduction to shortest path on DAG

\[T = \text{ababaaab} \]

G(T) \[\begin{array}{ccccccccc}
\text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \$ \\
\end{array} \]

A vertex for each string position \(\{v_1, \ldots, v_n\} \) where \(n = |T| + \text{extra } \text{eof} \ v_{n+1} \)
Reduction to shortest path on DAG

T = ababaaab

G(T) a → b → a → b → a → a → a → b →$

A vertex for each string position \{v_1, ..., v_n\} where n = |T| + extra eof v_{n+1}

An edge connecting v_i and v_j for any i < j ≤ n+1 if either:
- j = i+1
- T[i...j-1] is repeated in T[1..j-2]
Reduction to shortest path on DAG

\[T = \text{ababaaab} \]

A vertex for each string position \(\{v_1, ..., v_n\} \) where \(n = |T| + \text{extra \(\text{eof} \) \(v_{n+1} \)} \)

An edge connecting \(v_i \) and \(v_j \) for any \(i < j \leq n+1 \) if either:

- \(j = i+1 \)

 or

- \(T[i...j-1] \) is repeated in \(T[1..j-2] \)
Reduction to shortest path on DAG

$T = ababaaab$

An edge connecting v_i and v_j for any $i < j < n+1$ if either:
- $j = i+1$
- $T[i...j-1]$ is repeated in $T[1..j-2]$

A vertex for each string position $\{v_1, \ldots, v_n\}$ where $n = |T| +$ extra eof v_{n+1}

Lempel-Ziv parsings of $T \iff$ paths in $G(T)$ from v_1 to v_{n+1}

Any edge (v_i, v_j) has assigned the label (d_{ij}, l_{ij}) meaning that we can copy at distance d_{ij} a repetition of length l_{ij}.
Reduction to shortest path on DAG

T = ababaaab

G(T)

A vertex for each string position \{v_1, \ldots, v_{n+1}\}

An edge connecting \(v_i\) and \(v_j\) for any \(i < j < n+1\)

- \(j = i+1\)
- \(T[i...j-1]\) is repeated in \(T[1..j-2]\)

Any edge \((v_i, v_j)\) has also assigned the cost \(c(i,j) = |f(d_{ij})| + |g(l_{ij})|\).

Lempel-Ziv parsings of T \(\iff\) paths in G(T) from \(v_1\) to \(v_{n+1}\)

d-cost and l-cost

Different labels? Select the one that minimizes the cost!
Reduction to shortest path on DAG

T = ababaaab

G(T)

A vertex for each string position {v₁, …, vₙ}

An edge connecting vᵢ and vⱼ for any i < j < n + 1 if either:
- j = i + 1
- T[i...j-1] is repeated in T[1..j-2]

Lempel-Ziv parsings of T ⇔ paths in G(T) from v₁ to vₙ+1

Any edge (vᵢ, vⱼ) has also assigned the cost c(i, j) = |f(dᵢⱼ)| + |g(lᵢⱼ)|.

d-cost and l-cost

Different labels? Select the one that minimizes the cost!

Shortest paths identify optimal parsings!
Reduction to shortest path on DAG

\[T = ababaaab \]

Any edge connecting \(v_i \) and \(v_j \) for any \(i < j < n+1 \) if either:

- \(j = i+1 \)
- \(T[i...j-1] \) is repeated in \(T[1..j-2] \)

Lempel-Ziv parsings of \(T \) \(\iff \) paths in \(G(T) \) from \(v_1 \) to \(v_{n+1} \)

A vertex for each string position \(\{v_1, \ldots, v_{n+1}\} \) where \(n = |T| \) + extra eof \(v_{n+1} \)

An edge connecting \(v_i \) and \(v_j \) has also assigned the cost \(c(i,j) = |f(d_{ij})| + |g(l_{ij})| \).

\(d \)-cost and \(l \)-cost

Different labels? Select the one that minimizes the cost!

Shortest paths identify optimal parsings!

Problem: How many edges?

\(O(n^2) \) in worst case! (e.g., \(T = a^n \))
Reduction to shortest path on DAG

\[T = \text{ababaaaab} \]

A vertex for each string position \(\{v_1, \ldots, v_{n+1}\} \)

An edge connecting \(v_i \) and \(v_j \) for any \(i < j \) if either:
- \(j = i+1 \)
- \(T[i...j-1] \) is repeated in \(T[1..j-2] \)

\[Lempel-Ziv \text{ parsings of } T \iff \text{paths in } G(T) \text{ from } v_1 \text{ to } v_{n+1} \]

Any edge \((v_i, v_j)\) has also assigned the cost \(c(i,j) = |f(d_{ij})| + |g(l_{ij})| \).

\textbf{Shortest paths identify optimal parsings!}

\textbf{Pruning!}

Problem: How many edges? \(O(n^2) \) in worst case! (e.g., \(T=a^n \))
Structural properties of G(T)

Property (Nesting)

If \((v_i, v_j) \in E_T\) then, for any \(i < t < j\):

1) \((v_i, v_t) \in E_T\) and \(|f(d')| \leq |f(d)|, |g(l')| \leq |g(l)|\), \(c(i,t) \leq c(i,j)\)

2) \((v_t, v_j) \in E_T\) and \(|f(d'')| \leq |f(d)|, |g(l'')| \leq |g(l)|\), \(c(t,i) \leq c(i,j)\)
Structural properties of G(T)

Property (Nesting)

If \((v_i, v_j) \in E_T\) then, for any \(i < t < j\):

1) \((v_i, v_t) \in E_T\) and \(|f(d')| \leq |f(d)|, |g(l')| \leq |g(l)|, c(i, t) \leq c(i, j)\)

2) \((v_t, v_j) \in E_T\) and \(|f(d'')| \leq |f(d)|, |g(l'')| \leq |g(l)|, c(t, i) \leq c(i, j)\)

Proof of 1)

\(T[i...j-1]\) repetition \(\rightarrow\) \(T[i...t-1]\) repetition.

(d',l') \quad (d,l)

\(v_i\) \quad \(v_t\) \quad \(v_j\)
Structural properties of G(T)

Property (Nesting)

If \((v_i, v_j) \in E_T\) then, for any \(i < t < j\):

1) \((v_i, v_t) \in E_T\) and \(|f(d')| \leq |f(d)|, |g(l')| \leq |g(l)|\), \(c(i, t) \leq c(i, j)\)

2) \((v_t, v_j) \in E_T\) and \(|f(d'')| \leq |f(d)|, |g(l'')| \leq |g(l)|\), \(c(t, i) \leq c(i, j)\)

Proof of 1)

\(T[i...j-1]\) repetition → \(T[i...t-1]\) repetition.

Each copy of \(T[i...j-1]\) contains a copy of \(T[i...t-1] \rightarrow d' \leq d\) and \(l' < l\).
Structural properties of $G(T)$

Property (Nesting)

If $(v_i, v_j) \in E_T$ then, for any $i < t < j$:

1) $(v_i, v_t) \in E_T$ and $|f(d')| \leq |f(d)|$, $|g(l')| \leq |g(l)|$, $c(i, t) \leq c(i, j)$

2) $(v_t, v_j) \in E_T$ and $|f(d'')| \leq |f(d)|$, $|g(l'')| \leq |g(l)|$, $c(t, i) \leq c(i, j)$

Proof of 1)

$T[i...j-1]$ repetition \rightarrow $T[i...t-1]$ repetition.

Each copy of $T[i...j-1]$ contains a copy of $T[i...t-1] \rightarrow d' \leq d$ and $l' < l$.

Thus, $|f(d')| \leq |f(d)|$ and $|g(l')| \leq |g(l)| \rightarrow c(i, t) \leq c(i, j)$ by Increasing cost property of f and g.
Definition of maximal edge

An edge \((v_i, v_j)\) is said **maximal** iff either \(c(v_i, v_j) < c(v_i, v_{j+1})\) or \((v_i, v_{j+1}) \not\in E_T\)

or simply pick the longest one among equal cost edges outgoing from \(v_i\).
Definition of maximal edge

An edge \((v_i, v_j)\) is said **maximal** iff either \(c(v_i, v_j) < c(v_i, v_{j+1})\) or \((v_i, v_{j+1}) \notin E_T\).

or simply pick the longest one among equal cost edges outgoing from \(v_i\).

A maximal edge \((v_i, v_j)\) must be either

- **d-maximal**: \(|f(d_{ij})| < |f(d_{ij+1})|\)
- **l-maximal**: \(|g(l_{ij})| < |g(l_{ij+1})|\)
Definition

An edge \((v_i, v_j)\) is said **maximal** iff either \(c(v_i, v_j) < c(v_i, v_{j+1})\) or \((v_i, v_{j+1}) \notin E_T\).

Or simply pick the longest one among equal cost edges outgoing from \(v_i\).

A maximal edge \((v_i, v_j)\) must be either

- **d-maximal**: \(|f(d_{ij})| < |f(d_{i,j+1})|\)
- **l-maximal**: \(|g(l_{ij})| < |g(l_{i,j+1})|\)

Property

There are no more than \(Q(f,n) + Q(g,n)\) maximal edges outgoing from any vertex \(v_i\).
A pruning theorem

Theorem

There exists a Shortest Path from v_1 to v_{n+1} in $G(T)$ traversing only maximal edges.
Theorem

There exists a Shortest Path from v_1 to v_{n+1} in $G(T)$ traversing only maximal edges

Proof: (by contradiction)
Assume that every shortest path contains at least a non maximal edge. Among all the shortest paths, we pick a path P having the longest initial subpath that traverses only maximal edges.
A pruning theorem

Theorem
There exists a Shortest Path from v_1 to v_{n+1} in $G(T)$ traversing only maximal edges

Proof: (by contradiction)
Assume that every shortest path contains at least a non maximal edge. Among all the shortest paths, we pick a path P having the longest initial subpath that traverses only maximal edges.

e_v is the first non maximal edge
A pruning theorem

Theorem
There exists a Shortest Path from \(v_1\) to \(v_{n+1}\) in \(G(T)\) traversing only maximal edges.

Proof: (by contradiction)
Assume that every shortest path contains at least a non maximal edge. Among all the shortest paths, we pick a path \(P\) having the longest initial subpath that traverses only maximal edges.

\[e_v \text{ is the first non maximal edge} \]

Consider the maximal edge \(m\), s.t. \(c(m) = c(e_v)\).
A pruning theorem

Theorem
There exists a Shortest Path from v_1 to v_{n+1} in $G(T)$ traversing only maximal edges.

Proof: (by contradiction)
Assume that every shortest path contains at least a non maximal edge. Among all the shortest paths, we pick a path P having the longest initial subpath that traverses only maximal edges.

Consider the maximal edge m, s.t. $c(m) = c(e_v)$.
We can replace e_v with m without increasing the cost.
Proof: (by contradiction)
Assume that every shortest path contains at least a non maximal edge. Among all the shortest paths, we pick a path P having the longest initial subpath that traverses only maximal edges.

There exists $c(r,w) \leq c(e_u)$ (by Nesting Property)
We can replace e_u with the new edge without increasing the cost
A pruning theorem

Theorem
There exists a Shortest Path from v_1 to v_{n+1} in $G(T)$ traversing only maximal edges

Proof: (by contradiction)
Assume that every shortest path contains at least a non maximal edge. Among all the shortest paths, we pick a path P having the longest initial subpath that traverses only maximal edges.

There exists $c(r, w) < c(e_u)$ (by Nesting Property)
We can replace e_u with the new edge without increasing the cost

Contradiction! We created another shortest path having a longer initial subpath that traverses only maximal edges.

A pruning theorem

Theorem

There exists a Shortest Path from \(v_1 \) to \(v_{n+1} \) in \(G(T) \) traversing only maximal edges

Pruned Subgraph \(GP(T) \)

Subgraph of \(G(T) \) where non-maximal edges are removed

Corollary

Bit-Optimal Parsing \(\Leftrightarrow \) Shortest-Path computation in \(GP(T) \)
A pruning theorem

Theorem

There exists a Shortest Path from \(v_1 \) to \(v_{n+1} \) in \(G(T) \) traversing only maximal edges

Pruned Subgraph \(GP(T) \)

Subgraph of \(G(T) \) where non-maximal edges are removed

Corollary

Bit-Optimal Parsing \(\iff \) Shortest-Path computation in \(GP(T) \)

Property

There are no more than \(Q(f,n) + Q(g,n) \) maximal edges outgoing from any vertex \(v_i \)
Theorem
There exists a Shortest Path from v_1 to v_{n+1} in $G(T)$ traversing only maximal edges.

Pruned Subgraph $GP(T)$
Subgraph of $G(T)$ where non-maximal edges are removed.

Corollary
Bit-Optimal Parsing \iff Shortest-Path computation in $GP(T)$

Property
There are no more than $Q(f,n)+Q(g,n)$ maximal edges outgoing from any vertex v_i.

Given $GP(T)$, $O(n \cdot (Q(f,n)+Q(g,n))$ time!
We consider the problem of generating d-maximal edges.

l-maximal edges can be easily computed in $O(n \cdot Q(n,g))$. See paper for more details.

We restrict our attention to d-maximal edges of cost c. The procedure can be repeated to find the d-maximal edges for all the $Q(f,n)$ different costs.
We consider the problem of generating d-maximal edges of cost c.

Practical solution!
We consider the problem of generating d-maximal edges of cost c.

We need:
- suffix array of T;
- to compute lcp among any two suffixes in $O(1)$ time.

Preprocess: $O(n)$ time
Occupancy: $O(n)$ words

Practical solution!
We consider the problem of generating d-maximal edges of cost c.

$I_c = [a, b]$: interval of integers that can be represented by f with cost c.

Practical solution!
We consider the problem of generating d-maximal edges of cost c

$I_c = [a, b]$: interval of integers that can be represented by f with cost c
We consider the problem of generating d-maximal edges of cost c.

$I_c = [a, b]$: interval of integers that can be represented by f with cost c.

We are looking for position $p \in W_c(i)$ such that $T[p, ...]$ shares the longest common prefix with $T[i, ...]$ among the other suffixes $T[j, ...]$ with $j \in W_c(i)$.
Computing GP(T)

We consider the problem of generating d-maximal edges of cost c

$I_c = [a, b]$: interval of integers that can be represented by f with cost c

We are looking for position $p \in W_c(i)$ such that $T[p, ...]$ shares the longest common prefix with $T[i, ...]$ among the other suffixes $T[j, ...]$ with $j \in W_c(i)$.

Fact

If there exists a maximal edge having d-cost c outgoing from v_i, then it must be (v_i, v_{i+t}) where $t = \text{lcp}(i, p)$
We consider the problem of generating d-maximal edges of cost c

$I_c = [a, b]$: interval of integers that can be represented by f with cost c

We are looking for position $p \in W_c(i)$ such that $T[p,...]$ shares the longest common prefix with $T[i,...]$ among the other suffixes $T[j,...]$ with $j \in W_c(i)$.

Keep positions $W_c(i)$ in a Balanced Binary Tree $BST_c(i)$ sorted by lexicographic rank (known from Suffix Array of the text)
Computing $\text{GP}(T)$

We consider the problem of generating d-maximal edges of cost c.

$I_c = [a, b]$: interval of integers that can be represented by f with cost c.

We are looking for position $p \in W_c(i)$ such that $T[p, \ldots]$ shares the longest common prefix with $T[i, \ldots]$ among the other suffixes $T[j, \ldots]$ with $j \in W_c(i)$.

- Keep positions $W_c(i)$ in a Balanced Binary Tree $\text{BST}_c(i)$ sorted by lexicographic rank (known from Suffix Array of the text).
- Query $\text{BST}_c(i)$ and find pred/succ in lexicographic order of $T[i, \ldots]$ among $W_c(i)$ and return the one that maximizes lcp with $T[i, \ldots]$. $O(\log n)$ time.

Practical solution!
We consider the problem of generating d-maximal edges of cost c

$I_c = [a, b]$ represents the interval of integers that can be represented by

We are looking for position $p \in W_c(i)$ such that $T[p, ..]$ shares the
longest common prefix with $T[i, ..]$ among the other suffixes $T[j, ..]$ with
$j \in W_c(i)$.

- Query $\text{BST}_c(i)$ (pred/succ) $O(\log n)$ time
- Two lcp computations $O(1)$ time
- Build $\text{BST}_c(i+1)$ from $\text{BST}_c(i)$ $O(\log n)$ time

Compute all the maximal edges of cost c in $O(n \log n)$:

- Query $\text{BST}_c(i)$ (pred/succ) $O(\log n)$ time
- Two lcp computations $O(1)$ time
- Build $\text{BST}_c(i+1)$ from $\text{BST}_c(i)$ $O(\log n)$ time

Practical solution!

Keep positions $W_c(i)$ in a Balanced
Binary Tree $\text{BST}_c(i)$ sorted by
lexicographic rank (known from
Suffix Array of the text)

Query $\text{BST}_c(i)$ and find pred/succ in
lexicographic order of $T[i, ..]$ among $W_c(i)$
and return the one that maximizes lcp
with $T[i, ..]$. $O(\log n)$ time.
Computing GP(T)

We consider the problem of generating d-maximal edges of cost \(c \) in a text \(T \).

I \(= [a, b] \): interval of integers that can be represented by \(f \) with cost \(c \).

We are looking for position \(p \in W_c(i) \) such that \(T[p, \ldots] \) shares the longest common prefix with \(T[i, \ldots] \) among the other suffixes \(T[j, \ldots] \) with \(j \in W_c(i) \).

Keep positions \(W_c(i) \) in a Balanced Binary Tree BST \(c(i) \) sorted by lexicographic rank (known from Suffix Array of the text).

Compute all the maximal edges of cost \(c \) in \(O(n \log n) \):

- Query BST \(c(i) \) (pred/succ) \(O(\log n) \) time
- Two lcp computations \(O(1) \) time
- Build BST \(c(i+1) \) from BST \(c(i) \) \(O(\log n) \) time

Query BST \(c(i) \) and find pred/succ in lexicographic order of \(T[i, \ldots] \) among \(W_c(i) \) and return the one that maximizes lcp with \(T[i, \ldots] \). \(O(\log n) \) time.

Repeated in “parallel” for any possible cost \(c \).

Computation of GP(T) requires \(O(n Q(f,n) \log n + n Q(g,n)) \) time and \(O(n) \) space.

\(O(n \log^2 n) \) for most of functions.

Practical solution!

\(T \)

\(i - b \) \(p \) \(i - a \) \(\ldots \) \(i \)
We consider the problem of generating d-maximal edges

\[I_c = [a, b] : \text{interval of integers that can be represented by } f \text{ with cost } c \]

“Batched” generation process:

We conceptually partition the text in blocks of size \(|I_c|\).
We compute maximal edges for positions in any block \(A\) in \(O(|A|)\) (i.e., \(O(1)\) amortized time) observing that:
More efficient computation of GP(T)

We consider the problem of generating d-maximal edges

$I_c = [a, b]$: interval of integers that can be represented by f with cost c

“Batched” generation process:

We conceptually partition the text in block of size $|I_c|$. We compute maximal edges for positions in any block A in $O(|A|)$ (i.e., $O(1)$ ammortized time) observing that:
We consider the problem of generating d-maximal edges

\[I_c = [a, b] : \text{interval of integers that can be represented by } f \text{ with cost } c \]

"Batched" generation process:

We conceptually partition the text in block of size \(|I_c|\).
We compute maximal edges for positions in any block \(A\) in \(O(|A|)\) (i.e., \(O(1)\) ammortized time) observing that:
More efficient computation of \(\text{GP}(T) \)

We consider the problem of generating \(\text{d-maximal edges} \)

\[I_c = [a, b]: \text{interval of integers that can be represented by } \mathcal{f} \text{ with cost } c \]

“Batched” generation process:

We conceptually partition the text in block of size \(|I_c| \).
We compute maximal edges for positions in any block \(A \) in \(O(|A|) \) (i.e., \(O(1) \) ammortized time) observing that:

- \(|A \cup W_c(l) \cup W_c(r)| = O(|I_c|) \)
More efficient computation of \(GP(T) \)

We consider the problem of generating d-maximal edges

\[I_c = [a, b] : \text{interval of integers that can be represented by } f \text{ with cost } c \]

“Batched” generation process:

We conceptually partition the text in block of size \(|I_c| \).
We compute maximal edges for positions in any block \(A \) in \(O(|A|) \) (i.e., \(O(1) \) ammortized time) observing that:

- \(|A \cup W_c(l) \cup W_c(r)| = O(|I_c|) \)
- Build and perform (suitable) a visit of the compact-trie of all suffixes in \(A \cup W_c(l) \cup W_c(r) \) in \(O(|I_c|) \) time.

\[W_c(l) \cup W_c(r) \]

\[T \]

\[l - b \quad l - a \quad r - a \quad \ell \quad r \]
More efficient computation of \(GP(T) \)

We consider the problem of generating d-maximal edges

\[I_c = [a, b] : \text{interval of integers that can be represented by } f \text{ with cost } c \]

"Batched" generation process:

We conceptually partition the text in block of size \(|I_c| \).
We compute maximal edges for positions in any block \(A \) in \(O(|A|) \) (i.e., \(O(1) \) ammortized time) observing that:

- \(|A \cup W_c(l) \cup W_c(r)| = O(|I_c|) \)
- Build and perform (suitable) a visit of the compact-trie of all suffixes in \(A \cup W_c(l) \cup W_c(r) \) in \(O(|I_c|) \) time.

See paper for more details
In summary

Given:
A string $T[1..n]$ whose symbols belong to an alphabet of size $O(n^c)$
A pair of encoding functions f, g satisfying the increasing-cost property

The (f, g) bit-optimal parsing of T can be computed in:

- $O(n)$ space and $O(n \times (Q(f,n)+Q(g,n)))$ time
 (vs. $O(n^2)$ previous solutions)

where $Q(e,n) = \# \text{ distinct equal-cost class for } e \text{ in } [n]$

... $O(n \log n)$ time for most practical choices of f and g

For generic alphabet of size σ, we need additional $T_{\text{sort}}(n, \sigma)$ time
<table>
<thead>
<tr>
<th>File</th>
<th>English</th>
<th>Sources</th>
<th>HTML</th>
<th>Dec. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>gzip</td>
<td>37.5%</td>
<td>23.2%</td>
<td>20.0%</td>
<td>0.7 s</td>
</tr>
<tr>
<td>bzip2</td>
<td>28.4%</td>
<td>19.7%</td>
<td>10.6%</td>
<td>6.3 s</td>
</tr>
<tr>
<td>Bwt</td>
<td>20.6%</td>
<td>17.3%</td>
<td>3.8%</td>
<td>20.2 s</td>
</tr>
<tr>
<td>LZ-fix</td>
<td>26.1%</td>
<td>24.6%</td>
<td>4.9%</td>
<td>0.8 s</td>
</tr>
<tr>
<td>LZ-OPT</td>
<td>21.6%</td>
<td>17.6%</td>
<td>3.8%</td>
<td>0.9 s</td>
</tr>
</tbody>
</table>

Files of 50 Mbytes
Experiments

<table>
<thead>
<tr>
<th>File</th>
<th>English</th>
<th>Sources</th>
<th>HTML</th>
<th>Dec. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>gzip</td>
<td>37.5%</td>
<td>23.2%</td>
<td>20.0%</td>
<td>0.7 s</td>
</tr>
<tr>
<td>bzip2</td>
<td>28.4%</td>
<td>19.7%</td>
<td>10.6%</td>
<td>6.3 s</td>
</tr>
<tr>
<td>Bwt</td>
<td>20.6%</td>
<td>17.3%</td>
<td>3.8%</td>
<td>20.2 s</td>
</tr>
<tr>
<td>LZ-fix</td>
<td>26.1%</td>
<td>24.6%</td>
<td>4.9%</td>
<td>0.8 s</td>
</tr>
<tr>
<td>LZ-OPT</td>
<td>21.6%</td>
<td>17.6%</td>
<td>3.8%</td>
<td>0.9 s</td>
</tr>
</tbody>
</table>

Files of 50 Mbytes

- **BWT compression ratio**
- **Gzip decompression speed!**
Thank you!
Optimize Greedy Strategy: the right-most references

Given a string T, there exist several algorithms to compute the LZ77 parsing (with greedy strategy) of T in $O(|T|)$ time and space.

All of them use the Suffix Array of T and LCP array.
Optimize Greedy Strategy: the right-most references

Given f and g satisfying the *Increasing Cost Property* and assuming to use the greedy strategy, how can we minimize the $|\text{compress}|$?

Essentially, for any phrase w_i, what is the pair (d_i, l_i) having the smallest encoding?
Optimize Greedy Strategy: the right-most references

Given f and g satisfying the *Increasing Cost Property* and assuming to use the greedy strategy, how can we minimize the $|\text{compress}|$?

Essentially, for any phrase w_i, what is the pair (d_i, l_i) having the smallest encoding?

$l_i = |w_i|$ is fixed by greedy strategy
Given f and g satisfying the Increasing Cost Property and assuming to use the greedy strategy, how can we minimize the $|\text{compress}|$?

Essentially, for any phrase w_i, what is the pair (d_i, l_i) having the smallest encoding?

Minimize the encoding of d_i.

There may be multiple copies of w_i in the prefix of T
Given f and g satisfying the *Increasing Cost Property* and assuming to use the greedy strategy, how can we minimize the $|\text{compress}|$?

Essentially, for any phrase w_i, what is the pair (d_i, l_i) having the smallest encoding?

Minimize the encoding of d_i.

There may be multiple copies of w_i in the prefix of T.
Given \(f \) and \(g \) satisfying the *Increasing Cost Property* and assuming to use the greedy strategy, how can we minimize the \(|\text{compress}|\)?

Essentially, for any phrase \(w_i \), what is the pair \((d_i,l_i)\) having the smallest encoding?

Minimize the encoding of \(d_i \).

There may be multiple copies of \(w_i \) in the prefix of \(T \)

Select the right-most copy (i.e., the one that is closer to \(p_i \) and starts before it)

\[T \]

\[w_1 \quad w_2 \quad w_3 \quad \ldots \quad w_i \quad \ldots \quad w_j \]

\(d_i \) must be as small as possible
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

SA

Range of positions in SA of all suffixes prefixed by w_i

Left-most copy of w_i reduces to

$\text{RMQ} =$ find the smallest position in the range
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copy computation seems to be harder.

Left-most copy of w_i reduces to

RMQ = find the smallest position in the range

$O(n)$ time to preprocess SA to solve $O(n)$ RMQs in $O(n)$ time
Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

Right-most copy of w_i reduces to

Y-Max Query = find the largest position which is smaller than p_i
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

Right-most copy of \(w_i \) reduces to

\[\text{Y-Max Query} = \text{find the largest position which is smaller than } p_i \]

\(O(n \log n) \) time to preprocess SA to solve

\(O(n) \) queries in \(o(n \log n) \) time.
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

Our solution: Right-most copies can be computed in $O(n(1+\log \sigma / \log \log n))$ time where σ is the alphabet size.

w_1 ...

w_i ...

w_j ...

Range of positions in SA of all suffixes prefixed by w_i
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

Our solution: Right-most copies can be computed in $O(n (1 + \log \sigma / \log \log n)$ time where σ is the alphabet size.

$O(n)$ for $\sigma = \text{polylog}(n)$
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

Our solution: Right-most copies can be computed in $O(n \log \sigma / \log \log n)$ time where σ is the alphabet size. We resort to:

- Suffix tree whose nodes are collected in groups of $O(\sigma)$ nodes each.

$\sigma = \text{polylog}(n)$ for

Range of positions in SA of all suffixes prefixed by w_i
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

Our solution: Right-most copies can be computed in $O(n \cdot (1 + \log \sigma / \log \log n)$ time where σ is the alphabet size. We resort to:

- Suffix tree whose nodes are collected in groups of $O(\sigma)$ nodes each.
- Global algorithm plus dynamic data structures to solve RMQ in each group

$O(n)$ for $\sigma = \text{polylog}(n)$
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

Our solution: Right-most copies can be computed in $O(n \cdot (1 + \log \sigma / \log \log n)$ time where σ is the alphabet size. We resort to:

1. Suffix tree whose nodes are collected in groups of $O(\sigma)$ nodes each.
2. Global algorithm plus dynamic data structures to solve RMQ in each group.

See paper for more details.
How to compute right-most copy

Previous known algorithms are able to compute only left-most copies. Right-most copies computation seems to be harder.

In practice, it compresses better, but still worse than BWT
Experiments

<table>
<thead>
<tr>
<th>File</th>
<th>English</th>
<th>Sources</th>
<th>HTML</th>
<th>Dec. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>gzip</td>
<td>37.5%</td>
<td>23.2%</td>
<td>20.0%</td>
<td>0.7 s</td>
</tr>
<tr>
<td>bzip2</td>
<td>28.4%</td>
<td>19.7%</td>
<td>10.6%</td>
<td>6.3 s</td>
</tr>
<tr>
<td>Bwt</td>
<td>20.6%</td>
<td>17.3%</td>
<td>3.8%</td>
<td>20.2 s</td>
</tr>
<tr>
<td>LZ-fix</td>
<td>26.1%</td>
<td>24.6%</td>
<td>4.9%</td>
<td>0.8 s</td>
</tr>
<tr>
<td>LZ-RM</td>
<td>23.8%</td>
<td>20.2%</td>
<td>4.3%</td>
<td>0.9 s</td>
</tr>
<tr>
<td>LZ-OPT</td>
<td>21.6%</td>
<td>17.6%</td>
<td>3.8%</td>
<td>0.9 s</td>
</tr>
</tbody>
</table>

Files of 50 Mbytes