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Abstract—We describe the design, the architecture, and the
evaluation of the Leasing Score Prediction (LSP) system – a
credit scoring and credit rating system for the leasing sector
deployed at the Italian association of leasing companies. Due to
its challenging objectives, the design and complexity of the LSP
system represent a unique contribution to the best practices in the
field. We cover requirements by managers, users, and regulations
about rigorous backtesting, statistical validation, calibration,
explainability, robustness and uncertainty self-assessment. LSP
relies on a machine learning model trained on a mixture of data
distributions contributed by many associated leasing companies.
We describe the technical solutions adopted and report on their
performance evaluation, including the management of the data
shifts due to the COVID-19 pandemic.

I. INTRODUCTION

Credit scoring is both a well-studied and an extremely
relevant application of data science and advanced analytics [1].
Lease scoring, particularly in the application scenario tackled
in this paper, brings a number of specific objectives that
deserve the development of a tailored system, which we called
Leasing Score Prediction (LSP). The complexity in the design
of LSP, and the technical solutions adopted, represent a unique
and novel contribution to the best practices in the field.

The LSP project started in January 2020 with the aim of
developing a risk scoring and risk rating system based on
supervised Machine Learning (ML), able to predict defaults
of payments by the lessee at the time of contract definition.
The available data, collected in a centralized credit information
system, are contributed by more than 40 leasing companies
associated to the Italian leasing association (Assilea). Data
distributions are then a mixture resulting from different target
markets, types of lessees/assets, contract conditions, and risk
appetites. LSP is expected to outperform a scoring system
trained on data of a single associate (Objective O1). The
available data may not represent the complete information
used for decision-making, e.g., leasing companies do not
contribute external credit bureau information or corporate
data sources. LSP should impute missing data with exter-
nal sources (Objective O2). Risk score model performances,
such as AUC and calibration error, can broadly vary over
(subsets of) the input data distributions, depending on the
quality of the input. LSP should provide an uncertainty self-
assessment for both the input features and the output scores
(Objective O3). Managers aim at and regulation mandate that
there is a clear understanding of the underlying ML models

adopted, including the explainability of decision drivers and
counterfactual analyses (Objective O4). Moreover, users of
LSP expect to use the features of the system interactively
in what-if scenario, with real-time answers (Objective O5).
Finally, the financial capacity of lessees changes over time,
e.g., due to the economic cycle or disruptive events such as
floods, earthquakes, or pandemics. In particular, Italy was the
first Western country to face the COVID-19 outbreak, and
to implement social counter-measures, e.g., lock-downs, and
fiscal counter-measures, e.g., suspension of credit payments1.
LSP is then expected to adapt to prior distribution shifts
(Objective O6).

The LSP system entered production in April 2022 for a pilot
subset of associate leasing companies, and from July 2022, it
became gradually subscribable to all of them. We describe
the design, the architecture, and the evaluation of LSP, with
reference to the above specific objectives. The rest of this
paper is structured as follows. First, we discuss the related
work in Section 2. Section 3 summarizes the background on
credit scoring, and Section 4 introduces the scenario of lease
financing. Section 4 discusses the LSP framework. Section
5 focuses on experimental validation. Finally, we summarize
lessons learned and possible extensions.

II. RELATED WORK

Credit scoring models assess the creditworthiness of a
lender [1], either w.r.t. an individual loan or w.r.t. a portfolio of
loans. We tackle the former case: LSP predicts the probability
of default w.r.t. a leasing contract when it is is about to start.
Let us survey related work on a few key problems to be tackled
in a credit scoring application.

Model selection. Statistical and machine learning models
have been used for credit scoring in econometrics, banking,
finance, and data science [2], [3]. The former methods focus
on summarization and (causal) inference, while the latter
focus mainly on prediction. Ensemble methods are the state-
of-the-art machine learning classification models for credit
scoring [4]. They exhibit the best predictive performances in
benchmark results [5], [6], also when restricting to simple
base classifiers [7]. The superior predictive performance of
ensembles was confirmed on our leasing contract data by

1See https://en.wikipedia.org/wiki/COVID-19 pandemic in Italy.
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[26] [11] [27] LSP
Domain Loans Bankruptcy Mortgages Leasing
Scoring XGBoost LightGBM XGBoost Ensemble
Rating ✓ ✓

Calibration ✓ ✓
Uncertainty ✓

Factual expl. ✓ ✓ ✓ ✓
Counterfactuals ✓

Prior shift ✓
Self-learning ✓
Backtesting Holdout OOT 1y×1 Holdout OOT 3m×23

Deployed ✓ ✓

TABLE I: Related credit scoring systems. OOT d× n is Out
of Time with d = test period duration, n = number of periods.

preliminary experiments, for which LSP core model has been
set to an ensemble of gradient-boosting models.

Model calibration. Calibration of scoring models aims at
producing risk scores that can be interpreted as the probability
of default [8]. Calibration techniques can be model-agnostic
(e.g., sigmoid, isotonic, beta calibration) [9], or model specific,
as the one for decision tree models [10] used in a bank
credit scoring systems [11]. The outer ensemble of LSP helps
improve the calibration of the base classifier without the need
for post-processing techniques.

Explainability. Complex ML scoring models lack the inter-
pretability of their internal logic and the explainability of their
outputs. Explainability of AI (XAI) methods [12] are being
increasingly used in the context for credit scoring [13]. Post-
hoc interpretability of models has been explored, e.g. by fea-
ture importance [14]. Explainability of the model’s output has
been explored, e.g. by feature attribution (such as the Shapley
values [15]) in [16], [17]. We also resort to Shapley values for
factual explanations of scores. Factual explanations answer the
“why?” of a model’s output. Counterfactuals explanations [18]
answer the “why not?” question by providing instances that
are similar to the one under analysis but that receive a lower
risk score. Methods for searching counterfactuals have been
proposed in the context of credit scoring [19], [20] and
contrasted to expert-generated explanations [21]. The proposed
methods do not account for a critical issue in a deployment
scenario: computational efficiency, an enabling factor for inter-
active usage of the credit scoring system in what-if analysis.
FasterRisk [22] (fast and accurate interpretable risk scores),
markedly faster than its competitors, “produces a collection
of high-quality risk scores within minutes”. LSP produces risk
scores, factual and counterfactual explanations in 1.1 seconds
on average.

Data shifts. Probabilistic predictive models, including credit
scoring models, suffer from shifts in the probability distribu-
tion from training to test data [23], [24]. Several approaches
have been considered to mitigate the impact of data shifts for
credit scoring [25]. Prior shifts, namely change in the distribu-
tion of defaults, directly impact on calibration of predictions.
LSP deals with predictable prior shifts, for which an estimate
of the new prior is available. Such an estimate is provided by
official statistics forecasts.

Related systems. Table I compares LSP to a few complex

credit scoring systems that are built and evaluated on real
large-scale data. LSP covers the whole spectrum of features.

III. BACKGROUND ON CREDIT SCORING

Credit scoring and credit rating aim to estimate the lender’s
probability of default (PD) to meet the contractual obligations.

Credit Scoring. A credit scoring model is a function st :
Xt → [0, 1] mapping instances from a feature space Xt

to a risk score value between 0 and 1. The feature space
distribution and the model can change over time: the subscript
t specifies the point of time t at which the model is used.
We omit the subscript if no ambiguity arises. The risk score
s(x), or simply the score, of a (credit application) instance
x estimates the likelihood that a risk event occurs, such as,
for instance, the insolvency within a certain time frame ∆t
from t. We denote by yx the true outcome, namely yx = 1
if the event actually occurs (positive instance) and yx = 0
otherwise (negative instance). Notice that yx is known only
if the credit application is approved and the credit contract
starts. We assume that (x, yx) are drawn from an unknown
distribution Dt. Machine Learning models are built from a
dataset of observations T Rt = {(x, yx)} available at time t
called the training set. The credit scoring model is calibrated
[9] if P (yx = 1|s(x) = p) = p, i.e., the score can be
interpreted as the probability that the event will occur.

Quality metrics in credit scoring models can be classified
based on the purpose [28], [29]. Metrics that evaluate the dis-
criminative power to separate positives and negatives include
AUC, Gini, and KS statistics. The Area Under the ROC Curve
(AUC) [30] is the probability (the higher, the better) that a
randomly drawn positive instance x+ receives a higher score
than a randomly drawn negative instance x−:

AUC = Ex−∼D0
t ,x

+∼D1
t
[1(s(x+) > s(x−))].

where D1
t (resp., D0

t ) is the distribution Dt conditional to
positives (resp., negatives). The Gini coefficient (also known
as Accuracy Ratio) is linearly related to the AUC as follows
Gini = 2 · AUC − 1. The Gini coefficient amounts to the
fraction of the difference in power between a perfect ranking
(all positives scored higher than any negative) and a random
ranking of scores. These and the other metrics are estimated on
a hold-out dataset T Et = {(x, yx)}, called the test set, using
the empirical counterparts of their definition at the population
level. Metrics that evaluate the accuracy of the scores include
BLS and Log-loss scores. The Brier Loss Score (BLS) [31] is
the expected quadratic loss of scores:

BLS = E[(s(x)− yx)
2]

A metric that evaluates the degree of calibration over a
binning b1, . . . , bR of the score interval [0, 1] is the Binary
Expected Calibration Error (BIN-ECE) [9]:

BIN -ECE = E[|P (yx = 1|s(x) ∈ bi)− E[s(x)|s(x) ∈ bi]|]

This is estimated over the test set as the weighted absolute
difference between the observed default rate OBi in the bin



bi (which estimates P (yx = 1|s(x) ∈ bi)) and the mean score
in the bin bi (which estimates E[s(x)|s(x) ∈ bi]).

Finally, variants of those metrics have been proposed to take
into account unbalanced distributions of positives and nega-
tives. In particular, the Brier Skill Score [31] is defined as the
error reduction (the higher, the better): BSS = 1−BLS/BLS ref

relatively to BLS ref , which is the Brier Skill Score of a
baseline classifier scoring any instance as the fraction of
positives observed in the training set T Rt.

Credit Rating. A credit rating model is a function rt : Xt →
{1, . . . , R}, mapping instances to an ordered set of R rating
classes. Typically R is in the range 5-10, with class 1 denoting
low risk and class R denoting high risk. Each rating class i
is assigned an apriori probability of default PDi, increasing
with i, for which the model is expected to be calibrated,
namely P (yx = 1|rt(x) = i) = PDi. A variant of BIN-ECE
quantifies the calibration error of rating models:

BIN -ECE -Rating = E[|P (yx = 1|r(x) = i)− PDi|]

where the observed default rate is compared to the expected
one, rather than the average score. BIN-ECE-Rating is es-
timated over the test set as the weighted mean value of
|OBi − PDi|, where OBi is the observed default rate for
instances in the test set rated in class i. Moreover, the observed
rate OBi is expected to be lower or equal than the predicted
rate PDi – otherwise, the model underestimates the actual
risk. A binomial test of the hypothesis H0 : P (yx = 1|r(x) =
i) ≤ PDi is adopted at some confidence level for such
a purpose. Another statistical test based on the multinomial
distribution is the Extended Traffic Light [32], which results
in an immediately grasped colour (green, yellow, orange, red).

IV. THE LEASING SCENARIO

A lease contract conveys the right to use an asset for a
period of time in exchange for payment [33]. The leasing
company, called the lessor, owns the asset. The asset user,
called the lessee, can be a company or a natural person. The
asset is bought by the lessor from a vendor based on the
lessee’s requirements. The payments of the contract include
an initial payment, periodic installments, and an optional
redemption price. Lease financing has many advantages. The
asset is immediately available for the lessee, while its cost
is split over the contract duration. The direct acquisition of
expensive equipment, plant and machinery requires, instead,
capital outlay or securities to access credit financing. For the
lessor, the asset can be repossessed when the lessee defaults
on payments; hence the lessor’s interest is fully secured. These
and other advantages have been driving a continuous growth
of the leasing market in the last decade, with an estimated
volume of ≈$1,675B worldwide in 2023 (from ≈$1,520B in
2022). The European market is estimated ≈C415B in 2022.

Assilea (https://www.assilea.it) is the Italian leasing associ-
ation, with more than 70 associated companies, representing
more than one half of the Italian market in 2021 (≈$18B
in value). Each associate runs its own business, possibly in
competition with other associates, adhering to its own credit

risk policies and procedures regarding target markets, type
of assets, region of operation, appetite for risk, etc. More
than 40 of the associated companies contribute monthly to
Assilea raw data on newly signed contracts and on the payment
status of active contracts. These data are integrated into a data
warehouse of past and active lease contracts. Assilea provides
back to the contributing associates a credit information service
called BDCR (“Banca Dati Centrale Rischi del Leasing” in
Italian). Information provided aggregates data from the various
associates to summarize the number and status of a prospective
lessee’s past and active lease contracts. The benefit for the
associates in contributing to the BDCR consists of more in-
depth information on the past history and the current financial
commitments of prospect lessees leading to a better evaluation
of their creditworthiness. The contribution to the BDCR and
its usage is ruled by a self-regulation code signed by the
associates. The code is compliant to the European General
Data Protection Regulation [34]. Prospect lessees can submit
complaints about data processing by the BDCR to a national
authority which monitors credit information systems.

V. THE LSP FRAMEWORK

The LSP project has followed the de-facto industry standard
of the CRISP-DM process model [35]. Business objectives
have been determined by involving a few representative asso-
ciate companies. Users with different roles (risk managers, risk
analysts, credit analysts, data analysts, head of organization
and control, head of legal) have been interviewed several
times at different project stages, both in person and through
a questionnaire. Various definitions of default payments have
been discussed with the users. The one adopted considers
the occurrence of severe insolvency or legal default within
a lookahead period of 12 months from the signing date of
the contract. Severe insolvency is triggered in case of overdue
payments for a total of 5% of the contract or a total of 35%
of the payments due in the next semester. A legal default,
causing contract termination, is triggered in case of overdue
payments for at least six monthly installments for real estate
assets or four monthly installments for other assets, even if
not consecutive, or equivalent amount [36].

In the following, we describe the architecture and workflow
of the LSP framework and detail the design rationale of
the critical and novel components of the LSP system, also
w.r.t. the objectives stated in the introduction. The components
of the framework have been implemented in Python (LSP),
Sadas Engine2 (ETL, data warehouse), and Java (web service).

A. Architecture, workflow, inputs and outputs

Architecture and workflow. Figure 1a summarizes the ar-
chitecture of the LSP system and the workflow of data and
information from and towards the leasing associate companies.
Each associate monthly contributes raw data to the BDCR
credit information system, which stores in a centralized data

2A big data columnar database, see https://www.sadasdb.com/.
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Fig. 1: The LSP system.

(a) LSP workflow. (b) An example of LSP output.

warehouse the data on new contracts and the status of pay-
ments of active contracts. Data preprocessing outputs a train-
ing set at the granularity of one instance per contract. Financial
indicator features are collected through an external credit
bureau service both in bulk (offline) and on-the-fly at the time
of predictions. This is intended to answer the Objective O2.
The credit scoring model is trained quarterly from the training
set. Users at a leasing associate submit queries to the LSP
system through a web interface. A query includes the prospect
contractual information, including the (id of the) lessee, the
vendor(s), the guarantor (s), the amount of the contract, its
duration, the initial payment amount, and the redemption price.
These data are joined with financial indicators and other pre-
computed features, mainly behavioural indicators, not only
about the lessee, but also about the vendors, and the guarantors
– since good vendors tend to bring good lessees. The joined
features values are passed in input to the scoring model, which
produces a creditworthiness score, a rating class on an 8-
scale, and two quality labels: one about the input feature
values, and one about the output score. The quality labels
are intended to answer the Objective O3. An eXplainability in
AI (XAI) module adds factual and counterfactual explanations
of the predicted score. The (counter)factual explanations are
intended to answer the Objective O4. The outputs are arranged
and sent back to the user by the web service. An example
output is shown in Figure 1b. The average time for serving
a user query is 1.1 seconds. The most time-consuming task
is the invocation of the external credit bureau service (1.68
seconds on average), which, however, takes place only if the
user query regards a lessee that is a company with some
specific legal form, and such that there are no updated financial
indicators cached about. These computational performances
allow for interactively querying the LSP, e.g., by changing
some value of the contractual data to re-evaluate the score and
its explanation in a what-if scenario (Objective O5). Also, the
performances are optimized for scaling to a potential number

of 600K calls per year, which is currently the number of calls
to the BDCR credit information system from all associates.

Input features. Data preprocessing is run monthly after up-
dating the BDCR data warehouse. Predictive features and a
target feature are computed for each contract, with information
available at the time of the contract starting date. These
features are about:

• the contract including duration, total, initial payment, re-
demption price, number of installments, fraction of initial
payment, fraction of redemption price, type of asset, state
of the asset (e.g., used, new, to build);

• the lessee, including age of business (or age of natural per-
sons), region/province of company headquarters (residence
for natural persons), industry sector classification, legal
form, financial indicators about the last and the second to
last accounting closing year available;

• the vendor(s), including region/province of company head-
quarters, industry sector classification, legal form;

• the guarantor(s), including type of guarantee (e.g., surety
or obligation to buy), amount guaranteed, legal form;

• the current commitments, including number/volume of
active contracts by the lessee, by the vendor(s), by the
guarantor(s);

• the behavioural indicators, including number/volume of
contracts concluded by the lessee, by the vendor(s), by the
guarantor(s), and number/volume of defaults for those con-
tracts in the previous six months, 12 months, 24 months,
ten years;

• the target feature, which is 1 (positives) if the default
of the contract has been observed during the lookahead
period, 0 (negatives) if no default has been observed in the
lookahead period, and ‘unknown’ if the lookahead period
has not passed yet, but no default has been observed so far.

LSP outputs. Figure 1b shows an example of the output
returned to the user. The following items are included:



Algorithm 1: LSP.fit()
Input : (X,y) - training set,

H - LightGBM classifier,
k - number of folds
pt - estimated positive rate in the test set

Output: (h, g) - selective classifier

1 S ← StratifiedKFold((X,y), k) // stratified k-fold partition
2 for Xi,yik ∈ S do // for each fold
3 (X′

i,y
′
i) = (X−Xi,y − yi) // training data

4 hi ← H.fit(X′
i,y

′
i) // train i-th classifier

5 si ← hi.score(Xi) // score test data
6 s← ∪k

i=1si // store all scores
7 θl,.9, θu,.9 ← EstimateThetaAUC(s, .9) // bounds for c = .9
8 θl,.5, θu,.5 ← EstimateThetaAUC(s, .5) // bounds for c = .5

9 h.score← lambda x : 1
k

∑k
i=1 hi.score(x) // score function

10 γ = mean(y)/(1−mean(y))/pt ∗ (1− pt) // odds factor
11 h.score← h.score

h.score+γ(1−h.score)
// Bayesian correction

12 g ← lambda x :


∗ if θl,.9 ≤ h.score(x) ≤ θu,.9

∗ ∗ if θl,.5 ≤ h.score(x) ≤ θu,.5

∗ ∗ ∗ otherwise
// prediction quality

13 return (h, g)

• a creditworthiness score, predicting the good outcome
of the contract obligations w.r.t. the default notion. The
creditworthiness score is in a three digit range 0-999, and
it is calculated as (1− r) · 999 where r is the risk score of
the LSP model;

• a rating class, in the range 1 to 8, where 1 is very low risk
and 8 very high risk. Class boundaries are shown in the
rainbow around the creditworthiness score, and the rating
class assigned is larger than the others. Also, the rating
class is shown as a number and with a textual description.
On mouse-over the rainbow, the textual description of any
class can be viewed. The estimated PD of the assigned
rating class is also reported;

• two quality labels, on a 1 to 3-stars scale, referring to
the quality of input and to a self-assessed quality of the
predicted score.

• a factual explanation, of the score, using a feature im-
portance plot, where for the top 10 features, the positive
or negative contribution to the creditworthiness score is
reported both as a bar and a value, in colour (green for
positive, red for negative);

• up to three counterfactual explanations, consisting of
changes in the features of the contract that lead to better
creditworthiness score and, possibly, to a better rating class.

B. The scoring model

The core of the LSP system, shown in Algorithm 1, is a
selective classifier with Bayesian correction of the prediction
score. Its primary input (X,y) consists of the instances of
the training set where the target value is known, i.e., 0 or 1.
Instances with ‘unknown’ target value will be considered later
on in Section V-D.

Selective classification for uncertainty estimation. Objective
O3 requires the uncertainty self-assessment of the risk score.
We adopt a novel approach which relies on selective classifi-
cation. Selective classification (or classification with a reject
option) [37] pairs a classifier with a selection function to

determine whether a prediction should be accepted or the
classifier should abstain. The selection function assesses the
trustworthiness/uncertainty of a prediction. Our selective clas-
sifier is a variant of the model-agnostic AUCROSS approach
[38]. Algorithm 1 splits the training set into k stratified folds
(line 1) – we set k = 5 in our implementation. For each
fold i, a base classifier (hi) is trained on the data of the other
k − 1 folds (line 4). We use LightGBM3 [41] as the base
classification algorithm. The scores of hi on the data of the
i-th fold (line 5) are accumulated in s (line 6). The set s
of predicted scores allows for estimating bounds θl, θu such
that scores outside [θl, θu] amount at a specified coverage,
i.e., percentage of predictions (parameter c in lines 7 and 8),
and such that they maximize the AUC of the predictions [38].
Scores inside the bounds [θl, θu] are rejected (at coverage
c), since predicting on such instances would lower the final
AUC. Algorithm 1 computes two pairs of bounds, one at
coverage c = .9 and one at c = .5. The output function g
determines the quality/uncertainty of the output scores, ranking
them into three levels: three stars for the top 50% of the
predictions, two stars for the second top 40%, and 10% for the
remaining bottom predictions w.r.t. AUC maximization. The
scoring function of Algorithm 1 is obtained by averaging the
scores of the k classifiers (line 9). An alternative would have
been to train a final classifier on the whole training set, as
in the AUCROSS approach [38]. However, the model’s score
averaging was beneficial w.r.t. calibration of the scores, also in
comparison with using state-of-the-art calibration techniques.

Bayesian correction for prior data shifts. Objective O6 re-
quires to address prior data shifts. A Bayesian correction of
the scores is performed (line 11) for coping with the change
in the proportion of positives from training to test data [23].
This correction takes into input a factor γ, which is the odds
ratio of positive rate between the training and test population,
i.e., γ ≈ (PS(y = 1)/PS(y = 0))/(PT (y = 1)/PT (y = 0))
where PS and PT are the distributions over the training/source
and test/target populations. PS(y = 1) is estimated on the
training set. PT (y = 1) is estimated by pt, which is an input
parameter. The correction is suitable for coping with events
potentially predictable in advance, such as those occurring
after a policy change. The correction scales the output scores.
Hence, it does not affect ranking metrics such as AUC, but
it does affect accuracy scores, such as BLS and BSS, and
the calibration of scores and ratings. We used the correction
twice. First, the financial crisis of 2008 led to a long period of
recession and stagnation in Italy, with an increasing fraction
of non-performing loans (NPL). The peak was reached in
2014. Afterwards, the NPL fraction decreased over time for

3LightGBM adopts a gradient-boosting approach with state-of-the-art per-
formances over tabular datasets, a fast parallel implementation, API’s for a few
programming languages, management of categorical attributes and missing
values without encoding/imputation, and the calculation of TreeSHAP values
used by LSP for factual explanations. We have experimented with other base
classifiers, including scikit-learn models, XGBoost [39] and CatBoost [40].
CatBoost was the only classifier offering features comparable to LightGBM
without statistically significant performance differences. We finally chose
LightGBM as it was the fastest method.



all businesses, including leasing companies. Yearly forecasts
of the Bank of Italy4, and historical data from the BDCR data
warehouse (see Figure 3 top), anticipated decreasing positive
rates pt. This information has been used in the backtesting
of the LSP system to correct the prediction scores, setting
pt = 0.02 up to the first quarter of 2020. Second, in the
first quarter of 2020, the government counter-measures against
the COVID-19 outbreak included a suspension of loan repay-
ments. Consequently, the positive rate dropped substantially
(see Figure 3 top). As a forward-looking strategy for LSP, we
set pt = 0.01 for the suspension period.

C. Explanation methods

LSP provides post-hoc explanations of the scores, both in
factual and in counterfactual terms, to address Objective O4.

Factual explanations. They are provided in terms of relative
feature relevance w.r.t. the model’s score. We rely on Shapley
values [15], which are computed very fastly by the Light-
GBM implementation of the exact TreeSHAP algorithm [42].
Shapley values are a coalition game theory concept that aims
to allocate the score generated by a coalition of features to
each of the features. Shapley values are additive, hence the
Shapley values of the LSP model, which averages the scores
of k classifiers (line 9 in Algorithm 1) is the mean of the
Shapley values of the k classifiers. TreeSHAP returns the
Shapley values of the logit transformation of the risk score,
i.e., the sum of Shapley values is the log odd of the risk score.
By going back to the risk score (a.k.a., the probability space),
we lose the additivity property, namely the sum of inverse
log odds of Shapley values does not equal to the risk score
probability. This may generate confusion in the reading by
the user. We then choose to present to the user the relative
contribution of each feature to the log odd of the risk score,
calculated as the L1 normalized Shapley values. Normalized
negative (resp., positive) values correspond to negative (resp.,
positive) contribution in risk, compared to the mean score.
They are shown in red (resp., green) in Figure 1b).

Counterfactual explanations. They consist of up to three
examples in which changes in the contract features would
result in a lower risk score (or higher creditworthiness score),
possibly improving the rating class. Changes should be made
only on certain actionable features, such as the initial pay-
ment amount, the duration of the contract, and the type of
guarantee. Also, changes may be subject to some constraints,
such as the range of possible values or the minimum amount
of increase/decrease. These and several other requirements
on counterfactual generation (minimal number of changes,
plausible instances, diversity among counterfactuals, stability
of results) are rarely dealt with by a single tool. We designed
a novel ensemble of base counterfactual explainers, each
one contributing several counterfactual instances. We filter
(or modify) those not satisfying requirements not directly
implemented by the tools, and from the collection of all

4https://www.abi.it/studi/outlook-crediti-deteriorati/

remaining counterfactual instances, we finally select three
instances (or less, if not possible) to return by following the
diversity-maximization approach of [43]. Two types of base
counterfactual explainers have been considered – the choice
being driven by computational efficiency requirements. The
first type is a brute force approach, generating all possible
changes in actionable features (restricted to changing max two
features, and considering a 10 equal-width binning of contin-
uous features). The first type takes into account similarity and
minimality. The second type projects instances into a lower-
dimensionality space using PCA. Then it applies a random
perturbation at that space, and converts back the perturbed
instances to the original space, filtering only instances that
result to be counterfactuals (lower risk score by the LSP
model). Hence, it takes into account diversity. The counter-
factual ensemble explainer runs four base classifiers of type
one, three of type two using PCA for explaining 99% of
variance, and three of type two using PCA for explaining 75%
of variance. A total of 256 counterfactuals are produced, then
filtered, and then 3 of them are finally selected. Compared
to [43], the elapsed time for generating three counterfactuals
lowered from 8 seconds to 0.5 seconds on average.

D. Miscellaneous

In this subsection, due to space restriction, we briefly outline
a number of tasks and topics tackled by the LSP project.

The credit rating model. A standard approach to obtain a
rating model from a credit scoring model is binning the
[0, 1] range of scores and then determining a PD for each
bin. For example, [11] considers 9 rating classes, and it
adopts a genetic algorithm for optimizing the choice of the
class PDs w.r.t. BLS. LSP adopts a logarithmic binning of
the [0, 1] interval to adapt on the unbalanced distribution of
defaults. The advantage of our choice is that the binning is
data-independent. Hence it is not affected by random/small
perturbations of the data distribution. The drawback is that,
for the same reason, we need to closely monitor the binning
quality. We rely on both binomial tests and the extended traffic
light approach (see Section III) as well as on monitoring the
stability of the model [44], [45].

Feature selection. The most relevant feature selection task
was concerned with financial indicators [46]. The associated
companies do not contribute such indicators, even if they might
be available for decision-making in some cases. However,
they are expensive to obtain, as the fees paid to the credit
bureau service are proportional to the number of indicators
requested. We collected more than 20 financial indicators
for a sample of companies subject to mandatory submission
of balance sheets. We selected six indicators by a variance
inflation factor (VIF) stepwise variable elimination [47]. The
selected indicators cover business performance (profit), ef-
ficiency in revenue generation (return on assets, and total
assets turnover), indebtedness (current liabilities/total assets,
and leverage), and liquidity (cashflow). Experiments showed a
very narrow loss in performance when using the selected set of

https://www.abi.it/studi/outlook-crediti-deteriorati/


Fig. 2: Backtesting framework.

indicators w.r.t. the entire set. Another set of external features
was considered, regarding market conditions (interest rates,
inflation, GDP, public debt, etc.) and company demography
(new/closed companies per region/type of business). However,
these did not improve the performances of the scoring model.

Missing values and quality of input. The legal nature of the
data contributed to the data warehouse (contracts, payments,
etc.) ensures a certain quality of the training set, with a
few issues already solved by ETL (repeated entries, outliers,
impossible values). Other issues may persist, however, e.g.,
due to missing contributions for technical reasons, for which
the status of a contract could be missing in certain months.
Financial indicators may also be missing since only certain
company types have the legal obligation to submit balance
sheets. Finally, a user query may not include all prospect
contract features since only a few are mandatory. LightGBM
natively deals with missing values in the training set and in
the input instance. No imputation method was selected, yet a
few were experimented with. LSP addresses Objective O3 as
per quality of the input by summarizing the impact of missing
values in the input instance by a 1-star to 3-stars indicator
(see Figure 1b). A missing value is weighted by the feature
importance, calculated by the mean decrease in AUC when
testing the base classifier hi (line 5 in Algorithm 1) with such
a feature set to missing (and all features calculated from that
one, e.g., ratios, also set to missing).

Self-learning. On top of Algorithm 1, we experimented with
a self-training approach close to the one described in [48],
exploiting the instances with target feature value ‘unknown’.
Such instances regard contracts started since less than 12
months for which the default event has not been observed. We
iteratively re-train LSP by adding the ‘unknown’ instances that
are predicted with high confidence and assigning to them the
predicted label (0 or 1). Such a procedure is computationally
expensive. It resulted into a better calibration, but comparable
with the impact of the Bayesian correction. Intuitively, the
‘unknown’ instances were mostly predicted to be negatives,
thus reducing the positive rate in the augmented training set.

VI. EVALUATION

We experiment with a dataset of 2M leasing contracts with
about 500 features (about 90 before one-hot encoding) ranging
from 2011-01 (Jan 2021) to 2022-04 (Apr 2022). Let us first
describe the backtesting framework and then present some
performance results of LSP.

Fig. 3: Positive rate, training size and time.

Backtesting framework. Backtesting aims at estimating the
performances of a system by resampling historical data. We
adopt an out-of-time testing procedure with rolling-origin [49],
also known as walk-forward, forward-chaining, or nested
cross-validation. In fact, standard cross-validation exhibits a
positive bias error for time-related data [50]. Figure 2 shows
the situation pretending to be at a time point t at which a
new credit score model st is available (see Section III for
notation). Such a model will be used to score instances (the
test set T Et) for a specific test period, which, for LSP, is set to
3 months. After such a period, a new model will be available,
and the time point t will roll forward by three months. As
shown in Figure 1a, LSP re-trains a new model every quarter.
For an instance x, the true default outcome yx is defined
w.r.t. a lookahead period of 12 months. In order to evaluate
the model performances, we need data from the lookahead
period following t+3 months. Moreover, since the BDCR data
warehouse is updated monthly, and updates regard the status
of contracts at the previous month, we consider that data is
actually available with a delay of two months. Therefore, the
test periods in our experiments stop at t = 2020-12. The last
test period ranges from 2020-12 to 2021-02, the lookahead
period for its third month (2021-02) ends on 2022-02, and
the data regarding payments on 2022-02 are available in the
data warehouse on 2022-04, which is our last month of raw
data. Let us consider now which instance can be included in
the training set. Reasoning as before, data on the two months
prior to t should be considered unavailable at the time t. This
is shown as Data Unavailability Period in Figure 2. Data in
the availability period can be considered. Such instances x
may have the target feature yx known (1 for default, 0 for not
default), or set to ‘unknown’ (see Section V-A). The former
instances are included in the training set T Rt. The latter are
included in the dataset for self-learning (see Section V-D). All
instances for which the lookahead period has passed (shown as
Lookahead Period Passed in Figure 2) are in the training set,
which also includes instances for which the lookahead period
has not passed yet, but the default event already occurred.



Fig. 4: Performance comparison: LSP vs LSP-Cor vs LSP-Cor+Beta vs LGBM.

Fig. 5: Calibration plot for a single test
period.

Fig. 6: Performance comparison: subsets of test data by prediction quality.

Fig. 7: LSP trained on all data w.r.t. LSP trained a single associate data.
(a) AUC improvement (mean ± stdev). (b) Associate company A. (c) Associate company B.

Hyper-parameter tuning. An extensive experimental phase of
the project considered the tuning of the hyper-parameters of
LSP and its base classifier LightGBM. In Algorithm 1, we
fixed k = 5 as a trade-off between predictive performance and
elapsed running time (see [38]). The quality bounds (lines 7, 8)
were set by expert guidance. The hyper-parameters of Light-
GBM were initially tuned at each model re-training by rely-
ing on the Optuna framework (https://optuna.readthedocs.io/).
During backtesting, however, we observed stability in the
range of hyper-parameters chosen, for which we fixed these
hyper-parameters for models trained after 2016. Model moni-
toring activities re-evaluate periodically such a choice.

Experimental results. Figure 3 (bottom) shows the size of
training sets over rolling time t, and the elapsed training times

of LSP and of the LSP with the time-consuming self-learning
option (LSP+Self). Both training set sizes and elapsed times
grow linearly over time. Training set reaches more than 1.5M
instances in the last period. The training time of LSP reaches a
maximum of about 300 seconds, while the one of LSP+Self
is an order of magnitude larger. The tests were performed on
a machine with 18 cores, 36 threads, equipped with Intel(R)
Core (TM) i9-10980XE CPU @ 3.00GHz, OS Ubuntu 20.04.3,
programming language Python 3.8.12. In the experiments, we
compare LSP to an ablation version without Bayes correction
(LSP-Cor), to a version without Bayes correction but with
Beta calibration [51] of scores (LSP-Cor+Beta), and to
a baseline consisting of a single LightGBM classifier with
no Bayes correction nor calibration (LGBM). Such a baseline

https://optuna.readthedocs.io/


approximates the related credit scoring system in Table I (but
with the same hyperparameters as LSP). The first experiment
is intended to highlight the contribution of the Bayes cor-
rection and the contribution of the “ensemble of ensembles”
strategy of Algorithm 1. We follow the approach in [52] to test
whether differences across classifiers are statistically signifi-
cant at .01 significance level. Figure 4 displays the results for
the AUC, BSS and Bin-Ece-Rating metrics. Regarding AUC,
LSP performs slightly better than LGBM (mean ± stdev of
.72± .03 vs .716± .029, not statistically significant), and ties
with LSP-Cor. The latter is expected, as Bayesian correction
is a monotonic transformation of the scores, which does not
affect ranking metrics. The plots for BSS and Bin-Ece-Rating
reveal, instead, the statistically significant advantage of using
Bayesian correction over the other approaches – especially
for calibration during the COVID-19 period starting in 2020-
06. Figure 5 contrasts the calibration of LSP, LGBM, and
LSP-Cor+Beta on a single test period t – the one with the
lowest Bin-ECE-Rating gap between the models. It shows that
LSP achieves calibration without post-processing methods.

The second experiment tests the uncertainty self-assessment
performances of LSP. Figure 6 shows that the novel approach
based on selective classification can separate instances with
very accurate predictions (3 stars quality prediction, shown
as LSP⋆⋆⋆), from instances with medium accuracy (2 stars,
shown as LSP⋆⋆), and from instances with low accuracy (1
star, shown as LSP⋆). The differences are statistically signif-
icant. Notice that LGBM is not natively a selective classifier.
Hence, it cannot provide a quality prediction. Moreover, [38]
shows that the strategy of Algorithm 1 outperforms existing
methods also in terms of coverage guarantees.

The third experiment tests the improvement in performance
for an associate to use the LSP model trained on all data
against using the LSP model trained on its own data only
(Objective O1). Figure 7a shows the mean improvement (±
stdev) over the rolling test periods. Only associates with data
in at least 10 test periods are considered. The improvement
is negatively correlated with the size of the associate. We
categorize small (l<10K contracts in total), medium (10K to
50K) and large (>50K contracts) associates. Such a correlation
is not surprising, as large associates operate across the whole
country; hence their contracts are representative of the market.
Small associates, instead, have a regional scope, and the model
built on their instances only is less general. On average,
small associates benefit from an absolute improvement in
AUC of 11%, which reduces at 7% for medium and 3% for
large associates. Figures 7b-7c show the detailed comparison
over rolling test periods for two associates. Associate A is a
large one, and the plot shows a continuous, yet decreasing,
improvement over time. The decrease is due to accumulating
a sufficiently large number of instances over time. Associate
B is also large, but the improvement is instead fluctuating.

VII. CONCLUSIONS

The LSP project has faced several challenging objectives.
Objective O1 was achieved as a by-product of sharing data

from several associate leasing companies. The increased per-
formances w.r.t. using only their own data was marked for
small and medium companies, and moderate for large com-
panies. Objective O2 required a complex workflow to collect
in real-time (and to cache) the missing financial indicators
from an external credit bureau, as well as a feature selection
of those to be collected. Objective O3 led to a novel usage
of selective classification for uncertainty estimation of risk
score by distinguishing top 50%, next 40%, and bottom
10% of the predictions w.r.t. AUC maximization. Objective
O4 was achieved by standard Shapley values, and a novel
counterfactual ensemble algorithm aimed at producing results
very fastly, also in light of Objective O5 requiring interaction
and what-if analysis. The average elapsed time for serving a
user query is 1.1 seconds. Finally, regarding Objective O6,
prior data shift was tackled by a Bayesian correction. The
critical choice of the correction parameter is supported by
default forecasts provided by the Bank of Italy.

The LSP system has been designed to be integrated into
associate leasing companies’ information and decision pro-
cesses. Input data are collected from the existing BDCR data
warehouse. Interaction with the user occurs at the same web
interface already offering statistics and analytical reports based
on the BDCR. Such a design choice is intended to reduce
the information gap and the users’ resistance to adopting
the system in daily operations. Explanations of the output
scores and uncertainty self-assessment aim at establishing trust
towards the system beyond the backtesting evidence.

Finally, we mention two issues open for future work. First,
data contributed to the BDCR pertain approved applications
whose contract has actually started. Rejected applications are
not contributed. If they were, we could have approached reject
inference methods [53] in a similar way as we dealt with
self-learning. Second, a pressing urge is to control for bias
and unfairness in data-driven AI [54] to prevent discrimina-
tory decisions against protected-by-law social groups. Leasing
contracts in the BDCR regard mostly companies, with only
3% of the contracts having a natural person lessees (in our
data, they were also indistinguishable from sole proprietor-
ship/individual businesses). While EU anti-discrimination laws
apply to natural persons only [34], other biases and forms of
ethically unacceptable decisions may indirectly be generated
through proxy features that relate social groups to e.g., type
of business or region of operation.
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