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Abstract

We present an analytic evaluation of the run-time behavior
of the C4.5 algorithm which highlights some efficiency
improvements. Based on the analytic evaluation, we have
implemented a more efficient version of the algorithm,
called EC4.5. It improves on C4.5 by adopting the best
among three strategies for computing information gain of
continuous attributes. All the strategies adopt a binary
search of the threshold in the whole training set starting
from the local threshold computed at a node. The first
strategy computes the local threshold using the algorithm
of C4.5, which in particular sorts cases by means of the
quicksort method. The second strategy also uses the
algorithm of C4.5, but adopts a counting sort method.
The third strategy calculates the local threshold using a
main-memory version of the RainForest algorithm, which
does not need sorting. Our implementation computes the
same decision trees as C4.5 with a performance gain of up
to 5 times.

Keywords. C4.5, Decision Trees, Inductive Learning, Su-
pervised Learning, Data Mining.

1 Introduction

Classification algorithms have attracted considerable
interest both in the machine learning and in the data
mining research areas. Among classification algo-
rithms, the C4.5 system of Quinlan [17, 18] deserves
a special mention for several reasons. On the one
hand, it represents the result of research in machine
learning that traces back to the ID3 system [16]. As
such, it has always been taken as the point of refer-
ence for the development and analysis of novel propos-
als. On the other hand, the results of [12] show that
the C4.5 tree-induction algorithm provides good clas-
sification accuracy and is the fastest among the com-

pared main-memory algorithms for machine learning
and data mining. It should be mentioned that several
external-memory algorithms [1, 8, 9, 14] and parallel
implementations [11, 21] have been proposed with the
aim of speeding up the execution time and reasoning
on very large training sets.

We believe that it is worth developing efficient main-
memory versions of C4.5 in addition to existing ef-
ficient external-memory and parallel algorithms. On
the one hand, due to the increasing sizes of main mem-
ories, the applicability of main-memory algorithms
is becoming wider and wider. On the other hand,
smart external memory implementations [8, 9] switch
to main-memory as soon as possible. In this paper,
we present an analytic evaluation of the run-time be-
havior of the C4.5 tree construction algorithm (in the
last release, which is Release 8), showing several ef-
ficiency limitations. We present a revised version of
C4.5, called EC4.5, that improves on C4.5 by choos-
ing the best among three strategies at each informa-
tion gain computation of continuous attributes. All
the strategies adopt a binary search of the threshold
in the whole training set starting from the local thresh-
old computed at a node. The first strategy computes
the local threshold using the algorithm of C4.5, which
in particular sorts cases by means of the quicksort
method. The second strategy also uses the algorithm
of C4.5, but adopts a counting sort method. The third
strategy calculates the local threshold using a main-
memory version of the RainForest algorithm, which
does not need sorting. The selection of the strategy to
adopt is performed accordingly to an analytic compar-
ison of their efficiency. Our implementation computes
the same decision trees as C4.5 with a performance
gain of up to 5 times.



2 The C4.5 Tree-Construction
Algorithm

2.1 Description

The algorithm constructs a decision tree starting from
a training set TS, which is a set of cases, or tuples in
the database terminology. Each case specifies values
for a collection of attributes and for a class. FEach
attribute may have either discrete or continuous val-
ues. Moreover, the special value unknown is allowed,
to denote unspecified values. The class may have only
discrete values. We denote with Cy,...,Cnciass the
values of the class.

Decision trees. A decision tree is a tree data struc-
ture consisting of decision nodes and leaves. A leaf
specifies a class value. A decision node specifies a test
over one of the attributes, which is called the attribute
selected at the node. For each possible outcome of the
test, a child node is present. In particular, the test on
a discrete attribute A has h possible outcomes A = dy,
..., A=dp, where dy,...dp are the known values for
attribute A. The test on a continuous attribute has
two possible outcomes, A <t and A > t, where t is a
value determined at the node, and called the threshold.
A decision tree is used to classify a case, i.e. to
assign a class value to a case depending on the values
of the attributes of the case. In fact, a path from the
root to a leaf of the decision tree can be followed based
on the attribute values of the case. The class specified
at the leaf is the class predicted by the decision tree.
A performance measure of a decision tree over a set of
cases is called classification error. It is defined as the
percentage of mis-classified cases, i.e. of cases whose
predicted classes differ from the actual classes.

The Tree-Construction Algorithm. The C4.5 al-
gorithm constructs the decision tree with a divide and
conquer strategy. In C4.5, each node in a tree is as-
sociated with a set of cases. Also, cases are assigned
weights to take into account unknown attribute val-
ues. At the beginning, only the root is present, with
associated the whole training set 7S and with all case
weights equal to 1.0. At each node the following di-
vide and conquer algorithm (see Program 1) is exe-
cuted, trying to exploit the locally best choice, with
no backtracking allowed.

Let T be the set of cases associated at the node. The
weighted frequency freq(C;,T) is computed (step (1))
of cases in T whose class is Cj, for i € [1, NClass].

If all cases (step (2)) in T belong to a same class

C; (or the number of cases in T is less than a certain
value) then the node is a leaf, with associated class
C; (resp., the most frequent class). The classification
error of the leaf is the weighted sum of the cases in T’
whose class is not C; (resp., the most frequent class).

If T contains cases belonging to two or more classes
(step (3)), then the information gain of each attribute
is calculated. For discrete attributes, the informa-
tion gain is relative to the splitting of cases in T into
sets with distinct attribute values. For continuous at-
tributes, the information gain is relative to the split-
ting of T' into two subsets, namely cases with attribute
value not greater than and cases with attribute value
greater than a certain local threshold, which is deter-
mined during information gain calculation.

The attribute with the highest information gain
(step (4)) is selected for the test at the node. More-
over, in case a continuous attribute is selected, the
threshold is computed (step (5)) as the greatest value
of the whole training set that is below the local thresh-
old.

A decision node has s children if Ty,...,T; are the
sets of the splitting produced by the test on the se-
lected attribute (step (6)). Obviously, s = 2 when the
selected attribute is continuous, and s = h for discrete
attributes with h known values.

For ¢ = [1,s], if T; is empty, (step (7)) the child
node is directly set to be a leaf, with associated class
the most frequent class at the parent node and classi-
fication error 0.

If T; is not empty, the divide and conquer approach
consists of recursively applying the same operations
(step (8)) on the set consisting of T; plus those cases
in T with unknown value of the selected attribute.
Note that cases with unknown value of the selected
attribute are replicated in each child with their weights
proportional to the proportion of cases in T; over cases
in T" with known value of the selected attribute.

Finally, the classification error (step (9)) of the node
is calculated as the sum of the errors of the child nodes.
If the result is greater than the error of classifying all
cases in T as belonging to the most frequent class in
T, then the node is set to be a leaf, and all sub-trees
are removed.

Information Gain. The information gain of an at-
tribute a for a set of cases T is calculated as follows. If
a is discrete, and T, ...,Ts are the subsets of T' con-
sisting of cases with distinct known value for attribute



FormTree(T')
(1) ComputeClassFrequency(7');
(2) if OneClass or FewCases
return a leaf;
create a decision node Nj;
(3) ForEach Attribute A
ComputeGain(A);
(4) N.test = AttributeWithBestGain;
(b) if N.test is continuous
find Threshold;
) ForEach T in the splitting of T
(7) if T’ is Empty
Child of N is a leaf
else
(8) Child of N = FormTree( T” );
(9) ComputeErrors of N;
return N

Program 1: Pseudo-code of the C4.5 Tree-Construction
Algorithm

a, then:
gain = info(T Z ).
where
info(T N%Ss fre (I(C;JaT) logz(freql(;ij,T))
j=1

is the entropy function. While having an option to
select information gain, by default, however, C4.5
considers the information gain ratio of the splitting
Ti,...,T,, which is the ratio of information gain to its
split information:

|T;

Split(T Z | T|
It is easy to see that if a discrete attribute has been
selected at an ancestor node, then its gain and gain ra-
tio are zero. Thus, C4.5 does not even computes the
information gain of those attributes. If a is a contin-
uous attribute, cases in T with known attribute value
are first ordered, using a Quicksort ordering algorithm.
Assume that the ordered values are vy, ..., v,. Con-
sider for ¢ € [1,m — 1] the value v = (v; + v;41)/2 and
the splitting:

(T
*92( )

T = {vjlv; <v} Ty = {vj|v; > v}.

For each value v, the information gain gain, is com-
puted by considering the splitting above. The value

v’ for which gain, is maximum is set to be the local
threshold and the information gain for the attribute
a is defined as gain, . By default, again, C4.5 con-
siders [18] the information gain ratiol of the splitting
Tl”',Tzvl. Finally, note that, in case the attribute is
selected at the node, the threshold is calculated (step
(5)) by means of a linear search in the whole training
set TS of the attribute value that best approximates
the local threshold v’ from below (i.e., which is not
greater than v'). Such a value is set to be the thresh-
old at the node.

Simplification and Evaluation. Since constructed
decision trees may be large and unreadable, and may
suffer from the over fitting problem [17, Chapter 4],
the C4.5 system offers a simplified tree, obtained by
cutting paths according to a given confidence level.
Both the decision tree and its simplified version are
evaluated by computing the percentage of cases mis-
classified by the trees. Also, such an evaluation can be
performed on a test set, a set of unseen cases during
the tree construction.

2.2 Analytic Evaluation of Run-Time
Behavior

The tree-construction algorithm is by far the most
computational expensive phase of the C4.5 system.
In fact, simplification and evaluation simply consist
of traversing the decision tree, respectively checking a
pruning condition or predicting a class for a case in the
training and test sets. Except that for tiny training
sets, the time spent for simplification and evaluation is
a small fraction of the total execution time. Therefore,
we concentrate on tree-construction.

In this section, we analyze the cost of constructing a
single node. First, note that, while the use of informa-
tion gain vs information gain ratio produces different
trees with different classification errors, the computa-
tional cost of the construction of a single node is the
same in both cases. In the rest of the paper, we will
always refer to information gain ratio (the default in
C4.5). The same reasonings apply to information gain
as well.

We denote by T the set of cases associated with a
node. Let us introduce some further notation.

|T'| cardinality of T', and analogously for any set,

! As described in [18], the information gain is always used to
find out the local threshold, while the information gain ratio is
calculated instead of the information gain only with reference
to the splitting at the local threshold.



n. the number of continuous attributes,

ng the number of discrete attributes not yet selected
at ancestor nodes,

s the number of sets of the splitting of T' at the node,

p the probability that the selected attribute is contin-
2
uous®.

The construction of a single node requires in average
the following steps:

|T'| to compute class frequencies (step (1)),

ng - |T| to compute the information gain ratio of dis-
crete attributes (step (3)),

ne - |T| - (log|T|+ 1) to sort cases in |T'| and to com-
pute (step (3)) the gain, values and the informa-
tion gain ratio (recall that C4.5 adopts a Quick-
sort ordering algorithm),

p-|TS|/2 to find the threshold in the whole training
set starting from the local threshold (step (5)),

(s+1)-|T| to arrange cases in memory to compute
the subsets associated with child nodes (step (6)).

These give rise to the following number of steps per
case:

ne-(log|T|+ 1) +p-|TS|/2-|T]) + (s +2+ng) (1)

Moreover, we provide an estimation for the memory
needed by C4.5. For each case, the following infor-
mation is maintained: attribute values, class value,
case weight, info and gain values of continuous at-
tribute splittings at the case, and a pointer to the
case. Assuming that int, float and pointer data
types require one memory word, the algorithm re-
quires |TS|-(nq +5) words of memory, where n, is the
number of attributes. In addition, the memory needed
to store the decision tree must be considered. Other
minor data structures are also maintained, but their
size is negligible.

3 From C4.5 to EC4.5

3.1 The EC4.5 System

A serious bottleneck of C4.5 is highlighted by formula
(1), where the second term, namely p- |TS|/(2-|T),

2Note that, at the root p is ne/(ne + ng), but, since discrete
attributes are never selected twice, p increases up to 1 as tree
grows (unless there is no continuous attribute).

can be very high, especially for nodes with few cases.
The bottleneck is due to the use of a linear search al-
gorithm for the threshold in the whole training set,
i.e. step (5) in Program 1. This choice is forced since
the cases in the training set may not be ordered with
respect to the attribute selected for test. We present
an implementation that eliminates the bottleneck us-
ing binary search instead of linear search. In addition,
the first term in formula (1) can be reduced by using
a different sorting algorithm or a different algorithm
to calculate gains. Our implementation, called EC4.5,
uses the best among three strategies for computing
gains and thresholds of continuous attributes (steps
(3) and (5) in Program 1).

All the strategies share the following preliminary
phase. At the root node, for each continuous attribute
a, the whole training set must be sorted® to calculate
gains. After sorting, the distinct and ordered attribute
values for continuous attribute a are stored in an array
DV]a] (DV is an abbreviation for DistinctValues).
Moreover, the attribute value v of every case is re-
placed by the index i of DV such that DV]a][i] = v.
From now on, we call i the index of v for attribute a,
and omit the attribute when clear from the context.

All the strategies use DV to perform a binary search
of thresholds at step (5) in Program 1, so eliminating
the C4.5 bottleneck. Even better, at each node, we
maintain for each attribute the range [low, high] of
indexes that case values belong to. Thus, the binary
search is performed only in that range and not in the
whole training set.

The three strategies differ in the way they compute
information gain (ratio) of continuous attributes. In
particular, strategy one and two use different sorting
algorithms, while using the same method of C4.5 for
calculating information gain. Strategy three, instead,
use a method for calculating information gain that
does not require sorting at all.

3.2 EC4.5 Strategy One

The first strategy of EC4.5 is the same as the C4.5
algorithm for the tasks of sorting and of finding out the
local threshold. The difference between this strategy
and C4.5 consists then of using binary search instead
of linear search for the task of finding out the threshold
starting from the local threshold?.

3 Actually, the EC4.5 system does not sort attributes that
have only integer values. In this case, the third strategy is
applicable, as it does not require sorting.

4A slight variant of this strategy does not require the ar-
ray DV. In fact, case partitioning can be done using the local



3.3 EC4.5 Strategy Two

The second strategy of EC4.5 adopts a sorting algo-
rithm that exploits the divide and conguer nature of
the decision-tree algorithm, and then computes gain
as in C4.5. The basic consideration of this strategy
relies on the fact that, when a continuous attribute
is selected, the range [low, high] of indexes of case
values is partitioned among child nodes into [low, h]
and [h + 1, high], for some h. Therefore, if the range
high — low is small, it could be worth to use an al-
gorithm which is in O(high — low + |T|) rather than
Quicksort, which is in O(|T|log|T|) in average. Typi-
cal instances of this case are attributes such as age,
temperature, humidity, time (years, months, weeks,
hours). However, even in the general case, as long
as the tree grows, case splitting allows us to restrict
the range of indexes more and more sharply.

CountingSort

(1) For i = low to high

Position[i] = 0;
(2) Fori=1ton

Position[Ali]] = Position[A[i]] + 1;
(3) For i = low+1 to high

Position[i] = Position[i] + Position][i-1];
(4) Fori=1ton

BJ[ Position[ A[i] | ] = A[i];

Position| A[i] | = Position[ A[i] ] - 1;
(5) Fori=1ton

Ali] = BliJ;

Program 2: Counting Sort of A[1],...,A[n]

A well-studied algorithm in O(high — low + |T|) is
Counting Sort (see e.g., [4]), attributed to H. Seward
(1954). The algorithm (Program 2) sorts an array A
of n naturals belonging to the range [low, high]. In
the EC4.5 system, such an algorithm is used to sort
the indexes of attribute values, and, a fortiori, the
attribute values of cases. The algorithm uses two aux-
iliary arrays, Position and B. At step (1), Position is
initialised. At step (2), the number of occurrences of
each value are counted. Actually, for each value k in
[low, high], we need (step (3)) the number of occur-
rences of values less or equal than k. At this point,
we have that Position[k — 1]+ 1,..., Position[k] are

threshold only. In fact, the threshold is needed only in the sim-
plification phase. Thus, after the tree has been constructed,
cases can be sorted for each continuous attribute a in turn and
then the thresholds can be computed for nodes with selected at-
tribute a. However, since the other strategies adopted by EC4.5
require DV, we prefer to follow a homogeneous presentation.

the array positions where to move A[q] if it is equal to
k. Thus, in step (4), given the value A[i], we move it
in the array B at position Position[A[i]], decrement-
ing Position[A[i]] to hold the new position where to
store the next value equal to A[i]. At the end, the
array B contains the elements of A ordered. So, we
simply copy B to A (step (5)). We have implemented
an on-the-fly version of the Counting Sort algorithm
that does not need array B, but only another array of
the same type as Position. Such an implementation
takes 2 - (high — low + 1) + 2 - |T| steps, and requires
2 - max{d,} words, where d, denotes the number of
distinct values in the training set 7S for the continu-
ous attribute a.

3.4 ECA4.5 Strategy Three

The third strategy that EC4.5 may adopt is a main-
memory implementation of the RainForest algorithm
[9] to calculate information gain. This strategy does
not require sorting at all in the calculation of infor-
mation gain. Consider a continuous attribute a. Let
us recall that [low, high] is the range of indexes of
attribute a values for cases at a node. First, an ar-
ray AVC[c][4] is filled in with the weighted sum of
cases with class ¢ and attribute value index i, with
i € [low, high]. Second, the information gain gain,
is computed by considering the splitting at values
v = (DV]a][i]+ DV]a][i +1])/2 for i € [low, high—1].
Note, that the AV C array contains all the information
needed for calculating information gains. Third, the

value v’ for which gain, is maximum is set to be the
local threshold.

This approach requires the availability of the dis-
tinct attribute values of cases, which in EC4.5 is pro-
vided by the DV[a] array. The algorithm requires
(high — low + 1) - NClass steps to initialize AVC,
|T| steps to fill in the AV C array and (high — low +
1)- NClass steps to calculate information gain. More-
over, at most NClass - maz{d,} additional words of
memory are required to maintain array AV C. How-
ever, we will see in Section 3.6 that much less memory
is actually required.

3.5 Selecting a Strategy

In the following we denote by d the integer high —
low + 1, i.e. the range of indexes of attribute values
for which information gain has to be calculated.



3.5.1 Strategy One vs Strategy Two

The difference between strategy one and strategy two
consists in the sorting algorithm. Theoretically, the
Counting Sort algorithm is more efficient than Quick-
sort, when:

2-d+2-|T| < c-[T]-log(c - |T]),

where ¢ and ¢’ model multiplicative constants due to
the actual implementations of the algorithms. Called
a = d/|T|, the fraction of the range of indexes over the
number of cases, the inequality above can be rewritten
as follows:

4etD/e /e < [T, (2)
Unfortunately, we do not know ¢ and ¢’. We followed
an experimental approach. From experimental results,
it has been observed improvement of Counting Sort
over Quicksort when a < 16 independently of the
number |T'|. This implies that for a = 16, 4(@+1)/¢ /¢!
is approximatively 1. Consider now a > 16. We can
divide the inequality (2) by 1 at the right side and
by its approximation 4(16+1)/¢ /¢! at the left side, thus
obtaining;:

4(a—16)/c < |T|

This means that when a > 16 we can still fruitfully
use Counting Sort, if there are sufficiently many cases.
The constant ¢ can now be approximated experimen-
tally, and in the actual implementation it is set to 3/4.

3.5.2 Strategy Two vs Strategy Three

Strategy three requires |T'|4+2-d- NClass steps to cal-
culate information gain ratio of an attribute. Strategy
two requires sorting, which takes 2 -d + 2 - |T| steps,
and the calculation of information gain ratio as in the
C4.5 algorithm, which takes |T'| steps. Theoretically,
strategy three is better than strategy two when:

IT|+2-d-NClass <c"-(2-d+3-|T|)

where ¢ models multiplicative constants due to the ac-
tual implementations of the algorithms. Again, called
a = d/|T|, the inequality can be rewritten as follows:
a<@3-d"-1)/(2- NClass — 2 - ¢"). The constant
c" has been approximated experimentally, and in the
actual implementation it is set to 1, which gives rise
to:

a<1/(NClass —1). (3)

3.5.3 Selecting a Strategy

Summarizing, the criterion adopted by EC4.5 in or-
der to select one of the three strategies for computing
the information gain ratio of a continuous attribute
is the following. According to (2) and (3), when
a < 1/(NClass — 1), strategy three is selected. Oth-
erwise, if & < 16 or 4(2—16)4/3 < |T|  strategy two
is selected. In the remaining cases, strategy one is
selected.

3.6 Memory Occupation

We recall that d, denotes the number of distinct at-
tribute values in the training set TS for the continuous
attribute a. Compared to C4.5 we need at most the
following additional memory:

> o da words to store distinct attribute values, i.e. ar-
ray DV,

2-maz{d,} words for the arrays used by the Count-
ing Sort algorithm,

NClass - |TS|/(NClass — 1) words for the AVC ar-
ray of strategy three. In fact, since strategy three
is applied when a < 1/(NClass — 1), we have
d < |TS8|/(NClass —1), which implies that AV C
has at most |TS|/(NClass — 1) columns.

To mitigate the requirement for additional memory,
on the one hand we limit the number of columns of
AV C (and hence the applicability of strategy three)
to |7S|/10, which experimentally seems to be a good
trade-off. On the other hand, we looked for memory
savings in the C4.5 data structures, noting that the
routine that calculates gain of continuous attributes
maintains in memory the info and gain values of split-
ting at the attribute value of each case. This is not
strictly necessary. Summing up, the additional re-
quired memory is at most:

2-maz,{d,} +Xody — 2 |TS|
+NClass - |TS|/maz{NClass — 1,10}

words. At the best (cases with only one attribute,
which is continuous and with very few distinct values),
this means saving 30% of memory required by C4.5.
At worst (all attributes are continuous and with only
distinct values), this means 100% additional memory.
In the next section, we present some experimental re-
sults showing that the additional amount of memory
required in practice is a modest fraction.



4 Experimental Results

The relevant characteristics of the training sets used
in experiments are reported in Table 1. Each row con-
tains the name of the training set (7S name), the
number of cases (|7S|), the number of class values
(NClass), the number of discrete attributes, the num-
ber of continuous attributes that have a number of dis-
tinct attribute values belonging to the intervals < 2°,
25..210 210 215 "and > 2!, and finally the total num-
ber of attributes. Training sets 1 — 9 were taken from
the UCI Machine-Learning Repository [3]. Training
sets 10 — 11 are subsets respectively of the KDD Cup
Competition 1999 and of the Forest Cover Type from
the UCI KDD Repository [2]. Finally, training sets
12 — 13 are synthetic training sets generated by the
Quest Generator [15], using function 5.

Table 2 reports the elapsed execution times (Com-
puter: Pentium II 266 Mhz 128 Mb RAM, Operating
System: Linux) of the tree-construction phase for C4.5
and ECA4.5, the additional fraction of memory required
by EC4.5 and the ratio of the time of EC4.5 over C4.5.
As one would expect, there is no advantage of EC4.5
over C4.5 for training sets with only discrete attributes
(TS no 2). We note a modest advantage for training
sets with few cases (7S no 3-4). This is due to the fact
that EC4.5 has some overhead to do indexing, which is
not negligible for small training sets. The advantage
of EC4.5 is considerable for training sets with more
and more cases (7S no 5-13). Among those, we ob-
serve that EC4.5 performs better when the number of
distinct attribute values is small (7S no 7-8). Finally,
note that for non-synthetic training sets the additional
memory required by EC4.5 is a small fraction.

Let us now compare in more detail the run-time be-
havior of EC4.5 and C4.5 on the training set Adult.
Fig. 1 shows on the Y-axis the average time per case
needed to construct a node of X cases. The two plots
show ranges for X belonging to [0-50000] and [0-500].
The up-and-down behavior of C4.5 in the [0-500] plot
is due to the highly variable time needed by linear
search of thresholds in the whole training set. To
the end of validating our theoretical analysis, consider
now each of the three strategies running separately on
Adult. Fig. 2 shows the average time per case needed
to compute information gain of continuous attributes
for cases with a in the range [0-40]. It is worth noting
that no strategy is the best for all a. Finally, the col-
umn concerning EC4.5 in Table 3 shows, in detail, the
efficiency improvements over C4.5 for the various tasks
of tree construction. The improvement due to binary

search contributes the most, then we have the one due
to the use of counting sort, and finally improvement
due to the use of the RainForest algorithm.

5 Windowing and Trials

C4.5 offers the technique of windowing, i.e. the con-
struction of decision trees for subsets of large train-
ing sets. If the resulting tree is not enough accurate
to classify the cases out of the window, then an en-
larged window is considered. The process is iterated
until convergence to a final tree. In principle, window-
ing does not have to consider the whole training set
and may produce smaller decision trees. Since the fi-
nal tree may be different for different initial windows,
the windowing approach can be repeated many times,
choosing the best tree constructed. This further tech-
nique is called the trials technique. Since windowing
and trials consist of iterating tree construction, the
advantages of EC4.5 over C4.5 are preserved, as con-
firmed by the experiments shown in Table 4.

6 Related Work

A comparison of prediction accuracy, complexity, and
training time of thirty-three (main-memory) classifi-
cation algorithms, including decision trees, rules and
neural networks, is presented in [12]. The results show
that C4.5 provides good classification accuracy and
is the fastest among the compared algorithms. The
state of the art of out-of-core algorithms is described
in [1, 8, 9], while we refer to [11, 21] for parallel im-
plementations.

Either for main-memory, out-of-core, or parallel im-
plementations, the techniques proposed to overcome
the efficiency limitations of C4.5 in handling continu-
ous attributes include pre-sorting of attributes (SLIQ
[14], SPRINT [20]), correlation analysis among at-
tributes (SONAR [7]), discretization of continuous at-
tributes in a pre-processing phase ([10]), use of clus-
tering to reduce the set of candidate local thresh-
olds (SPEC [22]), use of more efficient algorithms to
compute information gain or information gain ratio
(Fayyad and Irani [6], RainForest [9]), estimation of
thresholds from a sample of cases (CLOUDS [1]), inte-
gration of tree construction and simplification (PUB-
LIC [19]), and optimistic approaches exploiting statis-
tical technique to validate an initial tree constructed
from a subset of the training set (BOAT [8]). The sys-
tem presented in this paper falls into the techniques



No. of attributes
Disc Continuous Tot
TS name |TS|  NClass <25 25,210 210915 5 915

1 | Contraceptive 1473 3 7 1 1 9
2 Statlog Dna 2000 3 60 60
3 | St. Image Seg. 2310 7 3 11 5 19
4 Thyroid 3772 3 15 4 2 21
5 | Statlog Satel. 4435 6 36 36
6 | Musk Clean?2 6598 2 2 5 161 168
7 Letter 20000 26 16 16
8 Adult 48842 2 8 1 4 1 14
9 St. Shuttle 58000 7 9 9
10 KDD Cup 99 80000 22 8 13 18 2 41
11 Forest Cover 100000 7 44 7 3 54
12 SyD200 200000 10 3 1 1 1 3 9
13 SyD400 400000 10 3 1 1 1 3 9

Table 1: Training sets used in experiments

Tree C4.5 EC4.5 EC4.5
TS name size  Time Time Memory /C4.5
1 Contraceptive 665 | 0.149 0.066 -8.9% 0.45
2 Statlog Dna 309 | 0.150 0.150 -2.7% 1.00
3 | St. Image Seg. 101 1.50 1.21 +28% 0.81
4 Thyroid 23 | 0.151 0.130 -4.7% 0.86
5 | Statlog Satel. 505 | 4.66  2.29 -2.6%  0.49
6 Musk Clean2 235 15.3 7.92 +3.7% 0.52
7 Letter 2675 24.7 4.7 -8.3% 0.20
8 Adult 10285 54.2 12.1 -0.2% 0.23
9 St. Shuttle 61 17.8 6.1 -13.8% 0.35
10 | KDD Cup 99 312 | 134.3 56.5 -1.3% 0.42
11 | Forest Cover 5905 | 374.0 115.4 -22%  0.31
12 SyD200 6084 | 176.9 73.2 +16.3% 0.42
13 SyD400 8438 | 430.5 151.4 +13.3% 0.35
Table 2: Tree-construction elapsed times (in secs)
C4.5 C4.5+F1I EC4.5 EC4.5+F1
Task Time Time Ratio Time Ratio Time Ratio
Sorting 5.14 5.14 1.00 1.74 0.34 1.74 0.34

Gain Computation | 8.96 6.25 0.70 7.54 0.84 4.90 0.55
Threshold Search 36.6 36.6 1.00 0.01 0.01 0.01 0.01
Other Tasks 3.57 3.57 1.00 2.81 0.80 2.81 0.80
Total 54.2 51.6 0.95 12.1 0.23 9.46 0.18

Table 3: Elapsed time (in secs) and ratio (over C4.5) for the tasks of tree construction, for the training set Adult.
“FI” is an abbreviation for the optimization of Fayyad and Irani described in Section 6.
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Figure 1: Average time per case (Y-azis) needed to construct a node of X cases, for the training set Adult.
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C45 EC4.5 EC4.5 C4.5 EC4.5 EC4.5

TS name /C4.5 TS name /C4.5

1 | Contraceptive 4.23 1.65 0.39 8 Adult 1377 247.3 0.18

2 Statlog Dna 3.26 3.26  1.00 9 St. Shuttle 16.7 6.5 0.39

3 | St. Image Seg. 18.5 15.8 0.86 10 | KDD Cup 99 213 105.7 0.50

4 Thyroid 0.66 049  0.75 11 | Forest Cover | 7396 1930  0.26

5 | Statlog Satel. | 146.6 70.5 048 | 12 SyD200 2769 638  0.23

6 | Musk Clean2 67.6 328 049 | 13 SyD400 10213 1542 0.16
7 Letter 810 119.9 0.15

Table 4: Tree-construction elapsed times (in secs) for 8 trials (training sets 1-10) and 1 trial (training sets 11-13).
The experiments were conducted forcing the selection of the initial window to be deterministic (rather than random) in

order the compared algorithms to construct the same trees.

that use new algorithms to compute information gain.
We observe that some other techniques could be inte-
grated within the EC4.5 system as alternative strate-
gies, including use of clustering to reduce the set of
candidate local thresholds, estimation of thresholds,
and integration of tree construction and simplification.
Conversely, the EC4.5 strategies could help the opti-
mistic approach of BOAT in the construction of the
initial tree. The pre-sorting techniques maintain data
structures (constructed after the first sorting of at-
tributes at the root node), that are used to avoid sort-
ing. The integration of pre-sorting with the strategies
of EC4.5 must be balanced with memory occupation
of those data structures that, when considering main-
memory versions of the techniques, require 100% addi-
tional memory over C4.5. Moreover, the experiments
reported in [14] show an efficiency improvement over
IND-C4 (a predecessor of C4.5) that is lower than the
improvement of EC4.5 over C4.5.

Finally, the commercial successor of C4.5 is the C5.0
system [13]. In particular, the binary search of the
threshold is implemented in C5.0 (Quinlan, personal
communication). Although EC4.5 seems more effi-
cient than C5.0, in general the two systems cannot
be properly compared. On the one hand, C5.0 in-
cludes additional (time consuming) features that are
not present in C4.5. On the other hand, C5.0 produces
smaller (hence, time saving) decision trees.

While it is out of the scope of this paper to present
a complete review of all the mentioned approaches,
we would like to present a direct comparison with
the approach of Fayyad and Irani [6] (further ex-
tended by Elomaa and Rousu [5]). Basically, their
approach speeds up finding the local threshold for con-
tinuous attributes by considering splittings 17, Ty for
v = (v; + viy1)/2 only if v; is a boundary value. wv;
is a boundary value if there exist two cases at the

node with attribute value v; and with distinct class
value, or if all cases with attribute value v; at the
node have the same class which is not the class of all
cases with attribute value v;;1 at the node. For the
Adult training set, for instance, only the 50% of values
must be considered. However, this approach speeds up
only the task of calculating the information gain, not
the tasks of sorting or searching thresholds. We have
implemented the Fayyad and Irani strategy and com-
bined it with EC4.5. Table 3 shows for the training set
Adult the detail of the execution times and ratio (over
C4.5). The algorithms considered are C4.5, C4.5 to-
gether with the approach of Fayyad and Irani, EC4.5,
and ECA4.5 together with the approach of Fayyad and
Irani. Looking at the ratio values, we note that EC4.5
improves over C4.5 in all tasks. Moreover, for the
task of computing information gain, the integration of
EC4.5 and the approach of Fayyad and Irani results
into a faster implementation.

7 Conclusions

We believe that it is worth developing efficient main-
memory versions of C4.5. On the one hand, the in-
creasing size of main memories makes its applicability
wider. On the other hand, smart external memory
implementations switch to main-memory as soon as
possible. We have presented an analytical evaluation
of the run-time behavior of the C4.5 algorithm which
gave rise to a more efficient implementation, with a
performance gain of up to 5 times. The main advan-
tage of EC4.5 over C4.5 is the possibility to select the
best among three strategies accordingly to an analytic
comparison of their efficiency.
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