
On logic programs that always succeed

Dino Pedreschi and Salvatore Ruggieri

Dipartimento di Informatica, Università di Pisa

Via F. Buonarroti 2, 56125 Pisa, ITALY

{pedre, ruggieri}@di.unipi.it

Abstract

We introduce a generalized definition of SLD-resolution admitting re-
strictions on atom and/or clause selectability. Instances of these restric-
tions include delay declarations, input-consuming unification and guarded
clauses. In the context of such a generalization of SLD-resolution, we of-
fer a theoretical framework to reason about programs and queries such
that all derivations are successful. We provide a characterization of those
programs and queries which allows to reuse existing methods from the
literature on termination and verification of Prolog programs.

1 Introduction

There are two main advantages of reasoning on programs and queries that have
only successful derivations.

On one hand, don’t care nondeterminism can be safely adopted in executions
of logic programs, without incurring speculative computations. Under the don’t
care interpretation of nondeterminism, the operated choices are never retracted,
i.e. backtracking is not permitted. For instance, the don’t care or committed-
choice nondeterminism is the usual interpretation both in imperative parallel
languages, such as Dijkstra’s guarded commands [15], and in concurrent logic
languages [24]. From a study of the literature, it is apparent that all (correct)
parallel programs, in either paradigms, do not fail. The reason for this phe-
nomenon is that a don’t care interpretation of nondeterministic choices implies
that all possible choices are admissible, i.e. any choice leads to some solution.
This is particularly striking in the logic paradigm, where don’t know nonde-
terministic programming is also supported, and is implemented by means of
backtracking.

On the other hand, modern logic programming languages offer control mech-
anisms, such as delay declarations or some form of commitment at clause level,
that allow to restrict atom selectability and/or clause selectability. In this way,
the programmer (or the analysis phase of the compiler) provide a specification

1

On logic programs that always succeed 2

of the control. Then the compiler is free to use any execution strategy that
meets that specification, possibly together with any other optimization, such
as program transformation, coroutining, or parallel execution. While for pure
SLD-resolution the class of programs and queries that have successful deriva-
tions only is rather small, in some cases (as will be shown in the examples of
this paper) the control mechanisms mentioned above are powerful enough to
express a specification that leads to successful derivations only.

As a third, more technical, argument in favor of studying programs and
queries with only successful derivations, we observe that it is possible to simplify
the termination proofs in case there is no failed derivation. To see this point,
consider, as an example, the following program, and the query p.

p ← q, p.

A left-to-right selection strategy results in a failure when q is selected. On
the contrary, a right-to-left strategy produces an infinite derivation. As a conse-
quence, in presence of failures, the termination behavior of a program depends
on the particular selection rule adopted. We will show that, in absence of fail-
ures, termination w.r.t. a fixed selection rule implies that every derivation is
finite and successful.

Our object of study is a generalization of SLD-resolution, which is paramet-
ric w.r.t. a function R mapping a program and an atom into either a set of
clauses that are candidates for resolution or into the special value delay. The
function R models restrictions on atom selectability (by assigning the value
delay) and/or clause selectability (by mapping the selected atom into a proper
subset of the program). Particular instances include modern logic programming
languages which allow for restricting executions, e.g. to those respecting delay
declarations as in the Gödel language [17], to those respecting block declarations
as in Sicstus Prolog [18], to input-consuming derivations as described by Smaus
[25], to guarded clause resolution as in the style of SLDG-resolution of Apt and
Luitjes [3], and to combinations of them.

In the context of R-SLD resolution, we offer a theoretical framework to rea-
son about programs and queries such that all derivations for them are success-
ful. We provide a characterization of those programs and queries which allow
to reuse existing relations from the literature on termination and verification of
Prolog programs.

The characterization is expressed for generic relations µ which are persistent
along derivations, and for a µ-failure free program. µ-failure freedom requires
that when µ(P,Q) holds then some atom in Q is covered, i.e. has a justification
in the program. A µ-failure free program P and a query Q in the relation
µ cannot have deadlocked or failed derivations via any selection rule s that
selects covered atoms, if any. We call s a µ-failure free selection rule, and show
that for µ-failure free programs, at least one such a rule exists. In addition,
if we admit termination via s, no derivation of P and Q can be deadlocked or
failed. Moreover, if we admit bounded nondeterminism, i.e. a maximum length to
refutations, we can conclude that all derivations of P and Q are successful. The
general framework is then instantiated with reference to the leftmost selection

On logic programs that always succeed 3

rule as µ-failure free selection rule, and substantiated with some examples.

Plan of the paper

In the Preliminaries (Section 2) we recall some standard notation of logic pro-
gramming and several characterizations concerning moding, typing and termi-
nation of logic programs. In Section 3, the generalization of SLD-resolution
is introduced, together with several instances including derivations respecting
delay declarations, input-consuming derivations, arithmetic built-in’s, guarded
resolution. The characterizations of programs and queries with successful deriva-
tions only is offered in Section 4, and instantiated on the leftmost selection rule
in Section 5. Some examples are discussed as well. Finally, we compare related
works in Section 6.

2 Preliminaries

We adhere to the standard notation of Apt [1] for basic notions such as the
(first order) language L of programs and queries, terms, the set of ground terms
UL, atoms, the set of ground atoms BL, the set of atoms AtomL, Herbrand
interpretations and models. rel(A) is the predicate symbol of the atom A. A
query B1 , . . . , Bn is a sequence of atoms. 2 denotes the empty query. A clause
is a formula A←Q where A is an atom and Q is a query. We write the clause
as A. when Q is empty, and call it a fact clause. A program is a finite set of
clauses. Finally, we denote with PL the set of all logic programs on language L.

2.1 SLD-derivation step

We recall from [1] the definition of SLD-derivation step. Let us write mgu(A,H)
= θ if θ is the most general unifier (modulo renaming) of atoms A and H.

Definition 2.1 [SLD-derivation step] Consider a non-empty query Q = A1,
. . . , An and a clause c. Let H ←B1 , . . . , Bm be a variant of c variable disjoint
with Q. Suppose that Ai, with i ∈ [1, n], and H unify with mgu(Ai,H) = θ.
Then the query Q′:

A1θ, . . . , Ai−1θ, B1θ, . . . , Bmθ, Ai+1θ, . . . , Anθ

is called the SLD-resolvent of Q and c w.r.t. Ai with an mgu θ. Ai is called the
selected atom of Q, and H ←B1 , . . . , Bm is called the input clause. Also, we
write:

Q⇒ i,θ
c Q′

and call it an SLD derivation step. 2

On logic programs that always succeed 4

2.2 Modes

For a predicate p/n, a mode is an atom p(m1, . . . ,mn), where mi ∈ {I ,O} for
i ∈ [1, n]. Positions with I are called input positions, and positions with O are
called output positions of p. To simplify the notation, an atom written as p(s, t)
means: s is the vector of terms filling in the input positions, and t is the vector
of terms filling in the output positions.

In the literature, several correctness criteria concerning the modes have been
proposed. In this article, we need simply moded programs [2]. We say a sequence
of terms is linear if each variable occurs at most once in the sequence.

Definition 2.2 [Simply-moding] A clause p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn)
is simply-moded if t1, . . . , tn is a linear vector of variables and for all i ∈ [1, n]:

Var(ti) ∩Var(t0) = ∅ and Var(ti) ∩
i⋃

j=1

Var(sj) = ∅.

A query Q is simply-moded if the clause q←Q is simply-moded, where q is
any variable-free atom. A program is simply-moded if all of its clauses are. 2

Thus, a clause is simply-moded if the output positions of body atoms are
filled in by distinct variables, and every variable occurring in an output position
of a body atom does not occur in an earlier input position. In particular, every
unit clause is simply-moded.

2.3 Well-typing

Among the proposed type systems for logic programs, we recall well-typing [11].
By following the presentation style of [4], a type is a non-empty set of terms
closed under instantiation. Let us fix the notation for some types: U is the set
of all terms; Ground is the set of ground terms; List is the set of lists, formally
defined as: List ::= [] | [U | List]; Gae is the set of all ground arithmetic
expressions (gae’s, in short), formally defined1 as: Gae ::= n | Gae bop Gae |
uop Gae, where n is a numeric constant, bop is any binary arithmetic operator,
and uop is any unary arithmetic operator; List(Gae) is the set of lists of gae’s,
formally defined as: List(Gae) ::= [] | [Gae | List]. We write s ∈ S to
denote that each term in the sequence s belongs to the type occurring at the
same position in the sequence S.

For a predicate p/n, a type is an atom p(m1 : t1, . . . ,mn : tn), where
p(m1, . . . , mn) is a mode for p/n and ti is a type for i ∈ [1, n]. The ti’s oc-
curring in input positions are called input types, otherwise output types. To
simplify the notation, an atom written as p(s : S, t : T) means: s is the vector
of terms filling in the input positions with types S, and t is the vector of terms
filling in the output positions with types O.

1In case the division operator is admitted, the set Gae is assumed not to include division
by 0, e.g. as in 3/0.

On logic programs that always succeed 5

Definition 2.3 [Well-typing] A clause c is well-typed if for every

p0(o0 : O0, in+1 : In+1) ← p1(i1 : I1,o1 : O1), . . . , pn(in : In,on : On)

instance of c,

for i ∈ [1, n + 1], o0 ∈ O0 ∧ . . . ∧ oi−1 ∈ Oi−1 implies ii ∈ Ii.

A query Q is well-typed if the clause q←Q is well-typed, where q is any variable-
free atom. A program is well-typed if all of its clauses are. 2

2.4 Well-assertedness

Types express monotonic (w.r.t. instantiation) properties of terms. In some
cases, however, we need to express non-monotonic properties, such as “X is a
variable” or “T = [X|Xs] with X, Xs variables”. We recall the method of
Drabent and MaÃluszyński [16] in a simplified form (from [4]). A specification is
a pair (pre, post) where pre, post⊆AtomL. A valuation sequence for a clause
c : A←B1 , . . . , Bn and an atom H is a sequence of substitutions ρ0, . . . , ρn

such that: (1) vars(H) ∩ vars(c) = ∅; (2) ρ0 = mgu(A,H); (3) there exists
σ1 , . . . , σn such that for every i ∈ [1, n]: ρi = ρi−1σi, dom(σi)⊆ vars(Biρi−1)
and range(σi) ∩ vars((B1 , . . . , Bn)ρi−1)⊆ vars(Biσi−1). Intuitively, a valua-
tion sequence is an abstraction of the sequence of computed answer substitutions
in a derivation of H using c as input clause at the first SLD-derivation step.

Definition 2.4 [Well-Assertedness] A clause c : A←B1 , . . . , Bn is well-asserted
w.r.t. (pre, post) if for every H ∈ Pre and every valuation sequence ρ0, . . . , ρn

for c and H:

for i ∈ [1, n] B1ρ1 ∈ post ∧ . . . ∧ Bi−1ρi−1 ∈ post implies Biρi−1 ∈ pre

B1ρ1 ∈ post ∧ . . . ∧ Bnρn ∈ post implies Aρn ∈ post.

A query Q is well-asserted w.r.t. (pre, post) if the clause q←Q is well-asserted
w.r.t. (pre ∪ {q}, post ∪ {q}) where q is a fresh variable-free atom. A program
is well-asserted w.r.t. (pre, post) if all of its clauses are. 2

2.5 Acceptability

Acceptability [5] is a sound characterization of programs and queries with only
finite derivations via the leftmost selection rule. The characterization uses the
well-known concepts of level mappings | | : BL →N , i.e. functions from the
Herbrand base BL to natural numbers, and Herbrand interpretation, i.e. subsets
of BL. Also, let us denote by groundL(c) the set of ground instances of clause
c on language L.

Definition 2.5 [Acceptability] Let I be a Herbrand interpretation, and | | :
BL →N a level mapping. A clause c is acceptable by | | and I if I is a model of
c and for every A←B1 , . . . , Bn in groundL(c) :

for i ∈ [1, n] I |= B1, . . . , Bi−1 implies |A| > |Bi|.

On logic programs that always succeed 6

A query Q is acceptable2 by | | and I if there exists k ∈ N such that for every
ground instance A1 , . . . , An of it:

for i ∈ [1, n] I |= A1, . . . , Ai−1 implies k > |Ai|.

A program is acceptable by | | and I if all of its clauses are. 2

3 Generalizing SLD-resolution

In this section, we present a generalization of SLD-resolution which takes into
account restrictions on atom and/or clause selectability.

3.1 R-SLD resolution

Throughout this paper, we will consider functions R mapping a program P and
an atom A into a subset of clauses of P that can be selected to resolve A. In
order to model non-selectability of A, R(P,A) may assume the special value
delay.

Assumption 3.1 We denote by R (possibly superscripted) a function that
maps a program P and an atom A either into a subset of P or into the spe-
cial value delay. We assume R is invariant under renaming, i.e. R(P, A) =
R(P,B) for B variant of A. 2

We extend SLD-resolution by allowing a derivation step only when the input
clause is admitted by the R function.

Definition 3.2 [R-SLD derivation step] Consider a non-empty query Q =
A1 , . . . , An . An R-SLD derivation step is:

• a SLD-derivation step Q⇒ i,θ
c Q′ for some i ∈ [1, n] such that c ∈ R(P,Ai) 6=

delay; in this case, we call Ai the selected atom and Q′ an R-SLD resol-
vent of P and Q;

• or a failure step Q⇒ ifail for some i ∈ [1, n] such that R(P, Ai) 6= delay
and there is no R-SLD resolvent of P and Ai: in this case, we call Ai the
selected atom;

• or a deadlock step Q⇒ deadlock otherwise, namely if for every i ∈ [1, n],
R(P,Ai) = delay.

We write Q⇒ RQ′ to denote an R-SLD derivation step from Q into a state Q′,
where states are either queries, or the special symbols fail and deadlock. 2

Derivations can now be defined as the maximal sequences of R-SLD deriva-
tion steps.

2Apt and Pedreschi [5] call Q bounded.

On logic programs that always succeed 7

Definition 3.3 [R-SLD derivation] An R-SLD derivation of a program P and
a query Q0 is a maximal sequence (possibly infinite)

Q0 ⇒ RQ1 . . . Qn−1 ⇒ RQn ⇒ R . . .

such that if Q′⇒ RQ′′ is a SLD-derivation step in the sequence then the input
clause employed is variable disjoint from the set of variables occurring in Q0 or
in the mgu’s used at earlier steps or in the input clauses used at earlier steps.

2

Renaming apart of input clauses and the assumption that R is invariant un-
der variable renaming allows us to reason about R-derivations modulo variable
renaming. Also, as one could expect, by defining Rsld(P, A) = P , Rsld-SLD
resolution boils down to SLD-resolution.

Differently from SLD-derivations, finite R-SLD derivations may be success-
ful, failed, or deadlocked. Deadlock occurs when the R function labels every
atom in the last query as unselectable.

Definition 3.4 Let ξ be a finite R-SLD derivation of P and Q whose last state
is Q′. We say that:

• ξ is successful, or that ξ is a refutation, if Q′ is the empty query;

• ξ is failed if Q′ = fail;

• ξ is deadlocked if Q′ = deadlock. 2

Starting from this definition, R-SLD computed instances are defined in the
standard way [1]. Since R-SLD refutations are actually SLD-refutations, the
SLD-resolution Soundness Theorem extends to R-SLD resolution, i.e. every
computed instance of P and Q is a logical consequence of P . However, since
function R may cut some SLD-derivations a Completeness Theorem does not
hold in general. Consider for instance, the function R(P,A) = delay for all P
and A. R admits only deadlocked derivations.

It is worth noting that function R affects both clause selectability (c 6∈
R(P,A) 6= delay means c is not selectable) and atom selectability (R(P, A) =
delay means A is not selectable). The definition of selection rules must then
consider selectable atoms only.

Definition 3.5 [Selection rules] Let INITP stand for the set of initial frag-
ments of R-SLD derivations of a program P in which the last state is a non-
empty query Q such that R(P, A) 6= delay for some A in Q.

A selection rule is a function which, when applied to an element in INITP

yields an occurrence of an atom A in its last query such that R(P, A) 6= delay.
An R-SLD derivation of P and Q via a selection rule s is an R-SLD deriva-

tion where the atoms selected are chosen accordingly to s.
The leftmost selection rule is the one that always selects in a query the

leftmost atom A such that R(P,A) 6= delay. 2

On logic programs that always succeed 8

Starting from this definition, the notion of R-SLD tree is derivable in the
usual way. Again, we observe that for Rsld, the notions of selection rule and
leftmost selection rule boil down to standard definitions.

3.2 Modeling extensions of SLD-resolution

We are now in the position to model several extensions of SLD-resolution in a
uniform framework.

3.2.1 Delay declarations

Let us define:

Rg(P, A) =
{

P if A ∈ delay decl(P)
delay otherwise,

where delay decl(P) is a set of atoms closed under renaming and specified by
means of some program annotation. We say that an atom A respects its delay
declarations if A ∈ delay decl(P).

Rg-SLD resolution models the operational semantics of the Gödel program-
ming language [17], where delay decl(P) is specified by means of program an-
notations called delay declarations (a less expressive form of such annotations is
available in Sicstus Prolog [18], where they are called block declarations). In this
case, only atoms which are in delay decl(P) can be selected. The formal seman-
tics of Gödel does not specify any selection rule, but practical implementations
usually adopt the leftmost one. The following program Perm for computing
permutations of a list is often used as an example:

(p1) perm([], []).

(p2) perm([X|Xs], Ys) ←
perm(Xs, Zs),

delete(X, Ys, Zs).

(p3) delete(X, [X|Y], Y).

(p4) delete(X, [H|Y], [H|Z]) ←
delete(X, Y, Z).

The following delay declarations:

DELAY perm(X, Y) UNTIL nonvar(X)

DELAY delete(X, Y, Z) UNTIL nonvar(Z)

specify the necessary conditions for an atom to be selected. In this example,
perm(Xs, Y s) may start to compute a permutation if at least one element is
present in the list Xs, and analogously for delete(X, Y s, Xs).

Consider the query perm([a,f(b),C], A). An Rg-SLD tree of Perm and the
query above is shown in Fig. 1. Selected atoms are underlined. For readability
reasons, only some of the mgu’s are reported. It is worth noting that all deriva-
tions are successful. Also, note that the circled query contains two atoms in
it satisfying their respective delay declarations, i.e. delay declarations drive the
computation but still allow some degree of freedom in the choice of the selection
rule.

On logic programs that always succeed 9

p4

delete(a, A, [f(b),C])

delete(a, A1, [C])

Computed Instance
perm([a,f(b),C],[a,f(b),C]) p4 A1=[C|A2]

p4 A=[f(b)|A1]

delete(a, A2, [])

Computed Instance
perm([a,f(b),C],[f(b),C,a])

p4 A=[C|A3]

delete(f(b), Y1, [])

Computed Instance
perm([a,f(b),C],[a,C,f(b)])

delete(f(b), Y1, []),delete(a, A3, Y1)

delete(a, A4, [])

delete(f(b), Z1s, [C]),delete(a, A, Z1s)

delete(C, Z2s, []),delete(f(b), Z1s, Z2s),delete(a, A, Z1s)

p3

perm([f(b),C], Z1s),delete(a, A, Z1s)

p2

p2

p2

p1

perm([C], Z2s),delete(f(b), Z1s, Z2s),delete(a, A, Z1s)

perm([], Z3s),delete(C, Z2s, Z3s),delete(f(b), Z1s, Z2s),delete(a, A, Z1s)

p3

perm([a,f(b),C],[f(b),a,C])
Computed Instance

p3 A1=[a,C]

p3 A=[a,C|Y1]

perm([a,f(b),C],[C,a,f(b)])

Computed Instance

p3 A3=[a,f(b)] p4 A3=[f(b)|A4]

p3 A4=[a]

perm([a,f(b),C], A)

delete(f(b), Y1, []),delete(a, A, [C|Y1])

Computed Instance
perm([a,f(b),C],[C,f(b),a])

delete(a, A3, [f(b)])

p3 A=[a,f(b),C]

p3 A2=[a]

p3 Y1=[f(b)]

Figure 1: An Rg-SLD tree

3.2.2 Input-consuming derivations

A mode for the predicates of program Perm is:

perm(I, O), delete(I, O, I)

denoting that the second position of perm (resp., delete) is output, while the
first (resp., the first and the third) is input.

The notion of input-consuming derivation was introduced and motivated
by Smaus [25] in order to model derivations that do not instantiate input
positions of selected atoms. We say that p(s, t) and a (standardized apart)
clause c ic-unify if there exists an mgu θ of p(s, t) and the head of c such that
dom(θ) ∩ var(s) = ∅. Also, let us introduce some useful notation:

IC(P,A) = {H ←B1 , . . . , Bn ∈ P | A and H ic-unify}

U(P, A) = {H ←B1 , . . . , Bn ∈ P | there exists mgu(A,H)}.
With these notations, input consuming derivations are modelled by Ric-SLD

On logic programs that always succeed 10

resolution, where:

Ric(P, A) =




IC(P, A) if IC(P, A) 6= ∅
∅ if U(P,A) = ∅
delay otherwise.

Intuitively, if an atom A ic-unifies with some clause head, then an Ric-SLD
resolvent exists. If A does not unify (and then it does not ic-unify) with any
clause head, then noRic-SLD resolvent of P and A can exist, i.e. we have failure.
Otherwise, A does not ic-unify with any clause head but still unifies with some:
we model3 such a case by delay, since an Ric-SLD resolvent may exists, but it
depends on further instantiation of the query where A appears.

A striking difference between Ric and Rg-SLD resolution is that the latter
restricts atom selectability only, while the former restricts clause selectability as
well. As an example, consider the Perm program and the query delete(a, B,
A). Since the atom in the query does not respect its delay declaration, it is not
selectable, which implies that there is one deadlocked Rg-SLD derivation. In
contrast, the atom delete(a, B, A) ic-unifies with the head of the fact clause,
hence there exists an Ric-SLD refutation with computed instance delete(a,
[a|A], A). For a more general comparison on the two resolution methods, we
refer the reader to [9].

3.2.3 Arithmetic built-in’s

We reason here on arithmetic built-in’s by giving special meaning to some pre-
defined predicate symbols, including arithmetic predicates <, =<, =:=, =\=,
>, >= and is. We distinguish arithmetic atoms in clauses by writing:

A←G, B1 , . . . , Bn

where G is the collection (not necessarily at the beginning of the body of the
clause) of atoms with arithmetic predicates. Following Kunen [19], we assume
that arithmetic predicates are declaratively defined by (infinite) sets of ground
facts, which we implicitly assume to be part of the program. For instance, the
built-in < is defined by:

M< = {x < y. | x, y ∈ Gae ∧ val(x) < val(y)},
where Gae is the set of ground arithmetic expressions (gae’s for short), and
val(x) is the integer represented by the Gae x. The built-in is has a slightly
different definition:

Mis = {x is y. | x ∈ Gaec, y ∈ Gae ∧ val(x) = val(y)},
where Gaec is the set of numerals {0, 1, -1, 2, -2 ...}. The union of all the
sets Mop, where op is a built-in is denoted by MAr. From an operational point

3Note that our modeling is the same of [22], but slightly differs from the original definition
of [25]. In the latter, it was not specified a name for the situation when for no A atom in a
clause IC(P, A) 6= ∅, since the main interest was in termination.

On logic programs that always succeed 11

of view, atoms with predicates <, =<, =:=, =\=, > or >= can be interpreted
only when their arguments are gae’s, while atoms with predicate is can be
interpreted when the right argument is a gae. In these cases, we say that the
atoms are correctly typed. We model the correctly typing precondition by the
following assumption.

Assumption 3.6 We assume that every R function is always defined on arith-
metic atoms as follows, for op in { <, =<, =:=, =\=, >, >= }:

R(P, x op y) =
{

MAr if x, y are gae’s
delay otherwise,

and for op equal to is:

R(P, x op y) =
{

MAr if y is a gae
delay otherwise.

2

With these preconditions, there is at most one R-SLD resolvent for a given
program and query when the atom selected is arithmetic. Finally, observe that
the behavior of Prolog built-in’s slightly differs from our semantics. A Prolog
derivation ends into a run-time error when an arithmetic atom is selected such
that it is not correctly typed. In contrast, in our framework, the atom cannot
be selected at all (and this may lead to deadlock).

3.2.4 SLDG-resolution

Arithmetic built-in’s can be used as guards, i.e. tests to control clause selectabil-
ity. This use is customary in concurrent programming languages and in presence
of don’t care nondeterminism, where a clause is selected only under some con-
ditions. Let us consider:

try(A, H ←G, B1 , . . . , Bn) =





θ if mgu(A,H) = θ
∧ Gθ correctly typed
∧ MAr |= ∃Gθ

suspend if mgu(A,H) = θ
∧ Gθ not correctly typed

fail otherwise.

We say that A guardedly unifies with c when try(A, c) = θ, i.e. A unifies with
the head of c and the guard is correctly typed and satisfiable. If A and the
head of c unify but the guard is not correctly typed, guarded unification is still
possible after some other derivation steps, so try(A, c) = suspend. Finally, if A
and the head of c do not unify, or they unify but the guard is correctly typed and
unsatisfiable then try(A, c) = fail. Called T (P, A) = {c ∈ P | try(A, c) = θ},
we define:

Rsldg(P, A) =




T (P, A) if T (P, A) 6= ∅
∅ if ∀ c ∈ P. try(A, c) = fail
delay otherwise.

On logic programs that always succeed 12

In this case, arithmetic atoms in G (we call G the guard) restrict the applicabil-
ity of a clause in a derivation step. A clause can be selected only if it guardedly
unifies with the selected atom. If for every clause c ∈ P , try(A, c) = fail then
the selection of A leads to a failed derivation. Finally, if there is no clause that
guardedly unifies with A, and at least one clause for which try returns suspend
then the selection of A must be delayed.

The core of such a form of resolution, called SLDG resolution, was introduced
by Apt and Luitjes [3]. Another related definition, which admits constraints in
guards and does not consider typing, is studied by Maher [20] in the context of
committed-choice logic programs.

3.2.5 G+SLDG-resolution

Consider now two functions R1 and R2. The function:

(R1 +R2)(P, A) =





delay if R1(P, A) = delay
or R2(P, A) = delay

R1(P, A) ∩R2(P, A) otherwise,

models the resolution method where an atom and a clause may resolve iff they
may resolve both with respect to R1 and R2. As an example, the operational
semantics of the function:

Rg+sldg(P, A) = (Rg +Rsldg)(P,A)

restricts clause applicability through guards, and atom selectability through
delay declarations. The following program Partition, for partitioning a list of
gae’s, is a simple example:

DELAY part(X, Xs, Ls, Bs) UNTIL nonvar(Xs)

part(,[],[],[]).

part(X,[Y|Xs],[Y|Ls],Bs) ← X >= Y, part(X,Xs,Ls,Bs).

part(X,[Y|Xs],Ls,[Y|Bs]) ← X <= Y, part(X,Xs,Ls,Bs).

In the concurrent interpretation of logic programs [24], atoms model pro-
cesses, shared logical variables model communication by means of multiparty
channels, clauses model dynamic process activation, and queries model dynamic
networks of asynchronous processes. In this context, Rg can be interpreted as
modeling synchronization conditions on process activations (e.g., there is some
input in a channel), while Rsldg can be interpreted as modeling nondeterminis-
tic choices (e.g., if the input is lower or equal than some value then send it to
an output channel; otherwise send it to another output channel). Also, in this
context deadlocked derivations model deadlock computations of the network of
processes. As an example, given the query

part(4,[1,2,3,4,5,6],Ls,Bs),part(2,Ls,LLs,BBs)

Ls is a communication channel between the two atoms in the query; the delay
declaration allows the right atom/process to read from Ls if it is non-empty;
and the guards allow an atom/process to make a (non speculative) step that
depends on current input.

On logic programs that always succeed 13

4 Characterizing successful programs and queries

R-SLD derivations can be infinite, successful, failed or deadlocked. In this sec-
tion, we provide some sufficient conditions on programs and queries, which allow
us to prove absence of infinite derivations, absence of deadlock, and absence of
failed derivations. As a result, only successful derivations are admitted.

4.1 Persistent relations

Reasoning on programs and queries is usually done by abstracting the interest-
ing properties (termination, correctness, call-patterns, etc.) by means of some
intended relation µ(P,Q) over programs P and queries Q. Persistency of the
intended relation yields a method for conducting inductive proofs of correctness,
termination, etc., and has been shown for many analysis frameworks, including
well-typing, acceptability and, under some restrictions, simply-moding.

Definition 4.1 [Persistent relations] A relation µ over programs and queries is
a persistent relation w.r.t. R if when µ(P, Q) holds then µ(P, Q′) holds for every
R-SLD resolvent Q′ of P and Q. 2

Since an R-SLD resolvent is an SLD-resolvent, a relation which is persistent
w.r.t. Rsld (i.e., along SLD-derivations) is persistent w.r.t. any R.

4.2 Failure free programs and selection rules

We introduce next a notion useful to show absence of deadlock and, under some
conditions, of failed derivations.

Definition 4.2 [Failure free programs] Let µ be a persistent relation w.r.t. R,
and P a program.

An atom A is covered (in P) if there exists c ∈ R(P,A) 6= delay such that
A unifies with the head of a renaming of c variable disjoint with A.

P is µ-failure free if for every non-empty query Q such that µ(P, Q) holds,
there exists a covered atom in Q. 2

Intuitively, a program is µ-failure free if for every query Q in the intended
relation µ there exists an R-SLD resolvent of P and Q. As an example, P is
µ-failure free w.r.t. Ric if when µ(P,Q) holds there exists an atom in Q that ic-
unifies with the head of some clause of P . As a first property of failure freedom,
we observe that it prevents deadlocks.

Lemma 4.3 Let µ be persistent relation w.r.t. R, and P a µ-failure free pro-
gram. If µ(P, Q) holds, then no R-SLD derivation of P and Q is deadlocked.

Proof. Assume a derivation deadlocks, i.e. Q⇒ R . . . ⇒ RQ′⇒ Rdeadlock. Since
µ is a persistent relation, µ(P, Q′) holds. Since P is µ-failure free, there exists
a covered atom A in Q′, which implies R(P,A) 6= delay, i.e. no deadlock. 2

On logic programs that always succeed 14

Even if some covered atom in Q exists, it is not necessarily the case a given
selection rule selects a covered atom. Failure freedom ensures the existence of
a µ-failure free selection rule, which is a rule that selects covered atoms only.

Definition 4.4 [µ-failure free selection rules] Let µ be a persistent relation
w.r.t. R. A selection rule s is µ-failure free for a program P if for every query
Q such that µ(P, Q) holds, every atom A selected in a derivation of P and Q
via s is covered. 2

Lemma 4.5 Let µ be a persistent relation w.r.t. R and P a µ-failure free pro-
gram. Then there exists a selection rule which is µ-failure free for P .

Proof. Consider a rule s that selects only covered atoms, if any. Under the
assumption that P is µ-failure free, such a rule is µ-failure free for P . In fact,
assume that µ(P,Q) holds, and let Q′ be the last query of an element in INITP .
Since µ is persistent, µ(P, Q′) holds. Since P is µ-failure free, there exists a
covered atom in Q′. Therefore, s can always select some covered atom. 2

Note that the converse of the lemma does not hold. In fact, assume that
R(P,A) = delay for all P and A; and that µ(P, Q) holds for all P and Q. Since
every derivation of the empty program and any non-empty query is deadlocked
at the first derivation step, there is no selected atom by any selection rule.
Therefore, any selection rule is µ-failure free. However, the empty program is
not µ-failure free.

As the name suggests, µ-failure free selection rules cannot lead to failure.

Lemma 4.6 Let µ be a persistent relation w.r.t. R, and s be a µ-failure free
selection rule for P . If µ(P,Q) holds, then no R-SLD derivation of P and Q
via s is failed.

Proof. Assume there is a failed derivation Q⇒ R . . . ⇒ RQ′⇒ Rfail. In par-
ticular, for the selected atom A in Q′, we have R(P, A) = ∅. However, since s
is µ-failure free for P and µ(P,Q) holds, we also have that A is covered, which
implies R(P,A) 6= ∅. This is a contradiction. 2

However, the conclusion does not hold for every selection rule.

Example 4.7 Consider the simple program LeftRight:

p ← q, p.

and the relation such that µ(P, Q) holds for P = LeftRight and Q = q,
. . ., q, p. It is easily checked that µ is persistent and LeftRight is µ-failure
free. Also, the rightmost selection rule turns out to be µ-failure free. By Lemma
4.6, every Rsld-SLD derivation of LeftRight and p via the rightmost selection
rule is not failed. However, there exists a failed Rsld-SLD derivation via the
leftmost selection rule. 2

Obviously, by showing that all R-SLD derivation of P and Q via a µ-failure
free selection rule s are finite, we can conclude that they are all successful.

On logic programs that always succeed 15

4.3 Failure freedom w.r.t. all selection rules

Lemma 4.5 shows that for a µ-failure free program P there exists some µ-failure
free selection rule s. For Q such that µ(P, Q) holds, Lemma 4.6 states that no
R-SLD derivation of P and Q via s can fail.

Under additional hypothesis, we can extend the same conclusion to any
selection rule. Our results will consider functions R that are monotonic.

Definition 4.8 [Monotonicity of R] We assume that for every atom A such
that R(P, A) 6= delay, if some instance A′ of A is covered then A is covered. 2

The Rsld,Rg, Ric, Rsldg and Rg+sldg functions are monotonic.
This is obvious for Rsld, since A′ covered means A′ unifies with some clause

head and then A unifies with the same head. The same result holds for Rg.
Consider Ric: if Ric(P, A) 6= delay then either A is covered or A unifies

with no clause head. In the first case, we have the conclusion. In the second
case, we have that neither A′ unifies (and then ic-unifies) with any clause head,
hence it cannot be covered.

Consider now Rsldg. Let A′ be covered. If Rsldg(P,A) 6= delay then either
A is covered or try(A, c) = fail for every c ∈ P . However, try(A, c) = fail
implies try(A′, c′) = fail, and then A′ cannot be covered. Therefore, A is
covered.

Finally, the results hold for Rg+sldg by observing that an atom is covered
w.r.t. Rg+sldg iff it is covered w.r.t. both Rg and Rsldg.

Example 4.9 Consider the non-monotonic pathological Rgr function defined
as Rgr(P, A) = P if A is ground and Rgr(P, A) = ∅ otherwise. The intended
meaning of Rgr is to admit only ground derivations. However, a non-ground
atom in a query leads to failure.

Rgr would become monotonic (and also less pathological) by definingRgr(P, A)
= delay for A not ground. In this case, a non-ground atom in a query leads to
deadlock. 2

Under the assumption of monotonicity, termination via a µ-failure free se-
lection rule implies absence of failures for every derivation.

Definition 4.10 [Termination] Let µ be a persistent relation. A selection rule
is µ-terminating if µ(P, Q) implies that every R-SLD derivation of P and Q via
s is finite. 2

Lemma 4.11 Let µ be a persistent relation w.r.t. a monotonic function R.
If there exists a selection rule that is both µ-failure free for a program P

and µ-terminating, then for every query Q such that µ(P, Q) holds, no R-SLD
derivation of P and Q is failed.

Proof. Assume, on the contrary, a derivation ξ = Q⇒ R . . . Q′⇒ Rfail, and
let A be the atom selected in Q′. We have that for every c ∈ R(P, A) 6= delay,
A and the head of c do not unify, which implies that A is not covered. We will

On logic programs that always succeed 16

show a contradiction. Since µ is persistent, µ(P, Q′) holds. Let s be a selection
rule both µ-failure free for P and µ-terminating. By Lemmata 4.3 and 4.6, no
derivation of P and Q′ via s is deadlocked or failed. Moreover, there exists a
finite derivation ξ′ of P and Q′ via s, which must then be successful. In ξ′ a
(further instantiated) occurrence of A is eventually selected. Let A′ be such an
(instantiated) occurrence. Since s is µ-failure free for P , A′ is covered. Since R
is monotonic, A is covered as well, which is a contradiction. 2

4.4 Success w.r.t. all selection rules

Under the hypotheses of Lemma 4.11, we cannot conclude that all derivations
are successful.

Example 4.12 Consider the following program w.r.t. Rsldg-SLD resolution:

q(0).

p(X).

p(X) ← X < 2, q(Y), p(Y).

Let µ be a relation containing the program above with the empty query
or with queries of the form: (1) 0 < 2, . . ., 0 < 2, q(X), p(X); (2) 0 < 2,
. . ., 0 < 2, p(0); (3) 0 < 2, . . ., 0 < 2, q(X); (4) 0 < 2, . . ., 0 < 2. µ
is persistent w.r.t. Rsldg: (1) may resolve in (1) or (2) or (3); (2) may resolve
in (1), (2) or (4); (3) may resolve in (3) or (4); (4) may resolve in (4) or in the
empty query. Also, we observe that the rightmost selection rule is µ-failure free
and µ-terminating. However, there exists an infinite derivation via the leftmost
selection rule for queries of the form (2). The reason lies in the fact that the
rightmost selection rule prevents the selection of the recursive clause, which lead
to infinite derivations via the leftmost selection rule. 2

Intuitively, by requiring termination of all derivations we have the desired
result. Actually, a weaker assumption is sufficient, and also necessary, which is
known as bounded nondeterminism [21].

Definition 4.13 [Bounded nondeterminism] Let µ be a persistent relation w.r.t.R.
µ implies bounded nondeterminism w.r.t. R if for every µ(P,Q) there exists
k ∈ N such that every R-SLD refutation of P and Q has length at most k. 2

We are now in the position to characterize programs and queries with only
successful derivations. Let us introduce the main result of this paper.

Theorem 4.14 Let µ be a persistent relation w.r.t. a monotonic function R,
and P a program. The following are equivalent conditions:

[A] (i) P is µ-failure free,

(ii) there exists a selection rule that is both µ-failure free for P and µ-
terminating,

(iii) µ implies bounded nondeterminism.

On logic programs that always succeed 17

[B] (i) for every query Q such that µ(P, Q) holds, all R-SLD derivation of P
and Q are successful.

[C] (i) P is µ-failure free,

(ii) for every query Q such that µ(P, Q) holds, all R-SLD derivations of
P and Q are finite.

Proof. [A] ⇒ [B] Let P and Q such that µ(P,Q) holds, and consider an
arbitrary R-SLD derivation ξ of P and Q.

By Lemma 4.3, (i) implies that ξ is not deadlocked.
By Lemma 4.11, (ii) implies that ξ is not failed.
By showing that ξ is not infinite, we have that it must be successful, i.e. the

conclusion. Assume the contrary, i.e. ξ is such that Q = Q0 ⇒ R . . . ⇒ R

Qn ⇒ R Since µ is persistent, µ(P,Qi) holds for i ≥ 0. Let s be a selection
rule such that (ii) holds. Since no derivation of P and Qi via s is deadlocked or
failed, and there exists a finite one, we conclude that there exists a successful
derivation ξ′ of P and Qi via s. This implies that there exist R-SLD refutations
of P and Q of arbitrary length, which contradicts the hypothesis (iii) of bounded
nondeterminism.

[B] ⇒ [C]
(i) If µ(P, Q) holds for Q non-empty then there exists an R-SLD resolvent

of P and Q, since no derivation is failed or deadlocked. A fortiori, there exists
a covered atom in Q.

(ii) Trivial.
[C] ⇒ [A]
(i) Trivial.
(ii) By (i) and Lemma 4.5, there exists a a selection rule s which is µ-failure

free for P . Since for every P and Q such that µ(P,Q), all derivations of P and
Q via s are finite, we conclude that s is also µ-terminating.

(iii) Let P and Q be a program and a query such that µ(P, Q) holds. Con-
sider the maximal tree where the root is labelled with Q, and such that Q′′ is
a child of Q′ iff Q′⇒ RQ′′ holds. Such a tree is finitely branching, since P is a
finite set of clauses or, for arithmetical built-in’s, the R function ensures finitely
many resolvents. Moreover, since all derivations of P and Q are finite, all paths
in the tree must be finite. By Köning’s lemma the tree is finite, and hence there
exists k ∈ N such that every R-SLD derivation (and, a fortiori, refutation) of
P and Q has length at most k. 2

For pure SLD-resolution, i.e. Rsld-SLD resolution, condition [A] can be sim-
plified. Due to Strong Completeness of SLD-resolution, termination via any
selection rule (i.e. [A](ii)) implies bounded nondeterminism (i.e. [A](iii)).

4.5 Success w.r.t. some selection rule

We observe that the requirement that µ is a persistent relation is essential in
Theorem 4.14.

On logic programs that always succeed 18

Example 4.15 Consider the relation µ(P, Q) requiring that P and Q are simply-
moded. Note that µ is not persistent w.r.t. Rsld [3]. Let P be the simple
program:

q(b).

p(a).

p(X).

with modes q(O), p(I), and let Q be q(X), p(X). Both P and Q are simply
moded. Also, P is µ-failure free (note that the mode q(O) implies that X is a
variable in q(X)) and the leftmost selection rule is µ-terminating.

However, there exists a failedRsld-SLD derivation via the rightmost selection
rule q(X), p(X) ⇒ q(a) ⇒ fail. Therefore, [B] does not hold. 2

In the example above, the best result we can state is that if µ(P,Q′) holds
then all Rsld-SLD derivations of P and Q′ via the leftmost selection rule are
successful. This is possible since simply-moding is persistent in a weak sense,
i.e. along derivations via the leftmost selection rule.

Definition 4.16 [Weak persistent relations] A relation µ over programs and
queries is weak persistent via a selection rule s and w.r.t.R if when µ(P, Q) holds
for a query Q then µ(P, Q′) holds for every query Q′ in an R-SLD derivation of
P and Q via s. 2

With a small abuse of notation, we say that a selection rule is µ-failure free and
a program is µ-terminating via s also when µ is a weak persistent relation.

Theorem 4.17 Let µ be a relation weak persistent via a selection rule s and a
function R.

If s is both µ-failure free for a program P and µ-terminating, then for every
query Q such that µ(P, Q) holds, all R-SLD derivations of P and Q via s are
successful.

Proof. Lemma 4.3 can be restated for weak persistent relations. Also, Lemma
4.6 holds for weak persistent relations. This implies that no R-SLD derivation
of P and Q via s can be deadlocked or failed or infinite. Therefore, all of them
must be successful. 2

5 The leftmost as a µ-failure free selection rule

5.1 Success w.r.t. all selection rules

We refine the notion of persistent relations to left-persistent relations.

Definition 5.1 [Left-persistent relations] A persistent relation µ w.r.t. R is
left-persistent w.r.t. R if for every program P and non-empty query Q such that
µ(P, Q) holds, µ(P,A) holds for the leftmost atom A in Q. 2

On logic programs that always succeed 19

The next lemma simplifies the definition of failure freedom for left-persistent
relations.

Lemma 5.2 Let µ be a left-persistent relation w.r.t. R.
A program P is µ-failure free iff for every atom A such that µ(P,A) holds,

A is covered in P .

Proof. The only-if part is immediate. Consider now the if-part. Let Q be a
non-empty query such that µ(P,Q) holds. Since µ is left-persistent, µ(P, A)
holds for the leftmost atom A in Q. Therefore, there exists a covered atom in
Q, namely A. 2

For left-persistent relations, a natural candidate as failure free selection rule
is the leftmost one. We recall that such a rule selects the leftmost atom A in a
query among those such that R(P, A) 6= delay.

Lemma 5.3 Let µ be a left-persistent relation w.r.t. R and P a µ-failure free
program. Then the leftmost selection rule is µ-failure free for P .

Proof. Let ξ be a R-SLD derivation of P and a query Q, where µ(P,Q) holds.
Since µ is persistent, µ(P, Q′) holds for the last query Q′ in ξ. Since µ is left-
persistent, µ(P,A) holds for the leftmost atom A in Q′. Finally, since P is
µ-failure free, A is covered. This implies R(P,A) 6= delay, hence the leftmost
selection rule selects a covered atom, namely A. 2

From the proof of the lemma, we can conclude that the leftmost selection rule
actually selects the leftmost atom in a query. A derivation via such a rule is then
a derivation4 via the leftmost selection rule w.r.t. Rsld. A sound termination
characterization for such derivations is acceptability. Moreover, acceptability is
also a sound method for bounded nondeterminism [22].

Corollary 5.4 Let µ be a left-persistent relation w.r.t. a monotonic function
R, P a µ-failure free program, and Q a query such that µ(P, Q) holds.

If P and Q are acceptable by some | | and I, then all R-SLD derivations of
P and Q are successful.

Proof. Consider the relation:

µ′ = µ ∩ {(P ′, Q′) | P ′ and Q′ acceptable by | | and I}.

We claim that condition [A] of Theorem 4.14 holds for relation µ′. By showing
[A], we have [B] which implies our conclusion.

First, we observe that µ′ is left-persistent since both µ and acceptability are
left-persistent. Persistency of acceptability w.r.t. Rsld (and then w.r.t. any R
function) is shown in [23, Lemma 2.3.12]. Let us show conditions [A] (i-iii).

4The converse is not necessarily true, since the R function may prevent using some clause
of P at some derivation step.

On logic programs that always succeed 20

(i). Consider a non-empty query Q such that µ′(P, Q) holds. Then µ(P,Q)
holds. Since P is µ-failure free, there exists a covered atom in Q. This shows
that P is µ′-failure free.

(ii). The leftmost selection rule is µ-failure free for P as shown in Lemma 5.3.
Since µ′ ⊆ µ, the leftmost selection rule is also µ′-failure free for P . Moreover, as
shown in the proof of Lemma 5.3, the leftmost selection rule always selects the
leftmost atom. Since acceptability of P and Q implies termination of derivations
where the leftmost atom is always selected [5], we conclude that the leftmost
selection rule is also µ′-terminating.

(iii). If µ′(P,Q) holds then acceptability of P and Q implies termination of
P and Q via the leftmost selection rule w.r.t. Rsld. By Strong Completeness of
SLD-resolution, every Rsld-SLD refutation (and then R-SLD refutation) of P
and Q is of the same length of some refutation via the leftmost selection rule.
Therefore, the length of any R-SLD refutation of P and Q is bounded by some
k ∈ N . Summarizing, µ′ implies bounded nondeterminism. 2

Since, in general, acceptability is a sound but not complete characterization
of termination and bounded nondeterminism, the result above is not a complete
characterization of programs and queries that have only successful derivations.
Even in the case we would have a sound and complete characterization, however,
there would be an intrinsic limit with using left-persistent relations.

Definition 5.5 µ0(P,Q) holds iff for every non-empty query Q′ in an R-SLD
derivation of P and Q, the leftmost atom in Q′ is covered. 2

It is easy to check that µ0 is the largest left-persistent relation µ such that
a program is µ-failure free.

On the positive side, this implies that Corollary 5.4 is suitable to show that
Prolog programs and queries (for which several left-persistent relations apply,
as will be shown later) can be executed via more advanced execution strategies
(e.g., don’t care nondeterminism, coroutining, parallelism) without incurring
into deadlocks, failures, speculative parallelism.

On the negative side, since the method relies on left-persistent relations, µ0

expresses the fact that programs and queries that can be reasoned about have
a natural “left-to-right” or “pipeline” dataflow.

The conclusion of Corollary 5.4 can be slightly generalized to the case that
the hypotheses hold for a permutation of the given program.

Definition 5.6 [Permutation] A permutation (for programs) Πp is a function
mapping a program P into a program obtained by permuting atoms in clause
bodies of P . A permutation (for queries) Πq is a function mapping a query Q
into a query which is obtained by permuting atoms in it. 2

Corollary 5.7 Let µ be a left-persistent relation w.r.t. a monotonic function
R, Πp a permutation for programs, and Πq a permutation for queries.

For a program P and a query Q, assume that Πp(P) is µ-failure free and
that µ(Πp(P), Πq(Q)) holds. If Πp(P) and Πq(Q) are acceptable by some | | and
I, then every R-SLD derivation of P and Q is successful.

On logic programs that always succeed 21

Proof. The conclusion follows from Corollary 5.4 by noting that there is a nat-
ural one-to-one mapping between R-SLD derivations of P and Q and R-SLD
derivations of Πp(P) and Πq(Q). 2

5.2 Success w.r.t. the leftmost selection rule

Let us now merge weak-persistent and left-persistent relations.

Definition 5.8 [Weak left-persistent relations] Consider a relation µ which is
weak persistent via the leftmost selection rule and w.r.t. R.

µ is weak left-persistent w.r.t. R if for every program P and non-empty query
Q such that µ(P,Q) holds, µ(P,A) holds for the leftmost atom A in Q. 2

As for left-persistent relations, µ-failure freedom can be simplified.

Lemma 5.9 Let µ be a weak left-persistent relation w.r.t. R.
A program P is µ-failure free iff for every atom A such that µ(P,A) holds,

A is covered in P . 2

Also, the leftmost selection rule turns out to be µ-failure free for weak left-
persistent relations and µ-failure free programs.

Lemma 5.10 Let µ be a weak left-persistent relation w.r.t. R and P a µ-failure
free program. Then the leftmost selection rule is µ-failure free for P .

Proof. Let ξ be aR-SLD derivation of P and a query Q via the leftmost selection
rule, where µ(P, Q) holds. Since µ is weak persistent via the leftmost selection
rule, µ(P,Q′) holds for the last query Q′ in ξ. Since µ is weak left-persistent,
µ(P, A) holds for the leftmost atom A in Q′. Finally, since P is µ-failure free,
A is covered. This implies R(P,A) 6= delay, hence the leftmost selection rule
selects a covered atom, namely A. 2

We are now in the position to instantiate Theorem 4.17 for the leftmost
selection rule.

Corollary 5.11 Let µ be a weak left-persistent relation w.r.t. a monotonic func-
tion R, P a µ-failure free program, and Q a query such that µ(P,Q) holds.

If P and Q are acceptable by some | | and I, then all R-SLD derivations of
P and Q via the leftmost selection rule are successful.

Proof. Consider the relation:

µ′ = µ ∩ {(P ′, Q′) | P ′ and Q′ acceptable by | | and I}.

We claim that hypotheses of Theorem 4.17 hold when considering the leftmost
selection rule. Weak left-persistency of µ and acceptability imply that µ′ is weak
persistent via the leftmost selection rule. Also, by Lemma 5.10, the leftmost
selection rule is µ-failure free for P , and then µ′-failure free for P . Finally,

On logic programs that always succeed 22

if µ′(P, Q) holds then acceptability of P and Q implies termination via the
leftmost selection rule, i.e. such a rule is µ-terminating.

By Theorem 4.17, for every P and Q such that µ(P, Q) holds and they are
acceptable, we can conclude that all R-SLD derivations of P and Q via the
leftmost selection rule are successful. 2

5.3 A methodology for proving success

We outline below the general strategy for applying Corollaries 5.4 and 5.11 to
prove that a program P and a query Q have only successful R-SLD derivations:

step (1) select a relation µ such that µ(P, Q) holds; µ can be selected from a
repertoire of (weak) left-persistent relations w.r.t. R;

step (2) show that P is µ-failure free w.r.t. R;

step (3) show that P and Q are acceptable by a same level mapping and
Herbrand interpretation.

The main problem we are now faced is to find out an initial repertoire of (weak)
left-persistent relations µ to use at step (1).

We discuss some proposals in the next subsections. The relations presented
are obtained by combining well-known left-persistent relations such as those
recalled in the Preliminaries. After introducing them, we present some example
programs and queries with successful derivations only.

5.3.1 Well-typing is not practical

As a first approximation, consider the following relation.

Definition 5.12 µ1(P, Q) holds iff P and Q are well-typed. 2

Apt and Luitjes [3] showed that µ1 is a left-persistent relation w.r.t. Rsld,
and then w.r.t. every function R. However, µ1 is too weak to be useful in
practice or, in other words, very few programs and queries can be reasoned
about using µ1. Suppose to be in the hypotheses of Corollary 5.4.

Let P be a program that is µ1-failure free and acceptable by some | | and
I. Moreover, let A be a well-typed atom which is also acceptable by | | and
I. By Corollary 5.4, we conclude that all R-SLD derivations of P and A are
successful. Since types and acceptability are closed under instantiation, the
hypotheses above hold for every instance A′ of A. This implies that every
ground instance of A admits a refutation. By Soundness of (R-)SLD resolution,
the types of A must be accurate enough to describe all atoms that are true in
the least Herbrand model of P . This is not the usual meaning of types, which
are instead used to circumscribe the set of intended queries.

As an example, the Perm program is well-typed with types:

perm(I: List, O: List), delete(I: U, O: List, I: List).

On logic programs that always succeed 23

In order to check that Perm is µ1-failure free, we have to show that for every
perm(In, Out) with In list and Out any term, perm(In, Out) unifies with
the head of some clause from Perm. Clearly, this is not true for all terms Out.

5.3.2 Well-typing and simply-moding for Ric and Rg

Consider a well-typed atom p(i:I,o:O). As already pointed out, we cannot
assume that for every input and output values there exists a refutation. A more
reasonable assumption is, instead, to require that for every input value there
exists some output value. This idea is made clear by requiring simply-moding,
which ensures that o is a linear sequence of variables.

Definition 5.13 µ2(P, Q) holds iff P and Q are well-typed and simply-moded,
and, among the arithmetic predicates, only is may appear in P or Q. 2

Observe that we excluded arithmetic atoms (apart from is) from appearing in
P and Q. Otherwise, consider an arithmetic predicate, e.g. >. In order to show
failure freedom, a well-typed and simply-moded atom x > y must be such that
x, y ∈ Gae and val(x) > val(y). However, such a condition cannot be shown
using types, since the type of a predicate argument is not related to the type of
another argument (they are independent types).

Nevertheless, we observe that the presence of arithmetic atoms (apart from
is-atoms) is useless if all Ric or Rg-derivations of P and Q are successful. In
fact, since those atoms are ground, they can be removed (from the program
and the query) without affecting the result (i.e., computed instances, set of
derivations, final state of a derivation).

Also, note that that for the predicate is: (1) the only meaningful type is
O : Gae is I : Gae; (2) with such a type Mis is well-typed; (3) with such a
type, if µ2(P, T1 is T2) holds then T1 is T2 is covered w.r.t. any R.

Lemma 5.14 Assume the type of is equal to O : Gae is I : Gae.
µ2 is a left-persistent relation w.r.t Ric.

Proof. Well-typing has been shown to be (left-)persistent w.r.t. Rsld by Apt
and Luitjes [3, Lemma 23]. This holds for predicate is as well, since Mis is
well-typed with the given type of is. As a consequence, well-typing is left-
persistent w.r.t. Ric. Similarly, Apt and Luitjes [3, Lemma 30] showed that
the SLD resolvent of a simply moded program and a simply moded query is
simply moded when the selected atom and head of the input clause ic-unify.
This is the case for Ric-SLD resolvents when the selected atom is not is. In
case an atom T1 is T2 is selected in a simply-moded query, we observe that:
(1) the R functions require T2 ∈ Gae; (2) the given mode of is imply T1 is
a variable. These observations imply that T1 is T2 and the input clause head
ic-unify. Therefore, the Ric-SLD resolvent is simply-moded. 2

A similar result holds for Rg, under the additional hypothesis that the delay
declarations imply matching, a notion borrowed from Apt and Luitjes [3].

On logic programs that always succeed 24

Definition 5.15 We say that the delay declarations for a program P imply
matching if for every non-arithmetic atom A = p(i,o) such that A ∈ delay decl(P)
and for every B = p(i′,o′), head of a renaming of a clause from P which is dis-
joint with A, if A and B unify, then i is an instance of i′. 2

Using this notion, we introduce a left-persistent relation for Rg.

Definition 5.16 We say that µ3(P,Q) holds iff µ2(P,Q) holds and the delay
declarations of P imply matching.

Lemma 5.17 Assume the type of is equal to O : Gae is I : Gae.
µ3 is a left-persistent relation w.r.t Rg.

Proof. The proof is similar to the one of Lemma 5.14 for well-typing, and for
simply-moding when the select atom has predicate is. Consider now a query
Q and an Rg-SLD resolvent Q′ of P and Q. Let A be the atom selected in Q.
We have that A ∈ delay decl(P), which, in turn, implies that the input part
of A is an instance of the input part of the head of the input clause. By [3,
Lemma 30], the R-SLD resolvent (and then the Rg-SLD resolvent) of P and Q
is simply-moded. 2

5.3.3 Well-typing and simply-moding for Rg+sldg

While arithmetic predicates are used as tests (and may lead to failure) w.r.t.Ric

and Rg-SLD resolution, they are used are “clause selectors” (and cannot lead
to failure) w.r.t. Rsldg and Rg+sldg-SLD resolution. We next refine relation µ3

into a relation that is left-persistent w.r.t. Rg+sldg.

Definition 5.18 We say that µ4(P, Q) holds iff P and Q are well-typed and
simply-moded, the delay declarations of P imply matching, and for every arith-
metic atom A in Q with rel(A) 6= is, we have A ∈ MAr. 2

Compared to µ3, we now admit arithmetic predicates other than is, but only
by requiring that they must succeed. The next lemma show persistency of µ4

w.r.t. Rg+sldg-SLD resolution. In particular, it states that for a query with
no arithmetic atom, then no Rg+sldg-SLD derivation may fail because of an
arithmetic atom.

Lemma 5.19 Assume the type of is equal to O : Gae is I : Gae.
µ4 is a left-persistent relation w.r.t Rg+sldg.

Proof. Assume that µ4(P, Q) holds. We distinguish two cases.
If an arithmetic atom A is selected with rel(A) 6= is, we have A ∈ MAr.

Therefore, theRg+sldg-SLD resolvent is the query Q′ equal to Q with A removed.
Since A is ground, µ4(P,Q) implies then µ4(P,Q′).

Otherwise, we reason as in the proof of Lemma 5.17 to get that the Rg+sldg-
SLD resolvent Q′ is well-typed and simply-moded. Finally, consider an arith-
metic atom A in Q′ with rel(A) 6= is. If A is also in Q then µ4(P, Q) implies

On logic programs that always succeed 25

A ∈ MAr. Otherwise, A is (an instance of an atom) in the guard of the in-
put clause. By definition of Rg+sldg-SLD resolution, this implies A ∈ MAr.
Summarizing, µ4(P, Q′) holds. 2

Finally, observe that for any arithmetic atom A such that µ4(P,A) holds the
requirements of µ4-failure freedom are trivially satisfied. Therefore, µ4-failure
freedom has to be shown only for non-arithmetic atoms.

5.4 Weak left-persistent

Weak left-persistent relations are required to be persistent along R-SLD deriva-
tions via the leftmost selection rule. Obviously, a left-persistent relation is weak
left-persistent as well. In this section, we then recall some weak left-persistent
relations which are not left-persistent.

5.4.1 Well-typing and simply-moding for Rsld and Rsldg

In Section 5.3.2, we have shown that µ2 is left-persistent w.r.t. Ric and, under
some conditions, w.r.t. Rg. However, µ2 is not left-persistent w.r.t. Rsld, since
an Rsld-SLD resolvent of a simply-moded program and query is not necessarily
simply moded [3]. However, Apt and Etalle [2] showed that the Rsld-SLD
resolvent is simply-moded if the leftmost selection rule is assumed.

Definition 5.20 We say that µ5(P, Q) holds iff P and Q are well-typed and
simply-moded, and for every arithmetic atom A in Q with rel(A) 6= is, we have
A ∈ MAr. 2

Lemma 5.21 Assume the type of is equal to O : Gaec is I : Gae and the type
of op ∈ { <, =<, =:=, =\=, >, >= } equal to I : Gae op I : Gae.

µ2 is a weak left-persistent relation w.r.t Rsld.
µ5 is a weak left-persistent relation w.r.t Rsldg.

Proof. Consider first µ2. Assume µ2(P, Q), for a non-empty query Q. If the
leftmost atom in Q is not an arithmetic one, then the result follows since well-
typing is left-persistent and simply-moding is weak left-persistent [2, Lemma 27].
If the leftmost atom A in Q is an arithmetic one, then it is well-typed, which
implies Rsld(P, A) 6= delay. Therefore, it is selected by the leftmost selection
rule. As before, the Rsld-SLD resolvent is well-typed and simply moded since
the set of clauses defining arithmetic atoms are well-typed and simply-moded
with the types assumed by hypothesis.

Consider now µ5. Assume µ5(P, Q), for a non-empty query Q.
If Q = A,Q′ for A not an arithmetic atom, then the (Rsldg-)SLD resolvent

Q′′ via the leftmost selection rule is well-typed and simply moded. Consider
now an arithmetic atom A in the resolvent, with rel(A) 6= is. If A was present
in Q then A ∈ MAr since µ5(P, Q) holds. Otherwise, A ∈ MAr by definition of
Rsldg. Summarizing, µ5(P,Q′′) holds.

If Q = A, Q′ for A arithmetic atom, we distinguish two cases. If rel(A) 6=
is, then the Rsldg-SLD resolvent via the leftmost selection rule is necessarily

On logic programs that always succeed 26

Q′, which implies µ5(P, Q′) holds. If A = T1 is T2, then, since Q is well-typed
and simply-moded, T1 is a variable and T2 ∈ Gae. This implies that A is the
leftmost atom in Q such that Rsldg(P, A) 6= delay and then, it is selected via
the leftmost selection rule. Since the clauses defining is are facts, they are
simply-moded. As before, the Rsldg-SLD resolvent of Q′′ of P and Q via the
leftmost selection rule is well-typed and simply-moded. Also, since µ5(P,Q)
holds and an arithmetic atom B in Q′′ with rel(B) 6= is appears in Q as well,
we conclude that B ∈ MAr. Summarizing, µ5(P,Q′′) holds. 2

5.4.2 Well-assertedness for Rsld

We propose a weak left-persistent relation which does not make use of simply-
moding.

Definition 5.22 We say that µ6(P, Q) holds (w.r.t. (pre, post)) iff P and Q are
well-asserted (w.r.t. (pre, post)), and, among the arithmetic predicates, only is
may appear in P or Q. 2

Lemma 5.23 Let (pre, post) be a specification such that:

T1 is T2 ∈ pre iff T1 is a variable ∧ T2 ∈ Gae

T1 is T2 ∈ post iff T1 is T2 ∈ Mis

µ6 is a weak left-persistent relation w.r.t Rsld.

Proof. Assume µ6(P, Q) for a non-empty query Q and let A be the leftmost
atom in Q. If rel(A) 6= is, then the result follows since the Rsld-SLD resolvent
of a well-asserted program and query via the leftmost selection rule is well-
asserted [4]. If A = T1 is T2, then, since A ∈ pre by well-assertedness of Q, we
have that T2 ∈ Gae, which implies Rsld(P,Q) 6= delay. Therefore, A is selected
by the leftmost selection rule. As before, the Rsld-SLD resolvent is well-asserted
since Mis ⊆ post implies that the set of clauses defining arithmetic atoms are
well-asserted. 2

5.5 Examples

Permutations w.r.t. Ric

Let us show the hypotheses of Corollary 5.4 for the program Perm and the query
Q = perm(Xs, A) w.r.t. Ric-SLD resolution, where Xs is any list.

We will use the relation µ2, which is left-persistent w.r.t. Ric. Below we
repeat the program for convenience.

(p1) perm([], []).

(p2) perm([X|Xs], Ys) ←
perm(Xs, Zs),

delete(X, Ys, Zs).

(p3) delete(X, [X|Y], Y).

(p4) delete(X, [H|Y], [H|Z]) ←
delete(X, Y, Z).

On logic programs that always succeed 27

Perm and the query Q are well-typed and simply-moded with the types:

perm(I: List, O: List) delete(I: U, O: List, I: List).

Therefore µ2(Perm, Q) holds. Let us prove now that Perm is µ2-failure free. We
use Lemma 5.2. Let A be a well-typed and simply-moded atom:

• if A = perm(Xs, Y s) then Y s is a variable and Xs is a list. In case
Xs = [] then A ic-unifies with the head of (p1). Otherwise, A ic-unifies
with the head of (p2);

• if A = delete(X, Y s, Xs) then Y s is a variable and Xs is a list. In
case Xs = [] then A ic-unifies with the head of (p3). Otherwise, A
ic-unifies both with the head of (p3) and with the head of (p4).

This shows that Perm is µ2-failure free. Finally, Perm and the query Q are
acceptable by | | and I, where:

|perm(xs, ys)| = ll(xs) |delete(x, xs, ys)| = ll(ys)
I = {perm(xs, ys)| ll(xs) = ll(ys)} ∪ {delete(x, xs, ys)| ll(xs) = ll(ys) + 1}.

where the list-length function ll() from ground terms to natural numbers is
defined as follows:

ll(f(t1 , . . . , tn)) =
{

0 if f 6= [.|.]
ll(t2) + 1 if f(t1 , . . . , tn) = [t1|t2].

Therefore, we can apply Corollary 5.4 to conclude that all Ric-SLD derivations
of Perm and Q are successful.

Permutations w.r.t. Rsld

By Lemma 5.21, µ2 is weak left-persistent w.r.t. Rsld. In the previous example,
we have shown that: (1) Perm is µ2-failure free w.r.t. Ric; (2) Perm and the
query Q are acceptable. (1) implies that Perm is µ2-failure free w.r.t. Rsld.
Therefore, we can apply Corollary 5.11 using the weak left-persistent relation
µ2 to conclude that all Rsld-SLD derivations of Perm and Q = perm(Xs, A)
via the leftmost selection rule are successful, where Xs is any list.

Permutations w.r.t. Rg

Consider now Rg-SLD resolution. We recall the delay declarations of Perm:

DELAY perm(X, Y) UNTIL nonvar(X)

DELAY delete(X, Y, Z) UNTIL nonvar(Z)

We have already observed that Perm and a query Q = perm(Xs, A) are
well-typed and simply-moded, where Xs is any list. Since the delay declarations
imply matching, we have that µ3(Perm, Q) holds. Also, acceptability of Perm
and Q has already been observed. Therefore, in order to apply Corollary 5.4
w.r.t. µ3, we are left with showing µ3-failure freedom of Perm w.r.t.Rg. Consider
a well-typed and simply-moded atom A:

On logic programs that always succeed 28

• if A = perm(Xs, Y s) then Y s is a variable and Xs is a list, hence
A ∈ delay decl(Perm) holds. Moreover, if Xs = [] then A unifies with
the head of (p1). Otherwise, A unifies with the head of (p2). In both
cases, A is covered w.r.t. Rg;

• if A = delete(X, Y s, Xs) then Y s is a variable and Xs is a list, hence
A ∈ delay decl(Perm) holds. In case Xs = [] then A unifies with the
head of (p3). Otherwise, A unifies both with the head of (p3) and with
the head of (p4).

In conclusion, the hypotheses of Corollary 5.4 are satisfied. Thus, all Rg-SLD
derivations of Perm and Q = perm(Xs, A) are successful, where Xs is any list.

QuickSort w.r.t. Rsldg

Consider the QuickSort program w.r.t. Rsldg-SLD resolution.

qs([],[]).

qs([X|Xs],Ys) ←
part(X,Xs,Littles,Bigs),

qs(Littles,Ls),

qs(Bigs,Bs),

append(Ls,[X|Bs],Ys).

part(,[],[],[]).

part(X,[Y|Xs],[Y|Ls],Bs) ← X >= Y, part(X,Xs,Ls,Bs).

part(X,[Y|Xs],Ls,[Y|Bs]) ← X <= Y, part(X,Xs,Ls,Bs).

append([], Xs, Xs).

append([X|Xs], Ys, [X|Zs]) ← append(Xs, Ys, Zs).

Let us now show that the hypotheses of Corollary 5.11 are satisfied for
QuickSort and a query Q = qs(Xs,Ys) where Xs is a list of gae’s. We will
use the weak left-persistent relation µ5.

QuickSort and Q are well-typed and simply-moded with the types:

qs(I: List(Gae), O: List(Gae))
part(I: Gae, I: List(Gae), O: List(Gae), O: List(Gae))

append(I: List(Gae), I: List(Gae), O: List(Gae))

This shows that µ5(QuickSort, Q) holds. Moreover, QuickSort and the query
Q are acceptable by a same interpretation and level mapping. The detail of the
proof can be found in [5]. Finally, QuickSort is readily checked to be µ5-failure
free w.r.t. Rsldg. By Corollary 5.11, all Rsldg-SLD derivations of QuickSort
and Q via the leftmost selection rule are successful.

QuickSort w.r.t. Rg+sldg

Consider now the following delay declarations for QuickSort.

On logic programs that always succeed 29

DELAY qs(X,Y) UNTIL nonvar(X)

DELAY part(X, Xs, Ls, Bs) UNTIL nonvar(Xs)

DELAY append(X,Y,Z) UNTIL nonvar(X)

It is immediate to observe that they imply matching. This and µ5(QuickSort,
Q) imply µ4(QuickSort, Q), with Q = qs(Xs,Ys) where Xs is a list of gae’s.
Also, it is readily checked that QuickSort is µ4-failure free w.r.t. Rg+sldg. By
Corollary 5.4, all Rg+sldg-SLD derivations of QuickSort and Q are successful.

Daughter w.r.t. Rsld

Consider the simple program Daughter:

j(X) ← F = jack, d(F, female(X)).

d(jack, female(ann)).

d(jack, male(paul)).

X = X.

and the query j(X). All Rsld-SLD derivations for them via the leftmost
selection rule are successful. Let us show it using Corollary 5.11.

First of all, we point out that we cannot use relation µ2 in this case. In fact,
if the second argument of predicate d is output, then the first clause cannot
be simply-moded (the term female(X) occurs in output position but it is not
a variable). If the second argument of predicate d is input, then we cannot
show µ2-failure freedom, since well-typing would require us to show d(jack,
female(T)) covered for every term T . Therefore, we cannot use the weak
left-persistent relation µ2. Let us consider then µ6, i.e. well-assertedness.

Given the specification (pre, post):

pre = {j(T)| T variable} ∪ {T1 = T2| T1 variable ∧ T2 ground}
∪ {d(jack, female(T))| T variable}

post = {j(T)} ∪ {T = T} ∪ {d(T1, T2)}

Daughter and the query j(X) are well-asserted. Consider the first clause. The
only atom in pre that unifies with the head of the clause is j(T), where T is
a variable. For every valuation sequence ρ0, ρ1, ρ2 we have ρ0 = mgu(j(T),
j(X)) = {X/T}. The proof obligation required by well-assertedness are then:

(F = jack)ρ0 ∈ pre (1)
(F = jack)ρ1 ∈ post implies d(F,female(X))ρ1 ∈ pre (2)

(F = jack)ρ1 ∈ post ∧ d(F,female(X))ρ2 ∈ post implies j(X)ρ2 ∈ post (3)

(1) and (3) are trivial by definition of pre and post. Consider (2). (F = jack)ρ1 ∈
post means ρ1(F) = jack. Also, since ρ1 = ρ0σ1 for some σ1 such that
dom(σ1)⊆ {F}, then ρ1(X) = T , with T variable. This implies d(F,female(X))ρ1

∈ pre, i.e. (2). A similar reasoning can be done for the other clauses, which leads
to conclude that µ6(Daughter, j(X)) holds.

On logic programs that always succeed 30

Also, it is readily checked that Daughter is µ6-failure free w.r.t. Rsld (note
that it is sufficient to prove that every A ∈ pre is covered), and that it and
j(X) are acceptable by some | | and I. By Corollary 5.11, we conclude that all
Rsld-SLD derivations for them via the leftmost selection rule are successful.

6 Related work

In this section, we consider related works on proving absence of failures or
termination with success for logic programs. We refer the reader to [4, 13, 22]
for surveys on modings, typings, and termination methods for logic programs.

In the context of Rg+sldg-SLD resolution, Apt and Luitjes [3] originally
reasoned about termination with success for determinate programs and queries,
i.e. those admitting only one derivation. In contrast, our approach applies to
nondeterministic programs as well. For instance, the Perm program and the
query used in our examples are not determinate.

A notion of failure-freedom for programs was independently introduced by
Bossi and Cocco [7] specifically for the µ2 relation (well-typing and simply-
moding) with the name of noFD programs and queries. P and Q (without
arithmetic atoms) are noFD if P and Q are well-typed and simply-moded and
for every A instance of an atom in Q or in clause bodies of P , if A is well-
typed and simply moded then it is covered w.r.t. Rsld. It is immediate to see
that this means requiring: (1) µ2(P, Q); and (2) P is µ2-failure free (actually,
noFD restricts to require that A is covered only when µ2(P, A) holds and A is an
instance of an atom in P or in Q). With our definitions, the main result of Bossi
and Cocco consists of showing that if P is µ2-failure free and µ2(P,Q) holds,
then no Rsld-SLD derivation of P and Q via the leftmost selection rule is failed.
In this paper, we have generalized the results of Bossi and Cocco by showing
absence of failures via any µ-failure free selection rule (Lemma 4.6) for a generic
persistent relation µ. In addition, we have proposed a sufficient condition on
R functions (Definition 4.8) and on failure-free selection rules (µ-termination)
that allows us to conclude absence of failures via all selection rules.

Bossi and Cocco refined their approach in [8] to the study of logic programs
and queries with at least one successful derivation via the leftmost selection rule.
Their main result can be stated as an immediate consequence of Corollary 5.11.

Corollary 6.1 Let P be a µ5-failure free program, and Q a query such that
µ5(P,Q) holds. If P and Q are acceptable by some | | and I, then there exists
a successful Rsld-SLD derivation of P and Q via the leftmost selection.

Proof. By Lemma 5.21, µ5 is weak left-persistent w.r.t Rsldg. Since Rsldg

is monotonic, we are in the hypotheses of Corollary 5.11 to conclude that all
Rsldg-SLD derivations of P and Q via the leftmost selection rule are successful.
This implies that there exists a successful Rsld-SLD derivation of P and Q.
By Strong Completeness of SLD-resolution, there exists a successful Rsld-SLD
derivation of P and Q via the leftmost selection rule. 2

On logic programs that always succeed 31

In contrast, we have offered a general theoretical framework to reason about
programs and queries such that all derivations w.r.t. some advanced form of
resolutionR are successful. While in pure logic programming (i.e.Rsld, possibly
considering the leftmost selection rule only) the class of programs and queries
above is rather small, such a class becomes much larger when the programmer
is allowed to specify restrictions on the selection rule.

In addition, our results still improve over Bossi and Cocco in the case ofRsld-
SLD resolution. Consider a program P and a query Q without arithmetic atoms.
First, with the hypotheses of Corollary 6.1, we can conclude that all Rsldg-SLD
derivations (and hence Rsld-SLD derivations) via the leftmost selection rule of
P and Q are successful, while [8] can only conclude that there exists a successful
Rsld-SLD derivation. The Perm program is an example of this. Second, we have
generalized our result to any weak left-persistent relation, while [8] is bound to
well-typing and simply-moding. As an example, we reasoned on the Daughter
program using well-assertedness since the program is not simply-moded.

On the other hand, the approach of Bossi and Cocco applies to generate &
test clauses, which follow the scheme:

gtsolve(Input,Output) ← generate(Input,Output), test(Output).

Here, the predicate test is naturally supposed to fail in some cases, passing
control back to generate through backtracking. Therefore, we cannot show
that all derivations are successful, but that only some derivation is. However,
we observe that we are still in the position of applying the methods of this paper
to the generate predicate.

Smaus et al. [26] studied error-freedom and termination of logic programs
with block declarations [18], namely delay declarations expressing that some ar-
guments of a predicate must be non-variable. They show that if P is a µ3-failure
free program and µ3(P, Q) holds, then every Rg-SLD derivation of P and Q is
finite if every Rg-SLD derivation of P and Q via the leftmost selection rule is
finite. Actually, they do not use the notion of “delay-declarations imply match-
ing”, but rather a sufficient syntactical condition (called input selectability). As
before, this is a special case of our theoretical framework.

Turning the attention on inferring failure-freedom, Debray, López-Garćıa
and Hermenegildo [14] provided a method that, given mode and type informa-
tion, can detect whether the clauses defining a predicate cover the type of the
predicate. We claim that their approach helps us in proving that a program is
µ5-failure free. The non-failure analysis of [14] is based on regular types [12],
which are specified by regular term grammars in which each type symbol has
exactly one defining type rule. Consider a predicate p(i : I,o : O) and a clause
p(t, s)←G, B1 , . . . , Bn . Assume that the input types I of p are regular types
and the guards G of the clauses defining p are tests over the Herbrand domain
or over linear arithmetic over integers not involving var(s). Debray et al. pro-
vide an algorithm that decides whether for every i : I there is a clause such that
t = i,G holds. In practice, they provide us with a decision procedure for µ5-
failure freedom, under the mentioned hypotheses. In fact, when µ5(P, p(i,o))
holds, then o is a tuple of distinct variables. Therefore, if t = i,G holds and

On logic programs that always succeed 32

var(s) do not occur in G, then also t = i, s = o,G holds, i.e. p(i,o) guardedly
unifies with at least one clause head.

7 Conclusions and future work

We have presented a method for reasoning on programs and queries that have
only successful derivations. While in pure logic programming such a class is
rather small, it becomes much larger when the programmer is allowed to spec-
ify restrictions on the selection rule. For this reason, we proposed our results
in the context of a generalization of SLD-resolution which takes into account
restrictions on atom and/or clause selectability. Such a generalization includes
as special instances delay declarations, input-consuming derivations, guarded
clause resolution, and can be considered as an original contribution of the pa-
per.

With reference to a persistent relation µ, we have introduced a notion of
program µ-failure-freedom (which extends an independently introduced notion
[7]). A µ-failure free program P and a query Q in the relation µ cannot have
deadlocked or failed derivations via any selection rule s that selects covered
atoms, if any. Moreover, at least one such a rule exists. In addition, if we admit
termination via s, the result extends to any derivation of P and Q. Moreover,
if we admit bounded nondeterminism, we can conclude that all derivations of
P and Q are successful. The general framework has been instantiated with
reference to the leftmost selection rule, for which many persistent relations are
known, and substantiated with some examples. We adopted relations that are
persistent w.r.t. Rsld, since this implies they are persistent w.r.t. any R. How-
ever, we observe that the proof obligations of some of them (e.g. well-typing)
could be relaxed for specific R-functions. The boundary of the applicability of
the approach lies in those program schemas that naturally must fail, such as
the generate & test schema.

At the state-of-the-art, it seems complicated to instantiate the framework
on selection rules other than the leftmost one. The main problem is the lack
of persistent relations to be used with non-leftmost selection rules on specific
R functions. Well-typing, simply-moding and well-assertedness are all tied to
a left-to-right execution and to Rsld-SLD resolution. For instance, programs
where a strict coroutining between two atoms is implied by the R function
cannot be reasoned about using those relations.

Also, as stated by condition [C] of Theorem 4.14, a direct approach to show
that all derivations are successful is to prove failure-freedom of the program,
and termination w.r.t. all selection rules, i.e. strong termination, w.r.t. R. The
drawback of this approach is that the known methods to show strong termi-
nation are not powerful enough for most of the advanced resolution strategies.
As an example, the well-known method of recurrency (see Bezem [6]) reason on
strong termination for Rsld-SLD resolution, but it is too weak to show strong
termination for Rg-SLD resolution (it is sufficient to observe that recurrency
does not take into account delay declarations). As an example, we cannot use

On logic programs that always succeed 33

recurrency for proving strong termination of Perm w.r.t.Rg. An exception exists
for Ric-SLD resolution, where the methods of quasi-recurrency [9] and simply-
acceptability [10] can show strong termination w.r.t. Ric. Again, however, we
need persistent relations specifically designed for Ric-SLD resolution, i.e. not
tied to a left-to-right execution.

Acknowledgements

We are grateful to the anonymous referees for their valuable comments.

References

[1] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[2] K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proc. of the 18th International Sym-
posium on Mathematical Foundations of Computer Science, volume 711 of LNCS,
pages 1–19. Springer-Verlag, 1993.

[3] K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations.
In V. S. Alagar and M. Nivat, editors, Proc. of the 4th International Conference
on Algebraic Methodology and Software Technology, volume 936 of LNCS, pages
66–90. Springer-Verlag, 1995.

[4] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes
through types to assertions. Formal Aspects of Computing, 6A:743–764, 1994.

[5] K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog pro-
grams. Information and Computation, 106(1):109–157, 1993.

[6] M. A. Bezem. Strong Termination of Logic Programs. Journal of Logic Program-
ming, 15(1 & 2):79–98, 1993.

[7] A. Bossi and N. Cocco. Programs without failures. In N. E. Fuchs, editor,
LOPSTR ’97, volume 1463 of LNCS, pages 28–48. Springer-Verlag, 1997.

[8] A. Bossi and N. Cocco. Successes in logic programs. In P. Flener, editor, LOPSTR
’98, volume 1559 of LNCS, pages 219–239. Springer-Verlag, 1999.

[9] A. Bossi, S. Etalle, and S. Rossi. Properties of input-consuming derivations.
Theory and Practice of Logic Programming, 2(2):125–154, 2002.

[10] A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. On the semantics and termination
of logic programs with dynamic scheduling. In D. Sands, editor, Proc. of the 10th
European Symposium on Programming, volume 2028 of LNCS, pages 402–416.
Springer-Verlag, 2001.

[11] F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of directionality
for proving termination of logic programs. In K. R. Apt, editor, Proc. of the Joint
International Conference and Symposium on Logic Programming, pages 321–335.
MIT Press, 1992.

[12] P. W. Dart and J. Zobel. A regular type language for logic programs. In F. Pfen-
ning, editor, Types in Logic Programming, Logic Programming Series, pages 157–
187. The MIT Press, 1992.

On logic programs that always succeed 34

[13] D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

[14] S. Debray, P. López-Garćıa, and M. Hermenegildo. Non-failure analysis for logic
programs. In Proceedings of the 1997 International Conference on Logic Program-
ming, pages 48–62. The MIT Press, 1997.

[15] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[16] W. Drabent and J. MaÃluszyński. Inductive Assertion Method for Logic Programs.
Theoretical Computer Science, 59(1):133–155, 1988.

[17] P. M. Hill and J. W. Lloyd. The Gödel Programming Language. The MIT Press,
1994.

[18] Intelligent Systems Laboratory, Swedish Institute of Computer Science, PO
Box 1263, S-164 29 Kista, Sweden. SICStus Prolog User’s Manual, 2003.
http://www.sics.se/isl/sicstuswww/site/documentation.html.

[19] K. Kunen. Signed data dependencies in logic programs. Journal of Logic Pro-
gramming, 7:978–992, 1989.

[20] M. J. Maher. Logic semantics for a class of committed-choice programs. In Jean-
Louis Lassez, editor, Proceedings of the 1987 International Conference on Logic
Programming, pages 858–876. MIT Press, 1987.

[21] D. Pedreschi and S. Ruggieri. Bounded nondeterminism of logic programs. In
D. De Schreye, editor, Proc. of the International Conference on Logic Program-
ming, pages 350–364. The MIT Press, 1999.

[22] D. Pedreschi, S. Ruggieri, and J.-G. Smaus. Classes of terminating logic programs.
Theory and Practice of Logic Programming, 2(3):369–418, 2002.

[23] S. Ruggieri. Verification and Validation of Logic Programs. PhD thesis, Diparti-
mento di Informatica, Università di Pisa, 1999.

[24] E. Shapiro. The family of concurrent logic programming languages. ACM Com-
puting Surveys, 21(3):413–510, 1989.

[25] J.-G. Smaus. Proving termination of input-consuming logic programs. In D. De
Schreye, editor, Proc. of the International Conference on Logic Programming,
pages 335–349. MIT Press, 1999.

[26] J.-G. Smaus, P. M. Hill, and A. M. King. Verifying termination and error-freedom
of logic programs with block declarations. Theory and Practice of Logic Program-
ming, 1(4):447–486, 2001.

