
On computing the semi-sum of

two integers

Salvatore Ruggieri

Dipartimento di Informatica, Università di Pisa,

Via F. Buonarroti 2, 56125 Pisa ITALY

ruggieri@di.unipi.it

Abstract

We derive a sound program for computing the semi-sum of two integers
using only integer operators and without incurring overflow.

Keywords: formal methods, program derivation.

1 Problem statement

Given two integers a and b, we wish to compute1 b(a+ b)/2c, also called the semi-
sum of a and b. While the problem may seem elementary, we must tackle some
implementation issues that demand a non-trivial solution.

Consider the ”first-answer” solution consisting of the simple C/Java expression
(a+b)/2. First, recall that division between integer expressions in C, Java and
other common languages, rounds towards zero. Specifically, for an integer n, the
expression n/2 evaluates to bn/2c when n ≥ 0 and evaluates to dn/2e when n ≤ 0.
Therefore, (a+b)/2 is a sound implementation of b(a+b)/2c only when (a+b) ≥ 0.

Second, computation of sub-expression (a+b) may cause an overflow, i.e. its
value may be out of the range of representable integers. Let us write rep(n) iff n
is a representable integer. For now, we do not consider any specific representation
(later on we will assume a two’s complement representation) but we only assume
that rep(a) ∧ rep(b), that rep(0) and that:

∀m,n, p ∈ Z. (rep(m) ∧ rep(n) ∧m ≤ p ≤ n ⇒ rep(p)). (1)

Since min{a, b} ≤ b(a + b)/2c ≤ max{a, b}, by (1) the semi-sum of a and b is a
representable integer.

We are now in a position to formally state the problem specification.

Problem statement. Derive a C program SEMI-SUM such that for a, b, s
variables of type int the following Hoare triple is valid:

{true} SEMI-SUM {s = b(a + b)/2c}

and such that all expressions in SEMI-SUM denote representable integers only.

1Throughout this paper we adopt standard mathematical notation (see e.g. [GKP89]) con-
cerning the floor (b c) and ceiling (d e) operators.

1

Such a calculation occurs quite often in computer programs, e.g. in the well-
known binary search algorithm. As another example, the semi-sum is computed
in the C4.5 decision tree induction algorithm [Qui93], where the following (here,
simplified) recursive procedure is adopted. Given an array of distinct integers, two
elements a and b in the array are selected according to some criterion and then
the array is split into two parts: those elements at most the semi-sum of a and
b, and those elements greater than such a semi-sum. The procedure is recursively
applied to each of the two arrays unless their length is less than two.

In testing an implementation of the C4.5 algorithm [Rug02], infinite loops orig-
inated from the ”first-answer” calculation. First, the computed semi-sum of −3
and −2 was −2 (wrong, since it is −3). This led to splitting an array such as
[−3,−2] into [−3,−2] and an empty one: recursion on the first split yielded the
infinite loop. Second, the computed semi-sum of 230 and 230 was −230 (wrong,
since it is 230). This led to splitting an array such as [230, 230] into itself and an
empty one: as before, this led to an infinite loop.

2 Second-answer calculation

As discussed in the previous section, the ”first-answer” calculation is a sound
implementation only when (a + b) ≥ 0 and rep(a + b), i.e.:

{(a + b) ≥ 0 ∧ rep(a + b)} s = (a+b)/2; {s = b(a + b)/2c}. (2)

In (2), the expression (a+b) denotes a representable integer by assumption, and
the expression (a+b)/2 denotes a representable integer since it coincides with the
semi-sum of a and b, which is representable.

Consider now the case (a + b) ≤ 0. Using the identity ([GKP89, (3.17)]):

∀m ∈ Z. (m = bm/2c+ dm/2e)

we derive: b(a + b)/2c = (a + b) − d(a + b)/2e. Since (a + b) ≤ 0, d(a + b)/2e
coincides now with (a+b)/2. Therefore:

{(a + b) ≤ 0 ∧ rep(a + b)}
int sum = a+b;
{sum = (a + b) ∧ sum ≤ 0 ∧ rep(sum)}
s = sum - sum/2
{s = b(a + b)/2c}.
Also, note that sum ≤ dsum/2e ≤ 0 ∧ rep(sum) and rep(0) imply by (1)
rep(dsum/2e), i.e. sum/2 denotes a representable integer. Also rep(sum−dsum/2e)
holds since sum− dsum/2e is the semi-sum of a and b. Therefore, all expressions
denote representable integers. Finally, merging (2) with the last program to get a
”second-answer” program SEMI-SA:

int sum = a+b;
if(sum >= 0)

s = sum / 2;
else

s = sum - sum/2;

for which the following Hoare triple is valid:

{rep(a + b)} SEMI-SA {s = b(a + b)/2c}. (3)

2

3 Nonnegative-division calculation

There is a second identity ([GKP89, (3.6)]):

∀x ∈ R ∀m ∈ Z. (bm + xc = m + bxc)

that allows us to rewrite b(a + b)/2c = ba + (b − a)/2c = a + b(b − a)/2c. When
a ≤ b, the value b − a is a non-negative integer, and b(b − a)/2c coincides with
(b-a)/2. Therefore:

{a ≤ b ∧ rep(b− a)} s = a + (b-a)/2; {s = b(a + b)/2c}.

As in the last section, it is readily checked that (b-a)/2 and a + (b-a)/2 denote
representable integers. Similarly, when b ≤ a:

{b ≤ a ∧ rep(a− b)} s = b + (a-b)/2; {s = b(a + b)/2c}.

We can then conclude that for the program SEMI-NND:

if(a <= b)
s = a + (b-a)/2;

else
s = b + (a-b)/2;

the following Hoare triple is valid2:

{rep(max{a, b} −min{a, b})} SEMI-NND {s = b(a + b)/2c}. (4)

4 Semi-sum calculation

Both SEMI-SA and SEMI-NND make a precondition on sub-expressions in order to
prevent overflow. A way to satisfy those preconditions is to cast a and b up to a
larger numeric data type (e.g., from 32-bit to 64-bit integers), and then to cast the
result back to the original data type. However, it may be the case that a larger
data type is not available. In this section, we derive a general solution.

Consider again the triple (3). It differs from the problem specification in making
the additional assumption rep(a + b). We observe:

rep(a + b) ⇐ { (1) with p = (a + b), m = a and n = b }
rep(a) ∧ rep(b) ∧ a ≤ (a + b) ∧ (a + b) ≤ b

≡ { rep(a), rep(b), cancellation }
a ≤ 0 ≤ b

Analogously, we derive rep(a + b) ⇐ b ≤ 0 ≤ a. By the consequence rule of Hoare
logic, these two implications and (3) lead to:

{min{a, b} ≤ 0 ≤ max{a, b}} SEMI-SA {s = b(a + b)/2c}. (5)

Let us apply the same reasoning to the triple (4). For simplifying the notation,
let x = min{a, b} and y = max{a, b}. We have:

rep(y − x) ⇐ { (1) with p = (y − x), m = 0 and n = y }
rep(0) ∧ rep(y) ∧ 0 ≤ (y − x) ∧ (y − x) ≤ y

≡ { rep(0), rep(a), rep(b), x ≤ y, cancellation }
0 ≤ x

2Note that by (1), 0 ≤ a ∧ 0 ≤ b ⇒ rep(max{a, b} −min{a, b}). By the consequence rule of
Hoare logic, (4) implies {0 ≤ a ∧ 0 ≤ b} SEMI-NND {s = b(a+ b)/2c}, which states that SEMI-NND
is sound for computing the semi-sum of two representable natural numbers.

3

Also, we can show that rep(y − x) if y < 0. In order to achieve this, we assume
from now on the standard two’s complement representation of integers using p bits
plus sign: integers representable with the int data type range then from −2p to
2p − 1. In addition to (1) and to rep(0), two’s complement notation implies:

∀n ∈ Z. (rep(n) ∧ n < 0 ⇒ rep(−n− 1)). (6)

Let us show now that rep(y − x) if y < 0.

rep(y − x) ⇐ { (1) with p = (y − x), m = 0 and n = (−x− 1) }
rep(0) ∧ rep(−x− 1) ∧ 0 ≤ (y − x) ∧ (y − x) ≤ (−x− 1)

≡ { rep(0), x ≤ y, cancellation }
rep(−x− 1) ∧ y < 0

⇐ { (6) with n = x }
rep(x) ∧ x < 0 ∧ y < 0

≡ { rep(a), rep(b), x ≤ y }
y < 0

By the consequence rule of Hoare logic, the last two implications and (4) lead to:

{(0 ≤ min{a, b} ∨ max{a, b} < 0)} SEMI-NND {s = b(a + b)/2c}. (7)

By observing that:

(0 ≤ min{a, b} ∨ max{a, b} < 0) ∨ (min{a, b} ≤ 0 ≤ max{a, b})

we can design our final program SEMI-SUM by combining (5) and (7):

if((0 <= a && 0 <= b) || (a < 0 && b < 0)) {
SEMI-NND

} else {
SEMI-SA

}

For such a program the specification triple {true} SEMI-SUM {s = b(a + b)/2c} is
valid, and all expressions denote representable integers, i.e. no overflow occurs.

Acknowledgements

I am grateful to Prof. Roland Backhouse and to Prof. David Gries for their
comments on a preliminary version of this paper.

References

[GKP89] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: a Foun-
dation for Computer Science. Addison-Wesley Publishing Company, 1989.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

[Rug02] S. Ruggieri. Efficient C4.5. IEEE Transactions on Knowledge and Data Engi-
neering, 14:438–444, 2002.

4

