Yet Another Query Algebrafor
XML Data

Carlo Sartiani

Antonio Albano

Dipartimento di Informatica

Universita di Pisa

Issuesin XML Query Processing

- Path expression evaluation

Issuesin XML Query Processing

Path expression evaluation
Nested query resolution

Issuesin XML Query Processing

Path expression evaluation
Nested query resolution
Order preservation

Issuesin XML Query Processing

Path expression evaluation
Nested query resolution
Order preservation

document order

Issuesin XML Query Processing

Path expression evaluation
Nested query resolution
Order preservation

document order
user-defined order

|ssuesin XML Query Processing

Path expression evaluation
Nested query resolution
Order preservation

document order
user-defined order
join order

L ogical Query Algebra

An evolution of past OO and semistructured
guery algebras: GOM, YAT

Three main objectives

preserving relational and OO optimization
techniques

supporting efficient evaluation of path
expressions

addressing specific problems: nested
gueries and ordering preservation

Main Features

Multi-sorted: ordered and unordered sets
Covering the FLWR fragment of XQuery
XML nodes have oids

supporting both copy and reference
semantics

Algebraic Operators

Traditional operators manipulate sets
(ordered and unordered) of flat tuples

o, T, Xp, <->, Y, Sort, TupSort, and I

Border operators manage conversions XML
— tuples, tuples — XML

path evaluates paths and binds variables
return builds up new XML elements

Preservation of relational and OO
optimization properties

path

path extracts information from data sources,
and builds variable bindings

path behavior is described by a path filter

FOR $b in $root/ book,
$a i n $b// aut hor,

path(/,%,in)boak[(//,$a,in)auth0r[@]] (dbl)
$b : booky | $a : authory
$b : booky | $a : authors

. path (2)

FOR $b in $root/book,
$p i n op:union($b//aut hor,
$b/ / publ i sher)

Carlo Sartiani - IDEAS 2002 — p.7

. path (2)

FOR $b in $root/book,
$p i n op:union($b// aut hor,
$b/ / publ i sher)

path (dbl)
(/,$b,in)book[(//,$p,in)author[0] \V (//,$p,in)publisher|d]]

. path (2)

FOR $b in $root/book,
$p i n op:union($b// aut hor,
$b/ / publ i sher)

path (dbl)
(/,$b,in)book[(//,$p,in)author[0] \V (//,$p,in)publisher|d]]

return

return uses binding tuples to produce a new
XML document

Carlo Sartiani - IDEAS 2002 — p.8

return

return uses binding tuples to produce a new
XML document

FOR $b i n $root/ book,
$t in $b/title,
$a i n $b/ aut hor
RETURN
<entry> $t, %a </entry>

Carlo Sartiani - IDEAS 2002 — p.8

return

return uses binding tuples to produce a new
XML document

FOR $b i n $root/ book,
$t in $b/title,
$a i n $b/ aut hor
RETURN
<entry> $t, %a </entry>

retUT Neptry[v$t,v34] {

path(/,$b,in)baok[(/,$a,in)auth0r 0],(/,8t,in)title[0]] (dbl))

Carlo Sartiani - IDEAS 2002 — p.8

Ordering | ssues

Preservation of document order (order among
elements in original documents)

Preservation of join order

XQuery does not distinguish between joins
and d-joins

Imposing user-defined order
XQuery SORT BY clause

Sort

Sort returns a set of tuples ordered according
to a given predicate

Sort may be used to preserve document
order, join order as well as user-defined order

a specialized version TupSort Is used for
document order

Carlo Sartiani - IDEAS 2002 — p.10

Sort Example

FOR $b in $root/ book
RETURN $b
SORTBY (title)

Carlo Sartiani - IDEAS 2002 — p.11

Sort Example

FOR $b i n $r oot/ book
RETURN $b
SORTBY (title)

return,g,(

STty se<v.st(
TupSort gy (

path(/,$b,7jn)b00k[(/,$t,in)title[@]] (dbl))))

Optimization Properties

Most operators are linear: o, m, x, Xp, return
reordinability laws can be safely applied
Most common rewriting rules can be applied

There exist laws for decomposing complex
path operations into simpler ones

There exist laws for query unnesting

Carlo Sartiani - IDEAS 2002 —

Path Decompositions

These rules allows the query optimizer to

choose the best evaluation strategy for each
path

Vertical decompositions
Horizontal decompositions

Carlo Sartiani - IDEAS 2002 —

Vertical Decompositions

Useful for exploiting path indexes

FOR $b in $root/I|i b/ book,
$a in $b/ aut hor,
$y in $b/year,

Vertical Decompositions

Useful for exploiting path indexes

FOR $b in $root/I|i b/ book,
$a in $b/ aut hor,
$y in $b/year,

path(/,_,in)lib[(/,$b,in)b00k[(/,$a,in)auth0r 0],(/,$y,in)year[D]]] (de)

Vertical Decompositions

Useful for exploiting path indexes

FOR $b in $root/I|i b/ book,
$a in $b/ aut hor,
$y in $b/year,

path(/,_,in)lib[(/,$b,in)b00k[(/,$a,in)auth0r 0],(/,$y,in)year[D]]] (de)

$
pathFl (path(/,_,fm)lib[(/,$b,fm)b00k[(Z)]] (dbz))

Horizontal Decompositions

Useful for exploiting value indexes

FOR $b in $root/lib/book,
$a i n $b/ aut hor,
Py in $b/year,

VWHERE $y = " 1975"

Carlo Sartiani - IDEAS 2002 —

Horizontal Decompositions

Useful for exploiting value indexes

FOR $b in $root/lib/book,
$a i n $b/ aut hor,
Py in $b/year,

VWHERE $y = " 1975"

<7$y:ﬁ1975”(
path(/,_,in)lib[(/,$b,in)b00k[@]] (db2) <
path(/,$a,in)auth0r[@]($b) N true path(/,$y,in)year[@]($b) >)

Carlo Sartiani - IDEAS 2002 —

Nested Queries

Free nesting philosophy

Widely used for
reshaping elements
regrouping elements

Brief Taxonomy

Only type-N and type-J queries
predicate dependency
range dependency
projection dependency

Predicate Dependency

FOR $a in library//author
RETURN $a, <publist> FOR $p in library/*,
$aa i n $p/ aut hor
VWHERE $aa = $%a
RETURN $p
</ publ i st>

Carlo Sartiani - IDEAS 2002 — p.18

Predicate Dependency

FOR $a in |ibrary//author
RETURN $a, <publist> FOR $p in library/*,
$aa i n $p/ aut hor
VHERE $aa = $a
RETURN $p
</ publ i st >

Separating local variables from global ones

Carlo Sartiani - IDEAS 2002 — p.18

Predicate Dependency

FOR $a in |ibrary//author
RETURN $a, <publist> FOR $p in library/*,
$aa i n $p/ aut hor
VHERE $aa = $a
RETURN $p
</ publ i st >

Separating local variables from global ones

Transforming the inner return filter

Carlo Sartiani - IDEAS 2002 — p.18

Range and Projection Dependency

Range dependencies cannot be efficiently
solved

no type extents

Projection dependencies cannot be efficiently
solved

Cross products

Conclusions

A query algebra for XML data

path evaluation
order preservation
nested query resolution

Improving nested query resolution
Merging a type system

Carlo Sartiani - IDEAS 2002 —

XQuery

A Turing-complete query language for XML
data

maybe a database programming language
Developed by W3C

enriched with some nasty stuff for industrial
purposes

Based on the Quilt core

Query results are statically typed for
INSpection purposes

Carlo Sartiani - IDEAS 2002 —

.XQuery(Z)

A FLWR query Is composed by

FOR and LET clauses (variable bindings)
VHERE clause (variable filtering)

I
R

- THEN ELSE

ETURN clause (result production)

SORTBY clause (sort order enforcement)

Carlo Sartiani - IDEAS 2002 —

.XQuery(B)

FOR $b in $root/|i b/ book,
$a i n $b/ aut hor,
$y in $b/year,
WHERE $y = "1975"
RETURN <entry> $a, $y </entry>
SORTBY (title)

Carlo Sartiani - IDEAS 2002 — p.23

	Issues in XML Query Processing
	Logical Query Algebra
	Main Features
	Algebraic Operators
	$path$
	$path$ (2)
	$return$
	Ordering Issues
	$Sort$
	$Sort$ Example
	Optimization Properties
	Path Decompositions
	Vertical Decompositions
	Horizontal Decompositions
	Nested Queries
	Brief Taxonomy
	Predicate Dependency
	Range and Projection Dependency
	Conclusions
	XQuery
	XQuery(2)
	XQuery(3)

