Estimating XML Query Cardinality

Carlo Sartiani
Dipartimento di Informatica - Università di Pisa
Presented by
Giorgio Ghelli
Issues in Result Size Estimation

- Twigs
- branch correlation
- Set cardinality (let ... :=)
- Predicates
The Framework

- Model independent
- It offers
 - correlation
 - group cardinality estimation
 - predicate selectivity application
Estimation functions compute the distribution of data into query result

Result distribution is expressed by means of sequences of match occurrences

Sequence of match occurrences are bound to variables
Match Occurrence

(l,r,m)

l: tag of the matching nodes

r: region of the database

m: multiplicity of the occurrence
Regions

- Intensional regions: types
- Extensional regions: position intervals, etc
- Mixed regions: intensional + extensional
Tagged Regions

- Regions augmented with tag information
- (l,r)
- Organized into a graph
- /-edges, //-/edges, etc
Correlation

(l,r,m) and (l',r',m') are correlated wrt to (l'',r'',m'') if (l'',r'') is a common ancestor for (l,r) and (l',r') in the tagged region graph.
More on Correlation

(title, r_1, m_1) correlated to $(\text{author}, r_2, m_2)$ wrt (book, r_3, m_3)?

- Constrained common ancestor problem
- $O(n)$ time complexity (with proper data structures)
Groups

- Estimating the distribution of data into sets created by the `let` clause
- Distributing match occurrences into sets
- Correlation-based
More on Groups

- Number of groups determined by the cardinality of the root variable
- Performed in $O(n^2)$ time
- Extensible to future groupby constructs
Predicates

Predicate selectivity depends on:

- the kind of predicates
- the semantics of the data being filtered

data($y) > 1994
More on Predicates

- Selectivity factor
 - \(\text{psf}[P]: \text{TaggedRegion} \rightarrow [0,1] \)
- Factors propagated to the occurrences of the same twig
Conclusions

- An infrastructure for size estimation models
- Future work
 - groupby
 - more tree-oriented vision